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Introduction
Different contaminants are released to wastewater with the rapid 

industrialization of human society, including heavy metal ions, 
organics, bacteria, viruses, and so on, which are serious harmful to 
human health. Among all water contaminations, heavy metal ions, 
such as Pb2+, Cd2+, Zn2+, Ni2+ and Hg2+, have high toxic and non-
biodegradable properties, can cause severe health problems in animals 
and human beings. It is well-known that chronic cadmium toxicity 
is the inducement of Japan Itai-Itai disease. The harmful effects of 
Cd also lead a number of acute and chronic disorders, such as renal 
damage, emphysema, hypertension, testicular atrophy, and skeletal 
malformation in fetus [1,2]. Wastewater from many industries, 
including chemical manufacturing, battery manufacturing industries, 
metallurgical, leather tanning, and mining, contain these heavy metal 
ions [3]. These wastewater with heavy metal ions are discharged into 
natural water directly, not only threat the aquatic organisms, but may 
be enriched by precipitation, adsorption, and harmed human health 
through the food chain. Thus, the removal of such toxic metal ions 
from wastewater is becoming a crucial issue. 

Heavy metal ions could be eliminated by several traditional 
techniques [4], including chemical precipitation [5], reverse osmosis 
[6], electrochemical treatment techniques [7], ion exchange [8], 
membrane filtration [9], coagulation [10], extraction [11], irradiation 
[12], and adsorption [13]. Due to its low cost-effective, high efficiency, 
and simple to operate for removing trace levels of heavy metal ions, 
adsorption technology [14] is regarded as the most promising one 
to remove heavy metal ions from effluents among these techniques 
mentioned above. Several types of materials, such as activated carbons 
[15], clay minerals [16], chelating materials [17], and chitosan/natural 
zeolites [18] have been researched to adsorb metal ions from aqueous 
solutions. Although traditional sorbents could remove heavy metal 
ions from wastewater, the low sorption capacities and efficiencies limit 
their application deeply.

To solve these defects of traditional sorbents, nanomaterials are 
used as the novel ones to remove heavy metal ions in wastewater. 
Materials with the particle size between 1 nm to 100 nm are defined 
as nanomaterials. With novel size- and shape-dependent properties, 

nanomaterials have been extensively investigated over a decade [19]. 
In recent years, the development of nanoscience and nanotechnology 
has shown remarkable potential for the remediation of environmental 
problems [20,21]. Compared with traditional materials, nanostructure 
adsorbents have exhibited much higher efficiency and faster rates in 
water treatment.

Nanomaterials for Adsorption

Used as sorbents for removing heavy metal ions in wastewater, 
nanomaterials should satisfy the following criterions: 1) The 
nanosorbents themselves should be nontoxic. 2) The sorbents 
present relatively high sorption capacities and selectivity to the low 
concentration of pollutants. 3) The adsorbed pollutant could be 
removed from the surface of the nano adsorbent easily. 4) The sorbents  
could be infinitely recycled. So far, a variety of nanomaterials such as 
carbon nanotubes, carbon based material composites, graphene, nano 
metal or metal oxides, and polymeric sorbents have been studied in the 
removal of heavy metal ions from aqueous solutions, and the results 
indicate that these nanomaterials show high adsorption capacity.

Carbon based nanomaterials

As one of the inorganic materials, carbon based nanomaterials 
[22] are used widely in the field of removal heavy metals in recent
decades, due to its nontoxicity and high sorption capacities. Activated
carbon is used firstly as sorbents, but it is difficult to remove heavy
metals at ppb levels. Then, with the development of nanotechnology,
carbon nanotubes, fullerene, and graphene are synthesized and used
as nanosorbents.
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Carbon nanotubes (CNTs) are discovered by Lijima, due to 
their unique structural, electronic, optoelectronic, semiconductor, 
mechanical, chemical and physical properties, have been applied 
widely to remove heavy metals in wastewater treatment. CNTs are 
used as nanosorbents separately firstly, and show high sorption 
efficiency of divalent metal ions. Pyrzyńska and Bystrzejewski [23] 
give the advantages and limitations of heavy metals sorption onto 
activated carbon, carbon nanotubes, and carbon-encapsulate magnetic 
nanoparticles, through sorption studies based on Co2+ and Cu2+. The 
results show that carbon nanomaterials have significantly higher 
sorption efficiency comparing with activated carbons. Meanwhile, 
Stafiej and Pyrzynska [24] find solution conditions, including pH and 
metal ions concentrations, could affect the adsorption characteristics 
of carbon nanotubes, and the Freundlich adsorption model agree well 
with their experimental data.

