Isolation and Characterization of Cellulose Whiskers from Kenaf (Hibiscus cannabinus L.) Bast Fibers

Abstract

Cellulose whiskers were isolated from kenaf (Hibiscus cannabinus L.) bast fibers via sulfuric acid and hydrochloric acid hydrolysis. Raw kenaf bast, NaOH treated, bleached fibers, sulfuric acid whiskers (SAW) and hydrochloric acid whiskers (HClW) morphology, functional groups, crystallinity, and thermal stability were characterized. The TEM images showed that the sulfuric acid and HCl whiskers have average diameters and length range of 3 nm and 100 - 500 nm, respectively. The FTIR study indicated that during the conversion process, most of the hemicellulose and almost all the lignin were removed by the NaOH and subsequent bleaching treatments. The crystallinity of HCl whiskers was found to be higher (84%) than that of sulfuric acid whiskers (72%). Thermogravimetric analysis indicated that HCl whiskers had better thermal stability than the sulfuric acid ones. In addition, a two-stage decomposition behavior was revealed by TGA in the sulfuric acid whiskers because of incorporation of the sulfate group with the cellulose crystals.

Share and Cite:

L. Zaini, M. Jonoobi, P. Tahir and S. Karimi, "Isolation and Characterization of Cellulose Whiskers from Kenaf (Hibiscus cannabinus L.) Bast Fibers," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 1, 2013, pp. 37-44. doi: 10.4236/jbnb.2013.41006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Klemm, B. Heublein, H.-P. Fink and A. Bohn, “Cellulose: Fascinating Biopolymer and Sustainable Raw Material,” Angewandte Chemie International Edition, Vol. 44, No. 22, 2005, pp. 3358-3393. doi:10.1002/anie.200460587
[2] S. J. Eichhorn, et al., “Review: Current International Research into cellulosic fibres and composites,” Journal of Materials Science, Vol. 36, No. 9, 2001, pp. 2107-2131. doi:10.1023/A:1017512029696
[3] V. Favier, H. Chanzy and J. Y. Cavaille, “Polymer Nanocomposites Reinforced by Cellulose Whiskers,” Macromolecules, Vol. 28, No. 18, 1995, pp. 6365-6367. doi:10.1021/ma00122a053
[4] P. M. Aji, A. Chakraborty, K. Oksman and M. Sain, “The Structure and Mechanical Properties of Cellulose Nanocomposites Prepared by Twin Screw Extrusion,” In: K. Oksman and M. Sain, Eds., Cellulose Nanocomposites. Processing, Characterization, and Properties, American Chemical Society, Washington DC, 2006, pp. 114-131.
[5] M. A. S. A. Samir, F. Alloin and A. Dufresne, “Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field,” Biomacromolecules, Vol. 6, No. 2, 2005, pp. 612-626. doi:10.1021/bm0493685
[6] Y. Habibi, et al., “Bionanocomposites Based on Poly(ε-caprolactone)-Grafted Cellulose Nanocrystals by Ring-Opening Polymerization,” Journal of Materials Chemistry, Vol. 18, No. 41, 2008, pp. 5002-5010. doi:10.1039/b809212e
[7] J. K. Pandey, et al., “Evaluation of Morphological Architecture of Cellulose Chains in Grass during Conversion from Macro to Nano Dimensions,” e-Polymers, No. 102, 2009, pp. 1618-7229.
[8] G. Siqueira, J. Bras and A. Dufresne, “Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and Its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites,” Biomacromolecules, Vol. 10, No. 2, 2008, pp. 425-432. doi:10.1021/bm801193d
[9] M. N. Angles and A. Dufresne, “Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis,” Macromolecules, Vol. 33, No. 22, 2000, pp. 8344-8353. doi:10.1021/ma0008701
[10] L. Petersson and K. Oksman, “Preparation and Properties of Biopolymer-Based Nanocomposite Films Using Microcrystalline Cellulose,” In: K. Oksman and M. Sain, Eds., Cellulose Nanocomposites, Processing, Characterization and Properties, American Chemical Society, Washington DC, 2006, pp. 132-150. doi:10.1021/bk-2006-0938.ch010
