We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Gene therapy and imaging in preclinical and clinical oncology: recent developments in therapy and theranostics

    Sebastian Gehrig

    *Author for correspondence:

    E-mail Address: sebastian.gehrig@univie.ac.at

    Department for Pharmaceutical Chemistry, Faculty Center for Pharmacy, University of Vienna, Althanstraße 14, A-1090 Wien, Austria

    ,
    Haider Sami

    Department for Pharmaceutical Chemistry, Faculty Center for Pharmacy, University of Vienna, Althanstraße 14, A-1090 Wien, Austria

    &
    Manfred Ogris

    Department for Pharmaceutical Chemistry, Faculty Center for Pharmacy, University of Vienna, Althanstraße 14, A-1090 Wien, Austria

    Published Online:https://doi.org/10.4155/tde.14.87

    In the case of disseminated cancer, current treatment options reach their limit. Gene theranostics emerge as an innovative route in the treatment and diagnosis of cancer and might pave the way towards development of an efficacious treatment of currently incurable cancer. Various gene vectors have been developed to realize tumor-specific nucleic acid delivery and are considered crucial for the successful application of cancer gene therapy. By adding reporter genes and imaging agents, these systems gain an additional diagnostic function, thereby advancing the theranostic paradigm into cancer gene therapy. Numerous preclinical studies have demonstrated the feasibility of combined tumor gene therapy and diagnostic imaging, and clinical trials in human and veterinary oncology have been executed with partly encouraging results.

    References

    • 1 Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J. Clin. 63(1), 11–30 (2013).
    • 2 World Cancer Research Fund International. www.wcrf.org
    • 3 Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat. Med. 10(8), 789–799 (2004).
    • 4 Ogris M. Gene therapy in the clinics: shifting into the next gear. Ther. Deliv. 4(11), 1359–1363 (2013).
    • 5 Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov. 12(11), 847–865 (2013).
    • 6 Wang T, Upponi JR, Torchilin VP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int. J. Pharm. 427(1), 3–20 (2012).
    • 7 Nonnenmacher M, Weber T. Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther. 19(6), 649–658 (2012).
    • 8 Nguyen J, Szoka FC. Nucleic acid delivery: the missing pieces of the puzzle? Acc. Chem. Res. 45(7), 1153–1162 (2012).
    • 9 Rehman Z, Zuhorn IS, Hoekstra D. How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances. J. Control. Release 166(1), 46–56 (2013).
    • 10 Ogris M, Wagner E. To be targeted: Is the magic bullet concept a viable option for synthetic nucleic acid therapeutics? Hum. Gene Ther. 22(7), 799–807 (2011).
    • 11 Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine 2. Hum. Gene Ther. 7, 1947–1954 (1996).
    • 12 Fidarova EF, El-Emir E, Boxer GM et al. Microdistribution of targeted, fluorescently labeled anti-carcinoembryonic antigen antibody in metastatic colorectal cancer: implications for radioimmunotherapy. Clin. Cancer Res. 14(9), 2639–2646 (2008).
    • 13 Li L, Sun J, He Z. Deep penetration of nanoparticulate drug delivery systems into tumors: challenges and solutions. Curr. Med. Chem. 20(23), 2881–2891 (2013).
    • 14 Welter M, Rieger H. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model. PLoS ONE 8(8), e70395 (2013).
    • 15 Mukai H, Ozaki D, Cui Y et al. Quantitative evaluation of the improvement in the pharmacokinetics of a nucleic acid drug delivery system by dynamic PET imaging with (18)F-incorporated oligodeoxynucleotides. J. Control. Release 180, 92–99 (2014).
    • 16 Maeda H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J. Control. Release 164(2), 138–144 (2012).
    • 17 Waters JP, Pober JS, Bradley JR. Tumor necrosis factor and cancer. J. Pathol. 230(3), 241–248 (2013).
    • 18 Heldin CH, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure – an obstacle in cancer therapy. Nat. Rev. Cancer, 4(10), 806–813 (2004).
    • 19 Choi HS, Liu W, Misra P et al. Renal clearance of quantum dots. Nat. Biotechnol. 25(10), 1165–1170 (2007).
    • 20 Chollet P, Favrot MC, Hurbin A, Coll JL. Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J. Gene Med. 4(1), 84–91 (2002).
