Transparent Electrode Materials for Simultaneous Amperometric Detection of Exocytosis and Fluorescence Microscopy

Abstract

We have developed and tested transparent microelectrode arrays capable of simultaneous amperometric measurement of oxidizable molecules and fluorescence imaging through the electrodes. Surface patterned microelectrodes were fabricated from three different conducting materials: Indium-tin-oxide (ITO), nitrogen-doped diamond-like carbon (DLC) deposited on top of ITO, or very thin (12 - 17 nm) gold films on glass substrates. Chromaffin cells loaded with lysotracker green or acridine orange dye were placed atop the electrodes and vesicle fluorescence imaged with total internal reflection fluorescence (TIRF) microscopy while catecholamine release from single vesicles was measured as amperometric spikes with the surface patterned electrodes. Electrodes fabricated from all three materials were capable of detecting amperometric signals with high resolution. Unexpectedly, amperometric spikes recorded with ITO electrodes had only about half the amplitude and about half as much charge as those detected with DLC or gold electrodes, indicating that the ITO electrodes are not as sensitive as gold or DLC electrodes for measurement of quantal catecholamine release. The lower sensitivity of ITO electrodes was confirmed by chronoamperometry measurements comparing the currents in the presence of different analytes with the different electrode materials.

Share and Cite:

K. Kisler, B. N. Kim, X. Liu, K. Berberian, Q. Fang, C. J. Mathai, S. Gangopadhyay, K. D. Gillis and M. Lindau, "Transparent Electrode Materials for Simultaneous Amperometric Detection of Exocytosis and Fluorescence Microscopy," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 2A, 2012, pp. 243-253. doi: 10.4236/jbnb.2012.322030.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. E. Coupland, “The Natural History of the Chromaffin Cell,” Longmans, Green and Co, London, 1965.
[2] R. M. Wightman, J. A. Jankowski, R. T. Kennedy, D. T. Kawagoe, T. J. Schroeder, D. J. Leszczyszyn, J. A. Near, E. J. Diliberto Jr. and O. H. Viveros, “Temporally Resolved Catecholamine Spikes Correspond to Single Vesicle Release from Individual Chromaffin Cells,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 88, No. 23, 1991, pp. 10754-10758. doi:10.1073/pnas.88.23.10754
[3] E. L. Ciolkowski, K. M. Maness, P. S. Cahill, R. M. Wightman, D. H. Evans, B. Fosset and C. Amatore, “Disproportionation during Electrooxidation of Cate-cholamines at Carbon-Fiber Microelectrodes,” Analytical Chemistry, Vol. 66, No. 21, 1994, pp. 3611-3617. doi:10.1021/ac00093a013
[4] R. H. Chow, L. V. Rüden and E. Neher, “Delay in Vesicle Fusion Revealed by Electrochemical Monitoring of Single Secretory Events in Adrenal Chromaffin Cells,” Nature, Vol. 356, 1992, pp. 60-63. doi:10.1038/356060a0
[5] A. Albillos, G. Dernick, H. Horstmann, W. Almers, G. Alvarez de Toledo and M. Lindau, “The Exocytotic Event in Chromaffin Cells Revealed by Patch Amperometry,” Nature, Vol. 389, No. 6650, 1997, pp. 509-512. doi:10.1038/39081
[6] I. Hafez, K. Kisler, K. Berberian, G. Dernick, V. Valero, M. G. Yong, H. G. Craighead and M. Lindau, “Electro-chemical Imaging of Fusion Pore Openings by Electro- chemical Detector Arrays,” Pro-ceedings of the National Academy of Sciences of the United States of America, Vol. 102, No. 39, 2005, pp. 13879-13884. doi:10.1073/pnas.0504098102
[7] A. N. Ngatchou, K. Kisler, Q. Fang, A. M. Walter, Y. Zhao, D. Bruns, J. B. Sorensen and M. Lindau, “Role of the Synaptobrevin C Terminus in Fusion Pore Formation,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, No. 43, 2010, pp. 18463-18468. doi:10.1073/pnas.1006727107
[8] T. J. Schroeder, J. A. Jankowski, K. T. Kawagoe, R. M. Wightman, C. Lefrou and C. Amatore, “Analysis of Diffusional Broadening of Vesicular Packets of Catecholamines Released from Biological Cells during Exocytosis,” Analytical Chemistry, Vol. 64, 1992, pp. 3077-3083. doi:10.1021/ac00048a003
[9] X. Sun and K. D. Gillis, “On-Chip Amperometric Meas- urement of Quantal Catecholamine Release Using Transparent Indium Tin Oxide Electrodes,” Analytical chemistry, Vol. 78, No. 8, 2006, pp. 2521-2525. doi:10.1021/ac052037d
[10] C. Amatore, S. Arbault, Y. Chen, C. Crozatier, F. Lemaitre and Y. Verchier, “Coupling of Electrochemistry and Fluorescence Micro-scopy at Indium Tin Oxide Micro- electrodes for the Analysis of Single Exocytotic Events,” Angewandte Chemie International Edition in English, Vol. 45, 2006, pp. 4000-4003. doi:10.1002/anie.200600510
[11] Y. Gao, X. Chen, S. Gupta, K. D. Gillis and S. Gangopadhyay, “Magnetron Sputtered Diamond-Like Carbon Microelectrodes for On-Chip Measurement of Quantal Ca-techolamine Release from Cells,” Biomedical Micro-devices, Vol. 10, 2008, pp. 623-629. doi:10.1007/s10544-008-9173-8
[12] K. Kisler, B. Kim, K. Berberian, Q. H. Fang and M. Lindau, “Transparent Microelectrode Arrays to Study Exocytosis,” Biophysical Journal, Supplement, 2007, pp. 83A-84A.
[13] A. Meunier, O. Jouannot, R. Fulcrand, I. Fanget, M. Bretou, E. Karatekin, S. Arbault, M. Guille, F. Darchen, F. Le-maitre and C. Amatore, “Coupling Amperometry and Total Internal Reflection Fluorescence Microscopy at ITO Surfaces for Monitoring Exocytosis of Single Vesicles,” Angewandte Chemie. International Edition in English, Vol. 50, 2011, pp. 5081-5084. doi:10.1002/anie.201101148
[14] A. L. Stout and D. Axelrod, “Evanescent Field Excitation of Fluorescence by EpiIllumination Microscopy,” Applied Optics, Vol. 28, No. 24, 1989, pp. 5237-5242. doi:10.1364/AO.28.005237
[15] T. D. Parsons, J. R. Coorssen, H. Horstmann and W. Almers, “Docked Granules, the Exocytic Burst and the Need for ATP Hydrolysis in Endocrine Cells,” Neuron, Vol. 15, No. 5, 1995, pp. 1085-1096. doi:10.1016/0896-6273(95)90097-7
[16] X. Chen, Y. Gao, M. Hossain, S. Gangopadhyay and K. D. Gillis, “Controlled On-Chip Stimulation of Quantal Catechola-mine Release from Chromaffin Cells Using Photolysis of Caged Ca2+ on Transparent Indium-Tin-Oxide Microchip Electrodes,” Lab Chip, Vol. 8, 2008, pp. 161-169. doi:10.1039/b715308m