[11] G. Siqueira, H. Abdillahi, J. Bras and A. Dufresne, “High Reinforcing Capability Cellulose Nanocrystals Extracted from Syngonanthus nitens (Capim Dourado),” Cellulose, Vol. 17, No. 2, 2010, pp. 289-298. doi:10.1007/s10570-009-9384-z
[12] A. J. De Menezes, G. Siqueira, A. A. S. Curvelo and A. Dufresne, “Extrusion and Characterization of Functionalized Cellulose Whiskers Reinforced Polyethylene Nanocomposites,” Polymer, Vol. 50, No. 19, 2009, pp. 4552-4563. doi:10.1016/j.polymer.2009.07.038
[13] D. Bondeson, I. Kvien and K. Oksman, “Strategies for Preparation of Cellulose Whiskers from Microcrystalline Cellulose as Reinforcement in Nanocomposites,” In: K. Oksman and M. Sain, Eds., Cellulose Nanocomposites, American Chemical Society, Washington DC, 2006, pp. 10-25. doi:10.1021/bk-2006-0938.ch002
[14] E. D. M. Teixeira, et al., “Sugarcane Bagasse Whiskers: Extraction and Characterizations,” Industrial Crops and Products, Vol. 33, No. 1, 2011, pp. 63-66. doi:10.1016/j.indcrop.2010.08.009
[15] G. Meshitsuka, “Utilization of Wood and Cellulose for Chemicals And Energy,” In: D. N.-S. Hon and N. Shiraishi, Eds., Wood and Cellulosic Chemistry, Marcel Dekker, New York, 1991, pp. 977-1013.
[16] H. A. Krassig, “Cellulose: Structure, Accessibility, and Reactivity,” Gordon and Breach Science, Yverdon, 1993.
[17] M. S. Huda, L. T. Drzal, A. K. Mohanty and M. Misra, “Effect of Fiber Surface-Treatments on the Properties of Laminated Biocomposites from Poly(lactic acid) (PLA) and Kenaf Fibers,” Composites Science and Technology, Vol. 68, No. 2, 2008, pp. 424-432. doi:10.1016/j.compscitech.2007.06.022
[18] T. Nishino, K. Hirao, M. Kotera, K. Nakamae and H. Inagaki, “Kenaf Reinforced Biodegradable Composite,” Composites Science and Technology, Vol. 63, No. 9, 2003, pp. 1281-1286. doi:10.1016/S0266-3538(03)00099-X
[19] M. Avella, et al., “Poly(lactic acid)-Based Biocomposites Reinforced with Kenaf Fibers,” Journal of Applied Polymer Science, Vol. 108, No. 6, 2008, pp. 3542-3551. doi:10.1002/app.28004
[20] A. A. Mosello, et al., “A Review of Literatures Related to Kenaf as a Alternative for Pulpwoods,” Agricultural Journal, Vol. 5, No. 3, 2010, pp. 131-138.
[21] M. Zampaloni, et al., “Kenaf Natural Fiber Reinforced Polypropylene Composites: A Discussion on Manufacturing Problems and Solutions,” Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 6, 2007, pp. 1569-1580. doi:10.1016/j.compositesa.2007.01.001
[22] Y. Xue, Y. Du, S. Elder, K. Wang and J. Zhang, “Temperature and Loading Rate Effects on Tensile Properties of Kenaf Bast Fiber Bundles and Composites,” Composites Part B: Engineering, Vol. 40, No. 3, 2009, pp. 189-196. doi:10.1016/j.compositesb.2008.11.009
[23] W. Liu, L. T. Drzal, A. K. Mohanty and M. Misra, “Influence of Processing Methods and Fiber Length on Physical Properties of Kenaf Fiber Reinforced Soy Based Biocomposites,” Composites Part B: Engineering, Vol. 38, No. 3, 2007, pp. 352-359. doi:10.1016/j.compositesb.2006.05.003
[24] M. Jonoobi, J. Harun, A. Shakeri, M. Misra and K. Oksman, “Chemical Composition, Crystallinity, and Thermal Degradation of Bleached and Unbleached Kenaf Bast (Hibiscus cannabinus) Pulp and Nanofibers,” Bioresources, Vol. 4, No. 2, 2009, pp. 626-639.
[25] A. K. Mohanty, M. Misra and G. Hinrichsen, “Biofibres, Biodegradable Polymers and Biocomposites: An Overview,” Macromolecular Materials and Engineering, Vol. 276-277, No. 1, 2000, pp. 1-24. doi:10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
[26] B. Braun, J. R. Dorgan and J. P. Chandler, “Cellulosic Nanowhiskers. Theory and Application of Light Scattering from Polydisperse Spheroids in the Rayleigh-Gans-Debye Regime,” Biomacromolecules, Vol. 9, No. 4, 2008, pp. 1255-1263. doi:10.1021/bm7013137
[27] L. Segal, J. J. Creely, A. E. Martin and C. M. Conrad, “An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer,” Textile Research Journal, Vol. 29, No. 10, 1959, pp. 786-794. doi:10.1177/004051755902901003