    • 21 Schipper ML, Iyer G, Koh AL et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5(1), 126–134 (2009).
    • 22 Zintchenko A, Susha AS, Concia M et al. Drug nanocarriers labeled with near-infrared-emitting quantum dots (quantoplexes): imaging fast dynamics of distribution in living animals. Mol. Ther. 17(11), 1849–1856 (2009).
    • 23 Kreppel F, Kochanek S. Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol. Ther. 16(1), 16–29 (2008).
    • 24 Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 148(2), 135–146 (2010).
    • 25 Huang S, Shao K, Kuang Y et al. Tumor targeting and microenvironment-responsive nanoparticles for gene delivery. Biomaterials 34(21), 5294–5302 (2013).
    • 26 Sebestyen MG, Budker VG, Budker T et al. Mechanism of plasmid delivery by hydrodynamic tail vein injection. I. Hepatocyte uptake of various molecules. J. Gene Med. 8(7), 852–873 (2006).
    • 27 Huebner RJ, Rowe WP, Schatten WE, Smith RR, Thomas LB. Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 9(6), 1211–1218 (1956).
    • 28 Maitra R, Ghalib MH, Goel S. Reovirus: a targeted therapeutic – progress and potential. Mol. Cancer Res. 10(12), 1514–1525 (2012).
    • 29 Meier O, Greber UF. Adenovirus endocytosis. J. Gene Med. 6(S1), S152–S163 (2004).
    • 30 Matsumoto K, Shariat SF, Ayala GE, Rauen KA, Lerner SP. Loss of coxsackie and adenovirus receptor expression is associated with features of aggressive bladder cancer. Urology 66(2), 441–446 (2005).
    • 31 Matsui H, Sakurai F, Katayama K et al. A targeted adenovirus vector displaying a human fibronectin type III domain-based monobody in a fiber protein. Biomaterials 34(16), 4191–4201 (2013).
    • 32 Grunwald GK, Vetter A, Klutz K et al. EGFR-targeted adenovirus dendrimer coating for improved systemic delivery of the theranostic nis gene. Mol. Ther. Nucleic Acids 2, e131 (2013).
    • 33 Vetter A, Virdi KS, Espenlaub S et al. Adenoviral vectors coated with pamam dendrimer conjugates allow car independent virus uptake and targeting to the egf receptor. Mol. Pharm. 10(2), 606–618 (2013).
    • 34 Waddington SN, McVey JH, Bhella D et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 132(3), 397–409 (2008).
    • 35 Prill J-M, Šubr V, Pasquarelli N et al. Traceless bioresponsive shielding of adenovirus hexon with hpma copolymers maintains transduction capacity in vitro and in vivo. PLoS ONE 9(1), e82716 (2014).
    • 36 Räty J, Lesch H, Wirth T, Ylä-Herttuala S. Improving safety of gene therapy. Curr. Drug Saf. 3(1), 46–53 (2008).
    • 37 Alemany R. Design of improved oncolytic adenoviruses. In: Advances in Cancer Research. David, TC, Paul, BF (Eds) Academic Press, 93–114 (2012).
    • 38 Lamy E, Goetz V, Erlacher M, Herz C, Mersch-Sundermann V. hTERT: another brick in the wall of cancer cells. Mutat. Res. 752(2), 119–128 (2013).
    • 39 Rajecki M, Sarparanta M, Hakkarainen T et al. SPECT/CT Imaging of hNIS -Expression after intravenous delivery of an oncolytic adenovirus and 131I. PLoS ONE, 7(3), e32871 (2012).
    • 40 Grunwald GK, Klutz K, Willhauck MJ et al. Sodium iodide symporter (NIS)-mediated radiovirotherapy of hepatocellular cancer using a conditionally replicating adenovirus. Gene Ther. 20(6), 625–633 (2013).
    • 41 Gaziova Z, Baumann V, Winkler A-M, Winkler J. Chemically defined polyethylene glycol siRNA conjugates with enhanced gene silencing effect. Bioorg. Med. Chem. 22(7), 2320–2326 (2014).
    • 42 Dohmen C, Frohlich T, Lachelt U et al. Defined Folate-PEG-siRNA conjugates for receptor-specific gene silencing. Mol. Ther. Nucleic Acids 1, e7 (2012).
