Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-30T05:08:50.718Z Has data issue: false hasContentIssue false

A Two-Grid Finite Element Method for Time-Dependent Incompressible Navier-Stokes Equations with Non-Smooth Initial Data

Published online by Cambridge University Press:  10 November 2015

Deepjyoti Goswami*
Affiliation:
Department of Mathematical Sciences, Tezpur University, Napaam, Sonitpur, Assam -784028, India
Pedro D. Damázio
Affiliation:
Department of Mathematics, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Cx.P: 19081, CEP: 81531-990, PR, Brazil
*
*Corresponding author
Get access

Abstract

We analyze here, a two-grid finite element method for the two dimensional time-dependent incompressible Navier-Stokes equations with non-smooth initial data. It involves solving the non-linear Navier-Stokes problem on a coarse grid of size H and solving a Stokes problem on a fine grid of size h, h « H. This method gives optimal convergence for velocity in H1-norm and for pressure in L2-norm. The analysis mainly focuses on the loss of regularity of the solution at t = 0 of the Navier-Stokes equations.

Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abboud, H., Girault, V., and Sayah, T., A second order accuracy for a full discretized time-dependent Navier-Stokes equations by a two-grid scheme, Numer. Math., vol. 114, no. 2 (2009), pp. 189231.CrossRefGoogle Scholar
[2]Abboud, H., and Sayah, T., A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme, M2AN Math. Model. Numer. Anal., vol. 42, no. 1 (2008), pp. 141174.CrossRefGoogle Scholar
[3]Brezzi, F., and Fortin, M., Mixed and Hybrid finite element methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York, 1991. x+350 pp.Google Scholar
[4]Bercovier, M., and Pironneau, O., Error estimates for finite element solution of the Stokes problem in the primitive variables, Numer. Math., vol. 33, no. 2 (1979), pp. 211224.CrossRefGoogle Scholar
[5]Chen, C., and Liu, W., A two-grid method for finite element solutions of nonlinear parabolic equations, Abstr. Appl. Anal. (2012), Art. ID 391918, 11 pp.Google Scholar
[6]Chen, C., Liu, W., and Zhao, X., A two-grid finite element method for a second-order nonlinear hyperbolic equation, Abstr. Appl. Anal. (2014), Art. ID 803615, 6 pp.Google Scholar
[7]De Frutos, J., García-archilla, B., and Novo, J., The postprocessed mixed finite-element method for the Navier-Stokes equations: refined error bounds, SIAM J. Numer. Anal., vol. 46, no. 1 (2008), pp. 201230.CrossRefGoogle Scholar
[8]De Frutos, J., García-archilla, B., and Novo, J., A posteriori error estimations for mixed finite-element approximations to the Navier-Stokes equations, J. Comput. Appl. Maths., vol. 236 (2011), pp. 11031122.CrossRefGoogle Scholar
[9]De Frutos, J., García-archilla, B., and Novo, J., Optimal error bounds for two-grid schemes applied to the Navier-Stokes equations, Appl. Math. Comput., vol. 218, no. 13 (2012), pp. 70347051.Google Scholar
[10]De Frutos, J., García-archilla, B., and Novo, J., Static two-grid mixed finite-element approximations to the Navier-Stokes equations, J. Sci. Comput., vol. 52 (2012), pp. 619637.CrossRefGoogle Scholar
[11]Giraul, V., and Lions, J.-L., Two-grid finite-element schemes for the transient Navier-Stokes problem, M2AN Math. Model. Numer. Anal., vol. 35, no. 5 (2001), pp. 945980.CrossRefGoogle Scholar
[12]Girault, V., and Raviart, P. A., Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, 749. Springer-Verlag, Berlin-New York, 1980. vii+200pp.Google Scholar
[13]He, Y., A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations. I. Spatial discretization, J. Comput. Math., vol. 22, no. 1 (2004), pp. 2132.Google Scholar
[14]He, Y., and Li, J., Two-level methods based on three corrections for the 2D/3D steady Navier-Stokes equations, Int. J. Numer. Anal. Model., Ser. B, vol. 2, no. 1 (2011), pp. 4256.Google Scholar
[15]He, Y., Miao, H., and Ren, C., A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations. II. Time discretization, J. Comput. Math., vol. 22, no. 1 (2004), pp. 3354.Google Scholar
[16]Heywood, J. G., and Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem: I. Regularity of solutions and second order error estimates for spatial discretization, SIAM J. Numer. Anal., vol. 19, no. 2 (1982), pp. 275311.CrossRefGoogle Scholar
[17]Heywood, J. G., and Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem: I. Error analysis for second-order time discretization, SIAM J. Numer. Anal., vol. 27, no. 2 (1990), pp. 353384.CrossRefGoogle Scholar
[18]Layton, W., A two-level discretization method for the Navier-Stokes equations, Comput. Math. Appl., vol. 26, no. 2 (1993), pp. 3338.CrossRefGoogle Scholar
[19]Layton, W., and Lenferink, W., Two-level Picard and modified Picard methods for the Navier-Stokes equations, Appl. Math. Comput., vol. 69, no. 2-3 (1995), pp. 263274.Google Scholar
[20]Layton, W., and Tobiska, L., A two-level method with backtracking for the Navier-Stokes equations, SIAM J. Numer. Anal., vol. 35, no. 5 (1998), pp. 20352054 (electronic).CrossRefGoogle Scholar
[21]Liu, Q., and Hou, Y., A two-level finite element method for the Navier-Stokes equations based on a new projection, Appl. Math. Model., vol. 87, no. 2 (2010), pp. 383399.CrossRefGoogle Scholar
[22]Liu, Q., and Hou, Y., A two-level correction method in space and time based on Crank-Nicolson scheme for Navier-Stokes equations, Int. J. Comput. Math., vol. 87, no. 11 (2010), pp. 25202532.CrossRefGoogle Scholar
[23]Liu, Q., Hou, Y., and Liu, Q., A two-level method in time and space for solving the Navier-Stokes equations based on Newton iteration, Comput. Math. Appl., vol. 64, no. 11 (2012), pp. 35693579.CrossRefGoogle Scholar
[24]Margolin, L. G., Titi, E. S. and Wynne, S., The postprocessing Galerkin and nonlinear Galerkin methods-A truncation analysis point of view, SIAM J. Numer. Anal., vol. 41 (2003), pp. 695714.CrossRefGoogle Scholar
[25]Olshanskii, M. A., Two-level method and some a priori estimates in unsteady Navier-Stokes calculations, J. Comput. Appl. Math., vol. 104, no. 2 (1999), pp. 173191.CrossRefGoogle Scholar
[26]Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis, Third Edition. Studies in Mathematics and its Application 2. North-Holland Publishing Co., Amsterdam, 1984. xii+526 pp.Google Scholar
[27]Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis, Second Edition. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1983. xi+141 pp.Google Scholar
[28]Temam, R., Infinite-dimensional dynamical systems in mechanics and physics, Second Edition, Applied Mathematical Sciences, 68. Springer-Verlag New York, 1997. xxii+648 pp.Google Scholar
[29]Xu, J., A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., vol. 15, no. 1 (1994), pp. 231237.CrossRefGoogle Scholar
[30]Xu, J., Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., vol. 33, no. 5 (1996), pp. 17591777.CrossRefGoogle Scholar