Then, to enhance the sorption capacities, CNTs are modified by 
oxidation [25,26], combing with other metal ions [27] or metal oxides 
[28], and coupling with organic compounds [29]. Ball et al. [30] 
showed that carboxyl-carbon sites are over 20 times more energetic for 
zinc sorption than unoxidized carbon sites. Salam et al. [29] modified 
carbon nanotubes with 8-hydroxyquinoline, which are used to remove 
of Cu2+, Pb2+, Cd2+, and Zn2+. In this paper, adsorption parameters, 
such as the amount of carbon nanotubes used, temperature, pH, ionic 
strength, metal ion concentration are studied and optimized. The results 
show that most of the metals are removed from aqueous solution. The 
modification of CNTs with 8-hydroxyquinoline enhanced significantly 
the removal process.

Graphene is another type carbon material as nanosorbent, which 
is a kind of one or several atomic layered graphites, possesses special 
two-dimensional structure and good mechanical, thermal properties. 
Wang et al. [1] synthesized the few-layered graphene oxide nanosheets 
through the modified Hummers method, this graphene nanosheets 
are used as sorbents for the removal of Cd2+ and Co2+ ions from 
aqueous solution, results indicate that heavy metal ions sorption on 
nanosheets is dependent on pH and ionic strength, and the abundant 
oxygen-containing functional groups on the surfaces of graphene 
oxide nanosheets played an important role on sorption. Kim et al. [31] 
reported magnetite-graphene adsorbents with a particle size of ~10 nm 
give a high binding capacity for As3+ and As5+, and the results indicate 
that the high binding capacity is due to the increased adsorption sites 
in the graphene composite.

Nanoparticles from metal or metal oxides

Nanoparticles formed by metal or metal oxides are another 
inorganic nanomaterials, which are used broadly to remove heavy 
metal ions in wastewater treatment. Nanosized metals or metal 
oxides include nanosized silver nanoparticles [32], ferric oxides [33], 
manganese oxides [34], titanium oxides [35], magnesium oxides [19], 
copper oxides [36], cerium oxides [37], and so on, all these provide 
high surface area and specific affinity. Besides, metal oxides possess 
minimal environmental impact and low solubility and no secondary 
pollution, have been adopted as sorbents to remove heavy metals.

Hristovski et al. [38] research the feasibility of arsenate removal 
by aggregated metal oxide nanoparticle media in packed bed columns. 
Through batch experiments conduct with 16 commercial nanopowders 
in four water matrices, TiO2, Fe2O3, ZrO2, and NiO nanopowders 
are selected out by characterized with fitted Freundlich adsorption 
isotherm parameters, which exhibit the highest arsenate removal in 
all water matrices. Cao et al. [39] synthesized the titanate nanoflowers 