    • 43 Hadinoto K, Sundaresan A, Cheow WS. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur. J. Pharm. Biopharm. 85(3 Part A), 427–443 (2013).
    • 44 Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv. Drug Deliv. Rev. 66, 110–116 (2014).
    • 45 Jin L, Zeng X, Liu M, Deng Y. N H. Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics 4(3), 240–255 (2014).
    • 46 Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl Acad. Sci. USA 104(39), 15549–15554 (2007).
    • 47 Kapoor P, Singh H, Gautam A, Chaudhary K, Kumar R, Raghava GP. TumorHoPe: a database of tumor homing peptides. PLoS ONE 7(4), e35187 (2012).
    • 48 Reinemann C, Strehlitz B. Aptamer-modified nanoparticles and their use in cancer diagnostics and treatment. Swiss Med. Wkly 144, w13908 (2014).
    • 49 Mickler FM, Mockl L, Ruthardt N, Ogris M, Wagner E, Brauchle C. Tuning nanoparticle uptake: live-cell imaging reveals two distinct endocytosis mechanisms mediated by natural and artificial EGFR targeting ligand. Nano Lett. 12(7), 3417–3423 (2012).
    • 50 Schafer A, Pahnke A, Schaffert D et al. Disconnecting the yin and yang relation of epidermal growth factor receptor (EGFR)-mediated delivery: a fully synthetic, egfr-targeted gene transfer system avoiding receptor activation. Hum. Gene Ther. 22(12), 1463–1473 (2011).
    • 51 Zhou J, Patel TR, Sirianni RW et al. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc. Natl Acad. Sci. USA 110(29), 11751–11756 (2013).
    • 52 Yin D, Zhai Y, Gruber HE et al. Convection-enhanced delivery improves distribution and efficacy of tumor-selective retroviral replicating vectors in a rodent brain tumor model. Cancer Gene Ther. 20(6), 336–341 (2013).
    • 53 Khan AS, Broderick KE, Sardesai NY. Clinical development of intramuscular electroporation: providing a “boost” for DNA vaccines. Methods Mol. Biol. 1121, 279–289 (2014).
    • 54 Delalande A, Kotopoulis S, Postema M, Midoux P, Pichon C. Sonoporation: mechanistic insights and ongoing challenges for gene transfer. Gene 525(2), 191–199 (2013).
    • 55 Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection – progress and prospects. Adv. Drug Deliv. Rev. 63(14–15), 1300–1331 (2011).
    • 56 Moyer CL, Wiethoff CM, Maier O, Smith JG, Nemerow GR. Functional genetic and biophysical analyses of membrane disruption by human adenovirus. J. Virol. 85(6), 2631–2641 (2011).
    • 57 Campadelli-Fiume G, Menotti L, Avitabile E, Gianni T. Viral and cellular contributions to herpes simplex virus entry into the cell. Curr. Opin. Virol. 2(1), 28–36 (2012).
    • 58 Sonawane ND, Szoka FC, Jr., Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. 278(45), 44826–44831 (2003).
    • 59 Xu Y, Szoka FC. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35(18), 5616–5623 (1996).
    • 60 Le Bihan O, Chèvre R, Mornet S, Garnier B, Pitard B, Lambert O. Probing the in vitro mechanism of action of cationic lipid/DNA lipoplexes at a nanometric scale. Nucleic Acids Res. 39(4), 1595–1609 (2011).
    • 61 Rehman Zu, Hoekstra D, Zuhorn IS. Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without Endosomal Lysis. ACS Nano 7(5), 3767–3777 (2013).
    • 62 Liu Z, Zhang N. pH-Sensitive polymeric micelles for programmable drug and gene delivery. Curr. Pharm. Des. 18(23), 3442–3451 (2012).
    • 63 Oupický D, Li J. Bioreducible polycations in nucleic acid delivery: past, present, and future trends. Macromol. Biosci. 14(7), 908–922 (2014).
    • 64 Kim HA, Nam K, Lee M, Kim SW. Hypoxia/hepatoma dual specific suicide gene expression plasmid delivery using bio-reducible polymer for hepatocellular carcinoma therapy. J Control. Release 171(1), 1–10 (2013).