[17] J. S. Kim, R. H. Friend and F. Cacialli, “Surface Energy and Polarity of Treated In-dium-Tin-Oxide Anodes for Polymer Light-Emitting Diodes Studied by Contact- Angle Measurements,” Journal of Applied Physics, Vol. 86, No. 5, 1999, pp. 2774-2778. doi:10.1063/1.371124
[18] E. V. Mosharov and D. Sulzer, “Analysis of Exocytotic Events Recorded by Amperometry,” Nature Methods, Vol. 2, 2005, pp. 651-658. doi:10.1038/nmeth782
[19] T. L. Colliver, E. J. Hess, E. N. Pothos, D. Sulzer and A. G. Ewing, “Quantitative and Statistical Analysis of the Shape of Amperome-tric Spikes Recorded from Two Populations of Cells,” Journal of Neurochemistry, Vol. 74, No. 3, 2000, pp. 1086-1097. doi:10.1046/j.1471-4159.2000.741086.x
[20] T. Matsue, D. H. Evans, T. Osa and N. Kobayashi, “Electron-Transfer Reactions Associated with Host Guest Complexation-Oxidation of Ferrocenecarboxylic Acid in the Presence of Beta-Cyclodextrin,” Journal of the American Chemical Society, Vol. 107, No. 12, 1985, pp. 3411-3417. doi:10.1021/ja00298a003
[21] S. Hsieh and J. W. Jorgenson, “Preparation and Evaluation of Slurry-Packed Liquid Chromatography Microcolumns with Inner Diameters from 12 to 33 Microns,” Analytical Chemistry, Vol. 68, No. 7, 1996, pp. 1212- 1217. doi:10.1021/ac950682m
[22] D. Axelrod, “Chapter 7: Total Internal Reflection Fluorescence Microscopy,” Methods in Cell Biology, Vol. 89, 2008, pp. 169-221. doi:10.1016/S0091-679X(08)00607-9
[23] R. M. Williams and W. W. Webb, “Single Granule pH Cycling in Antigen-Induced Mast Cell Secretion,” Journal of Cell Science, Vol. 113, 2000, pp. 3839-3850.
[24] J. A. Steyer, H. Horstmann and W. Almers, “Transport, Docking and Exocytosis of Single Secretory Granules in Live Chromaffin Cells,” Nature, Vol. 388, No. 6641, 1997, pp. 474-478. doi:10.1038/41329
[25] J. Avery, D. J. Ellis, T. Lang, P. Holroyd, D. Riedel, R. M. Henderson, J. M. Edwardson and R. Jahn, “A Cell-Free System for Regulated Exocytosis in PC12 Cells,” Journal of Cell Biology, Vol. 148, 2000, pp. 317-324. doi:10.1083/jcb.148.2.317
[26] S. Clerc and Y. Barenholz, “A Quantitative Model for Using Acridine Orange as a Transmembrane pH Gradient Probe,” Analytical Biochemistry, Vol. 259, No. 1, 1998, pp. 104-111. doi:10.1006/abio.1998.2639
[27] C. Amatore, S. Arbault, F. Lemaitre and Y. Verchier, “Comparison of Apex and Bottom Secretion Efficiency at Chromaffin Cells as Measured by Amperometry,” Bio- physical Chemistry, Vol. 127, No. 3, 2007, pp. 165-171. doi:10.1016/j.bpc.2007.01.007
[28] Y. Park, V. Choong, Y. Gao, B. R. Hsieh and C. W. Tang, “Work Function of Indium Tin Oxide Transparent Conductor Measured by Photoelectron Spectroscopy,” Applied Physics Letters, Vol. 68, No. 19, 1996, pp. 2699- 2701. doi:10.1063/1.116313
[29] R. H. Chow and L. V. Rüden, “Electrochemical Detection of Secretion from Single Cells,” In: B. Sakmann and E. Neher, Eds., Single Channel Recording, Plenum Press, New York, 1995, pp. 245-275.
[30] P. M. S. Monk and C. M. Man, “Reductive Ion Insertion into Thin-Film Indium Tin Oxide (ITO) in Aqueous Acidic Solutions: The Effect of Leaching of Indium from the ITO,” Journal of Materials Science-Materials in Electronics, Vol. 10, 1999, pp. 101-107. doi:10.1023/A:1008955929904
[31] H. Lee, S. M. Del-latore, W. M. Miller and P. B. Mess- ersmith, “Mussel-Inspired Surface Chemistry for Multifunctional Coatings,” Science, Vol. 318, No. 5849, 2007, pp. 426-430. doi:10.1126/science.1147241
[32] N. D. Popovich, S. S. Wong, B. K. Yen, H. Y. Yeom and D. C. Paine, “Influence of Microstructure on the Electro- chemical Performance of Tin-Doped Indium Oxide Film Electrodes,” Analytical Chemistry, Vol. 74, No. 13, 2002, pp. 3127-3133. doi:10.1021/ac011168l
[33] K. Hayashi, Y. Iwasaki, T. Horiuchi, K. Sunagawa and A. Tate, “Selective Detection of a Catecholamine against Electroactive Interferents Using an Interdigitated Heteroarray Electrode Consisting of a Metal Oxide Electrode and a Metal Band Electrode,” Analytical Chemistry, Vol. 77, No. 16, 2005, pp. 5236-5242. doi:10.1021/ac050216p
[34] P. Chen, B. Xu, N. Tokra-nova, X. Feng, J. Castracane and K. D. Gillis, “Amperometric Detection of Quantal Cate- cholamine Secretion from Individual Cells on Micromachined Silicon Chips,” Analytical Chemistry, Vol. 75, No. 3, 2003, pp. 518-524. doi:10.1021/ac025802m

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.