[28] H. Kargarzadeh, et al., “Effects of Hydrolysis Conditions on the Morphology, Crystallinity, and Thermal Stability of Cellulose Nanocrystals Extracted from Kenaf Bast Fibers,” Cellulose, Vol. 19, No. 3, 2012, pp. 1-12.
[29] J. Shi, S. Q. Shi, H. M. Barnes and J. C. U. Pittman, “A Chemical Process for Preparing Cellulosic Fibers Hierarchically from Kenaf Bast Fibers,” BioResources, Vol. 6, No. 1, 2011, pp. 879-890.
[30] R. Li, et al., “Cellulose Whiskers Extracted from Muberry: A Novel Biomass Production,Carbohydrate Polymers, Vol. 76, No. 1, 2009, pp. 94-99. doi:10.1016/j.carbpol.2008.09.034
[31] S. Beck-Candanedo, M. Roman and D. G. Gray, “Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions,” Biomacromolecules, Vol. 6, No. 2, 2005, pp. 1048-1054. doi:10.1021/bm049300p
[32] M. L. Troedec, et al., “Influence of Various Chemical Treatments on the Composition and Structure of Hemp Fibres,” Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 3, 2008, pp. 514-522. doi:10.1016/j.compositesa.2007.12.001
[33] J. Biagiotti, et al., “A Systematic Investigation on the Influence of the Chemical Treatment of Natural Fibers on the Properties of Their Polymer Matrix Composites,” Polymer Composites, Vol. 25, No. 5, 2004, pp. 470-479. doi:10.1002/pc.20040
[34] W. Liu, A. K. Mohanty, L. T. Drzal, P. Askel and M. Misra, “Effects of Alkali Treatment on the Structure, Morphology and Thermal Properties of Native Grass Fibers as Reinforcements for Polymer Matrix Composites,” Journal of Materials Science, Vol. 39, No. 3, 2004, pp. 1051-1054. doi:10.1023/B:JMSC.0000012942.83614.75
[35] X. F. Sun, F. Xu, R. C. Sun, P. Fowler and M. S. Baird, “Characteristics of Degraded Cellulose Obtained from Steam-Exploded Wheat Straw,” Carbohydrate Research, Vol. 340, No. 1, 2005, pp. 97-106. doi:10.1016/j.carres.2004.10.022
[36] M. K. Nacos, et al., “Kenaf xylan: A Source of Biologically Active Acidic Oligosaccharides,” Carbohydrate Polymers, Vol. 66, No. 1, 2006, pp. 126-134.
[37] S. Keshk, W. Suwinarti and K. Sameshima, “Physicochemical Characterization of Different Treatment Sequences on Kenaf Bast Fiber,” Carbohydrate Polymers, Vol. 65, No. 2, 2006, pp. 202-206. doi:10.1016/j.carbpol.2006.01.005
[38] M. C. Silva, et al., “Characterization of Three Non-Product Materials from a Bleached Eucalyptus Kraft Pulp Mill, in View of Valorising Them as a Source of Cellulose Fibres,” Industrial Crops and Products, Vol. 27, No. 3, 2008, pp. 288-295. doi:10.1016/j.indcrop.2007.11.005
[39] M. Le Troedec, et al., “Influence of Various Chemical Treatments on the Composition and Structure of Hemp Fibres,” Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 3, 2008, pp. 514-522. doi:10.1016/j.compositesa.2007.12.001
[40] A. M. Adel, Z. H. Abd El-Wahab, A. A. Ibrahim and M. T. Al-Shemy, “Characterization of Microcrystalline Cellulose Prepared from Lignocellulosic Materials. Part II: Physicochemical Properties,” Carbohydrate Polymers, Vol. 83, No. 2, 2011, pp. 676-687. doi:10.1016/j.carbpol.2010.08.039
[41] J. Araki, M. Wada, S. Kuga and T. Okano, “Flow Properties of Microcrystalline Cellulose Suspension Prepared by Acid Treatment of Native Cellulose,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 142, No. 1, 1998, pp. 75-82. doi:10.1016/S0927-7757(98)00404-X
[42] H. Yang, R. Yan, H. Chen, D. H. Lee and C. Zheng, “Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis,” Fuel, Vol. 86, No. 12-13, 2007, pp. 1781-1788. doi:10.1016/j.fuel.2006.12.013
[43] N. Wang, E. Ding and R. Cheng, “Thermal Degradation Behaviors of Spherical Cellulose Nanocrystals with Sulfate Groups,” Polymer, Vol. 48, No. 12, 2007, pp. 3486-3493. doi:10.1016/j.polymer.2007.03.062

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.