    • 65 Amit D, Tamir S, Hochberg A. Development of targeted therapy for a broad spectrum of solid tumors mediated by a double promoter plasmid expressing diphtheria toxin under the control of IGF2-P4 and IGF2-P3 regulatory sequences. Int. J. Clin. Exp. Med. 6(2), 110–118 (2013).
    • 66 Haase R, Magnusson T, Su B et al. Generation of a tumor- and tissue-specific episomal non-viral vector system. BMC Biotechnol. 13, 49 (2013).
    • 67 Lipinski KS, Djeha AH, Ismail T, Mountain A, Young LS, Wrighton CJ. High-level, beta-catenin/TCF-dependent transgene expression in secondary colorectal cancer tissue. Mol. Ther. 4(4), 365–371 (2001).
    • 68 Matouk IJ, Raveh E, Abu-Lail R et al. Oncofetal H19 RNA promotes tumor metastasis. Biochim. Biophys. Acta 1843(7), 1414–1426 (2014).
    • 69 Mizrahi A, Czerniak A, Levy T et al. Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J. Transl. Med. 7, 69 (2009).
    • 70 Sorin V, Ohana P, Gallula J et al. H19-promoter-targeted therapy combined with gemcitabine in the treatment of pancreatic cancer. ISRN Oncol. 2012, 351750 (2012).
    • 71 Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev. Med. 60, 167–179 (2009).
    • 72 van Rooij E. The art of microRNA research. Circ. Res. 108(2), 219–234 (2011).
    • 73 Blandino G, Fazi F, Donzelli S et al. Tumor suppressor microRNAs: a novel non-coding alliance against cancer. FEBS Lett. (2014).
    • 74 Lee CY, Rennie PS, Jia WW. MicroRNA regulation of oncolytic herpes simplex virus-1 for selective killing of prostate cancer cells. Clin. Cancer Res. 15(16), 5126–5135 (2009).
    • 75 Kopp F, Schnoedt M, Haase R, Wagner E, Roidl A, Ogris M. De-targeting by miR-143 decreases unwanted transgene expression in non-tumorigenic cells. Gene Ther. 20(11), 1104–1109 (2013).
    • 76 Bhan A, Mandal SS. Long noncoding RNAs: Emerging stars in gene regulation, epigenetics and human disease. ChemMedChem 9(9), 1932–1956 (2014).
    • 77 Kent OA, Fox-Talbot K, Halushka MK. RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets. Oncogene 32(20), 2576–2585 (2013).
    • 78 Glinka EM. Eukaryotic expression vectors bearing genes encoding cytotoxic proteins for cancer gene therapy. Plasmid 68(2), 69–85 (2012).
    • 79 Choi KJ, Zhang SN, Choi IK, Kim JS, Yun CO. Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF. Gene Ther. 19(7), 711–723 (2012).
    • 80 Goshima F, Esaki S, Luo C, Kamakura M, Kimura H, Nishiyama Y. Oncolytic viral therapy with a combination of HF10, a herpes simplex virus type 1 variant and granulocyte-macrophage colony-stimulating factor for murine ovarian cancer. Int. J. Cancer 134(12), 2865–2877 (2013).
    • 81 Su B, Cengizeroglu A, Farkasova K et al. Systemic TNFalpha gene therapy synergizes with liposomal doxorubicine in the treatment of metastatic cancer. Mol. Ther. 21(2), 300–308 (2013).
    • 82 Niu HX, Du T, Xu ZF, Zhang XK, Wang RG. Role of wild type p53 and double suicide genes in interventional therapy of liver cancer in rabbits. Acta Cir. Bras. 27(8), 522–528 (2012).
    • 83 Gu J, Tang Y, Liu Y et al. Murine double minute 2 siRNA and wild-type p53 gene therapy enhances sensitivity of the SKOV3/DDP ovarian cancer cell line to cisplatin chemotherapy in vitro and in vivo. Cancer Lett. 343(2), 200–209 (2014).
    • 84 Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 136(4), 642–655 (2009).
    • 85 Bhan A, Mandal SS. Long Noncoding RNAs: emerging stars in gene regulation, epigenetics and human disease. ChemMedChem 9(9), 1932–1956 (2014).