through a facile hydrothermal treatment of anatase nanopowders in 
concentration NaOH solution. The nanoflowers have large specific 
surface area and show availability for the removal of heavy metal 
ions from water system. Comparative studies exhibit that titanate 
nanoflowers possess larger adsorption capacity and more rapid kinetics 
than titanate nanotubes/nanowires. Besides, Titanate nanoflowers 
showed high selectivity in the removal of highly toxic heavy metal ion 
Cd2+ than less toxic ions Zn2+, Ni2+, which are the potential adsorbents 
for efficient removal of toxic metal ions. The equilibrium data show 
the adsorption mechanism fitted well with the Langmuir model, 
the adsorption kinetics followed the pseudo-second-order model. 
In addition, nanosized metal or metal oxides can be embedded in 
supports. Chen et al. [40] synthesized the highly ordered Mg(OH)2 
nanotube arrays inside the pores of porous anodic alumina membranes 
to form Mg(OH)2/Al2O3 composite membranes. And these membranes 
are used to remove Nickel ions from wastewater with high removal 
efficiency. Then, MgO/NiO/Al2O3 metal-oxides nanostructures are 
gained after heating the composite membranes, which still present nice 
performance of Ni2+ removal.

Nanosized metal oxides show great removal efficiency of heavy 
metal in wastewater, owing to their higher surface areas and much 
more surface active sites than bulk materials. But, it is very difficult 
to separate them from the wastewater due to their high surface energy 
and nanosize. So, many researchers turn to design polymer based 
nanosorbents. 

Polymer supported nanosorbents

An efficient sorbent with both high capacity and fast rate adsorption 
should have the following two main characteristics: functional groups 
and large surface area [41]. Unfortunately, most current inorganic 
sorbents rarely have both at the same time, carbon nanomaterials 
has high surface area, but without adsorbing functional group. On 
the contrary, organic polymer, polyphenylenediamine, holds a large 
amount of polyfunctional groups (amino and imino groups) can 
effectively adsorb heavy metal ions, whereas their small specific 
area and low adsorption rate limit their application. Therefore, new 
sorbents with both polyfunctional groups and high surface area are 
still expected. More recently, the development of hybrid sorbents has 
opened up the new opportunities of their application in deep removal 
of heavy metals from water [42,43].

Polymer-layered silicate nanocomposites [44] have attracted 
both academic and industrial attention because they exhibit dramatic 
improvement in properties at very low filler contents. Xu et al. [45] 
synthesized the hybrid polymers from the ring-opening polymerization 
of pyromellitic acid dianhydride (PMDA) and phenylaminomethyl 
trimethoxysilane (PAMTMS). This hybrid polymer is used to remove 
Cu2+ and Pb2+, adsorption for Cu2+ and Pb2+ followed Lagergren second-
order kinetic model and Langmuir isotherm model, demonstrating 
that the adsorption process might be Langmuir monolayer adsorption. 

In summary, nanomaterials including traditional inorganic 
nanoadsorbents and novel polymer supported composites are used 
to remove the heavy metal ions in wastewater treatment, due to their 
novel size- and shape-dependent properties, and gain the good to 
excellent removal efficiency.

Adsorption Isotherm
Adsorption is the process in which heavy metals are adsorbed 

on the solid surface, and the equilibrium is established when the 
concentrations of heavy metal adsorbed and in water become constant. 
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At equilibrium, the relationship between amounts of heavy metal ions 
adsorbed and in water is called an adsorption isotherm [21]. From 
these isotherms, several adsorption parameters could be calculated. 
The most widely used adsorption isotherms are Langmuir model and 
Freundlich model.

Langmuir model

In this model, adsorption occurs uniformly on the active sites of 
the adsorbent, and once the active sites are occupied by adsorbates, the 
adsorption is naturally terminated at this site. The non-linear Langmuir 
equation is [46,47]:

max
1

=
+

L

L

q K Cq
K C   (1)

where KL is the equilibrium constant (L mg−1), qmax is the maximum 
adsorption capacity (mg g−1) of adsorbent, C is the equilibrium 
concentration (mg L−1), q is the amount of metals adsorbed at 
equilibrium (mg g−1).

The linear Langmuir model is given by following equation:
1

= +e e

e m m

C C
q q bq   (2)

where qm and b are the saturated monolayer adsorption capacity and 
the adsorption equilibrium constant. A plot of Ce/qe versus Ce would 
result in a straight line. From the slope and intercept, the maximum 
adsorption capacity and bond energy of adsorbates can be calculated.