    • 86 Zhang EB, Han L, Yin DD, Kong R, De W, Chen J. c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med. Oncol. 31(5), 914 (2014).
    • 87 Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat. Mater. 12(11), 967–977 (2013).
    • 88 Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: Similarities and differences. Adv. Drug Deliv. Rev. 61(9), 746–759 (2009).
    • 89 Zarogoulidis P, Darwiche K, Sakkas A et al. Suicide gene therapy for cancer – current strategies. J. Genet. Syndr. Gene Ther. 4, 16849 (2013).
    • 90 Westphal M, Yla-Herttuala S, Martin J et al. Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. Lancet Oncol. 14(9), 823–833 (2013).
    • 91 Lemarie F, Croft DR, Tate RJ, Ryan KM, Dufes C. Tumor regression following intravenous administration of a tumor-targeted p73 gene delivery system. Biomaterials 33(9), 2701–2709 (2012).
    • 92 Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 14(6), e218–228 (2013).
    • 93 Kanagawa N, Gao JQ, Motomura Y et al. Antitumor mechanism of intratumoral injection with IL-12-expressing adenoviral vector against IL-12-unresponsive tumor. Biochem. Biophys. Res. Commun. 372(4), 821–825 (2008).
    • 94 Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3(9), 745–756 (2003).
    • 95 Gutschalk CM, Yanamandra AK, Linde N, Meides A, Depner S, Mueller MM. GM-CSF enhances tumor invasion by elevated MMP-2, -9, and -26 expression. Cancer Med. 2(2), 117–129 (2013).
    • 96 Deroose JP, Eggermont AM, van Geel AN et al. Long-term results of tumor necrosis factor alpha- and melphalan-based isolated limb perfusion in locally advanced extremity soft tissue sarcomas. J. Clin. Oncol. 29(30), 4036–4044 (2011).
    • 97 Lasek W, Zagożdżon R, Jakobisiak M. Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol. Immunother. 63(5), 419–435 (2014).
    • 98 Oriuchi N, Higuchi T, Ishikita T et al. Present role and future prospects of positron emission tomography in clinical oncology. Cancer Sci. 97(12), 1291–1297 (2006).
    • 99 Close DM, Xu T, Sayler GS, Ripp S. In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors 11(1), 180–206 (2011).
    • 100 Brogan J, Li F, Li W, He Z, Huang Q, Li CY. Imaging molecular pathways: reporter genes. Radiat. Res. 177(4), 508–513 (2012).
    • 101 Navarro G, Maiwald G, Haase R et al. Low generation PAMAM dendrimer and CpG free plasmids allow targeted and extended transgene expression in tumors after systemic delivery. J. Control. Release 146(1), 99–105 (2010).
    • 102 Inoue Y, Sheng F, Kiryu S et al. Gaussia luciferase for bioluminescence tumor monitoring in comparison with firefly luciferase. Mol. Imaging 10(5), 377–385 (2011).
    • 103 Shcherbakova DM, Verkhusha VV. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10(8), 751–754 (2013).
    • 104 Lu Y, Darne CD, Tan IC et al. In vivo imaging of orthotopic prostate cancer with far-red gene reporter fluorescence tomography and in vivo and ex vivo validation. J. Biomed. Opt. 18(10), 101305 (2013).
    • 105 Krumholz A, Shcherbakova DM, Xia J, Wang LV, Verkhusha VV. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Sci. Rep. 4, 3939 (2014).
    • 106 Baril P, Martin-Duque P, Vassaux G. Visualization of gene expression in the live subject using the Na/I symporter as a reporter gene: applications in biotherapy. Br. J. Pharmacol. 159(4), 761–771 (2010).
    • 107 Klutz K, Schaffert D, Willhauck MJ et al. Epidermal growth factor receptor-targeted (131)I-therapy of liver cancer following systemic delivery of the sodium iodide symporter gene. Mol. Ther. 19(4), 676–685 (2011).
    • 108 Klutz K, Willhauck MJ, Dohmen C et al. Image-guided tumor-selective radioiodine therapy of liver cancer after systemic nonviral delivery of the sodium iodide symporter gene. Hum. Gene Ther. 22(12), 1563–1574 (2011).
    • 109 Weissleder R, Moore A, Mahmood U et al. In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6(3), 351–355 (2000).
    • 110 Louie AY, Huber MM, Ahrens ET et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 18(3), 321–325 (2000).
    • 111 Sekar TV, Mohanram RK, Foygel K, Paulmurugan R. Therapeutic evaluation of microRNAs by molecular imaging. Theranostics 3(12), 964–985 (2013).
    • 112 Thomas R, Park I-K, Jeong Y. Magnetic iron oxide nanoparticles for multimodal Imaging and therapy of cancer. Int. J. Mol. Sci. 14(8), 15910–15930 (2013).
    • 113 Li J, Gupta S, Li C. Gold nanoparticles in cancer theranostics. Quant. Imaging Med. Surg. 3(6), 284–291 (2013).
    • 114 Yu-Cheng C, Xin-Chun H, Yun-Ling L, Yung-Chen C, You-Zung H, Hsin-Yun H. Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems. Sci. Technol. Adv. Mater. 14(4), 044407 (2013).
    • 115 Ramos J, Rege K. Transgene delivery using poly(amino ether)-gold nanorod assemblies. Biotechnol. Bioeng. 109(5), 1336–1346 (2012).
    • 116 Ramos J, Rege K. Poly(aminoether)-gold nanorod assemblies for shRNA plasmid-induced gene silencing. Mol. Pharm. 10(11), 4107–4119 (2013).
    • 117 Cheng L, Yang K, Chen Q, Liu Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 6(6), 5605–5613 (2012).
    • 118 Muthu MS, Feng S-S. Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Exp. Opin. Drug Deliv. 10(2), 151–155 (2013).
    • 119 Bardhan R, Lal S, Joshi A, Halas NJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc. Chem. Res. 44(10), 936–946 (2011).
    • 120 Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater. 2, 23–30 (2010).
    • 121 Wang C, Ravi S, Garapati US et al. Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J. Mater. Chem. B Mater. Biol. Med. 1(35), 4396–4405 (2013).
    • 122 Gao L, Xie L, Long X et al. Efficacy of MRI visible iron oxide nanoparticles in delivering minicircle DNA into liver via intrabiliary infusion. Biomaterials 34(14), 3688–3696 (2013).
    • 123 Wan Q, Xie L, Gao L et al. Self-assembled magnetic theranostic nanoparticles for highly sensitive MRI of minicircle DNA delivery. Nanoscale 5(2), 744–752 (2013).
    • 124 Boyer C, Priyanto P, Davis TP et al. Anti-fouling magnetic nanoparticles for siRNA delivery. J. Mater. Chem. 20(2), 255–265 (2010).
    • 125 Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med. 13(3), 372–377 (2007).
    • 126 Wu C, Gong F, Pang P et al. An RGD-modified MRI-visible polymeric vector for targeted siRNA delivery to hepatocellular carcinoma in nude mice. PLoS ONE 8(6), e66416 (2013).
    • 127 Lee J-H, Lee K, Moon SH, Lee Y, Park TG, Cheon J. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem. Int. Ed. Engl. 48(23), 4174–4179 (2009).
    • 128 Ding Y, Jiang Z, Saha K et al. Gold nanoparticles for nucleic acid delivery. Mol. Ther. 22(6), 1075–1083 (2014).
    • 129 Kong WH, Bae KH, Hong CA, Lee Y, Hahn SK, Park TG. Multimerized siRNA cross-linked by gold nanoparticles. Bioconjug. Chem. 22(10), 1962–1969 (2011).
    • 130 Braun GB, Pallaoro A, Wu G et al. Laser-activated gene silencing via gold nanoshell-sirna conjugates. ACS Nano 3(7), 2007–2015 (2009).
    • 131 Sahoo AK, Banerjee S, Ghosh SS, Chattopadhyay A. Simultaneous RGB emitting Au nanoclusters in chitosan nanoparticles for anticancer gene theranostics. ACS Appl. Mater. Interfaces 6(1), 712–724 (2014).
    • 132 Li Z, Tao Y, Huang S, Gao N, Ren J, Qu X. Lanthanide-based hollow mesoporous nanoparticles: a novel multifunctional platform for simultaneous gene delivery and cell imaging. Chem. Commun. 49(64), 7129–7131 (2013).
    • 133 Webb JA, Bardhan R. Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 6(5), 2502–2530 (2014).