Freundlich adsorption isotherm

The Freundlich equation is an empirical model allowing for 
multilayer adsorption on sorbent. The non-linear form of Freundlich 
model is [48]:

= n
e F eq K C   (3)

The linear form of Freundlich model can be expressed as:
loglog log= + e

e F
Cq K
n   (4)

where qe is loading of adsorbate on adsorbent at equilibrium (mg 
g−1); KF is indicator of sorption capacity (mg1−n Ln g−1), n is adsorption 
energetics and Ce is aqueous concentration of adsorbate at equilibrium 
(mg L−1).

As the widely used models, the Langmuir model assumes 
monolayer coverage on sorbent whereas the Freundlich model is an 
empirical model allowing for multilayer adsorption on sorbent [49]. 
Besides, there are several different well-known models used to explain 
the results of adsorption studies, including Tempkin [50], Frenkel−
Halsey−Hill [51], Henderson [52], Giles-Smith [53], Dubinin-
Radushkevich [54], MT [55], BET [56], BDST [57], Oswin [58], Ferro-
Fintan [59], GAB [60], and Peleg [61]. These adsorption models give a 
representation of the adsorption equilibrium between an adsorbate in 
solution and the surface of the adsorbent [62].

Adsorption Kinetics Model
In order to determine and interpret the mechanisms of metal 

adsorption processes and the main parameters governing sorption 
kinetics, several kinetic models are proposed. 

Pseudo-first-order kinetics model

A simple kinetic model suggested for the sorption process in solid/

liquid systems is Lagergren’s pseudo-first-order expression, which is 
given as [63]: 

( )1= −t
e t

dq k q q
dt

  (5)

Where k1 is the pseudo-first-order rate constant for the adsorption 
process (min-1), qe and qt are the amounts of metal ions adsorbed 
per gram of sorbents (mg g-1) at equilibrium and at time t (min), 
respectively. After integration of this kinetic expression for the initial 
condition of qt equal to 0, when time (t) approaches 0, its linear form 
are obtained:

( ) 1ln ln− = −e t eq q q k t   (6)

The plot of ln(qe-qt) vs t gives a straight line, and pseudo- first-order 
rate constant k1 can be calculated from the slope of that line.

Pseudo-second-order kinetics model

The kinetic data also can be analyzed by Ho’s pseudo-second-order 
kinetics model. This model is based on the assumption the sorption 
follows second order chemisorptions, which can be represented in the 
linear expression as [64]:

2
2

1
= +

t ee

t t
q qk q   (7)

Where k2 (g·mg−1·min−1) is the rate constant of the pseudo-second-
order adsorption.

Besides two kinetic models mentioned above, researchers also 
propose other models, e.g. Elovich equation [65], Weber-Morris 
diffusion model [66], and so on.

Conclusion
Advances in nanoscale science and engineering are providing new 

opportunities to develop more cost-effective and environmentally 
acceptable water treatment technology. Nanomaterials have a number 
of physicochemical properties that make them particularly attractive 
for wastewater purification. Recent researches have indicated that 
nanomaterials as sorbents are useful tools for heavy metal removal, due 
to their unique structure and surface characteristics. These materials 
are capable to remove heavy metal ions at low concentration, with high 
selectivity and adsorption capacity. These properties of nanosorbents 
make them ideal materials for wastewater treatment technology. To 
explain the mechanism of adsorption process, adsorption isotherm 
and adsorption kinetics are concluded in this paper. Although 
nanosorbents, such as CNTs, nanometal or nanometal oxides, and 
other organic sorbents, are used successfully in removal heavy metal 
ions in wastewater, it still remains several problems; wastewater 
treatment on a large scale is the essential one. Besides, to develop some 
environment friendly and inexpensive nanomaterials is also the key 
work. With the nanotechnology developed, the exploitation of new 
efficient adsorption materials is essential and will continue infinitely, 
the future of nanomaterials in removal heavy metal ions in wastewater 
treatment is fairly bright.
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