    • 134 Kumar M, Yigit M, Dai GP, Moore A, Medarova Z. Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res. 70(19), 7553–7561 (2010).
    • 135 Herman JM, Wild AT, Wang H et al. Randomized phase III multi-institutional study of TNFerade biologic with fluorouracil and radiotherapy for locally advanced pancreatic cancer: final results. J. Clin. Oncol. 31(7), 886–894 (2013).
    • 136 Patel MR, Kratzke RA. Oncolytic virus therapy for cancer: the first wave of translational clinical trials. Transl. Res. (4), 355–364 (2013).
    • 137 Andtbacka RHI, Collichio F, Amatruda T et al. Optim: a randomised phase 3 trial of talimogene laherparepvec (t-vec) vs subcutaneous (sc) granulocyte-macrophage colony-stimulating factor (gm-csf) for the treatment of unresected stage iiib/c and iv melanoma. Asia-Pac. J. Clin. Oncol. 9, 74–75 (2013).
    • 138 A Phase 2b Study of Modified Vaccinia Virus to Treat Patients Advanced Liver Cancer Who Failed Sorafenib http://clinicaltrials.gov/show/NCT01387555
    • 139 Heo J, Reid T, Ruo L et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 19(3), 329–336 (2013).
    • 140 Kanerva A, Nokisalmi P, Diaconu I et al. Antiviral and antitumor T-cell immunity in patients treated with GM-CSF-coding oncolytic adenovirus. Clin. Cancer Res. 19(10), 2734–2744 (2013).
    • 141 Kim KH, Dmitriev IP, Saddekni S et al. A phase I clinical trial of Ad5/3-Delta24, a novel serotype-chimeric, infectivity-enhanced, conditionally-replicative adenovirus (CRAd), in patients with recurrent ovarian cancer. Gynecol. Oncol. 130(3), 518–524 (2013).
    • 142 Anwer K, Kelly FJ, Chu C, Fewell JG, Lewis D, Alvarez RD. Phase I trial of a formulated IL-12 plasmid in combination with carboplatin and docetaxel chemotherapy in the treatment of platinum-sensitive recurrent ovarian cancer. Gynecol. Oncol. 131(1), 169–173 (2013).
    • 143 Lu C, Stewart DJ, Lee JJ et al. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS ONE 7(4), e34833 (2012).
    • 144 Gofrit ON, Benjamin S, Halachmi S et al. DNA based therapy with diphtheria toxin-a bc-819: a phase 2b marker lesion trial in patients with intermediate risk nonmuscle invasive bladder cancer. J. Urol. doi: 10.1016/j.juro.2013.12.011 (2013)(Epub ahead of print).
    • 145 Tabernero J, Shapiro GI, LoRusso PM et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 3(4), 406–417 (2013).
    • 146 Davis ME, Zuckerman JE, Choi CH et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291), 1067–1070 (2010).
    • 147 Hansen K, Khanna C. Spontaneous and genetically engineered animal models; use in preclinical cancer drug development. Eur. J. Cancer 40(6), 858–880 (2004).
    • 148 Plank C, Schillinger U, Scherer F et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem. 384(5), 737–747 (2003).
    • 149 Jahnke A, Hirschberger J, Fischer C et al. Intra-tumoral gene delivery of feIL-2, feIFN-gamma and feGM-CSF using magnetofection as a neoadjuvant treatment option for feline fibrosarcomas: a phase-I study. J. Vet. Med. A Physiol. Pathol. Clin. Med. 54(10), 599–606 (2007).
    • 150 Huttinger C, Hirschberger J, Jahnke A et al. Neoadjuvant gene delivery of feline granulocyte-macrophage colony-stimulating factor using magnetofection for the treatment of feline fibrosarcomas: a phase I trial. J. Gene Med. 10(6), 655–667 (2008).
    • 151 Reed SD, Fulmer A, Buckholz J et al. Bleomycin/interleukin-12 electrochemogene therapy for treating naturally occurring spontaneous neoplasms in dogs. Cancer Gene Ther. 17(7), 457–464 (2010).
    • 152 Chuang TF, Lee SC, Liao KW et al. Electroporation-mediated IL-12 gene therapy in a transplantable canine cancer model. Int. J. Cancer 125(3), 698–707 (2009).