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ABSTRACT. The great majority of biological sequences share 
significant similarity with other sequences as a result of evolutionary 
processes, and identifying these sequence similarities is one of the 
most challenging problems in bioinformatics. In this paper, we present 
a discrete artificial bee colony (ABC) algorithm, which is inspired by 
the intelligent foraging behavior of real honey bees, for the detection 
of highly conserved residue patterns or motifs within sequences. 
Experimental studies on three different data sets showed that the 
proposed discrete model, by adhering to the fundamental scheme of 
the ABC algorithm, produced competitive or better results than other 
metaheuristic motif discovery techniques.
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INTRODUCTION

In recent years, the complete genomes of several model organisms, including mouse, 
chimpanzee, and human, have been sequenced and investigated through the use of technological 
advances in data processing and retrieval systems (Tompa et al., 2005). However, the annotation 
of these raw nucleotide sequences, in particular the identification of specific functional sites 
that are responsible for the regulation of transcriptional and translational processes (e.g., 
transcription factor binding sites, donor or acceptor sites, and branch points), still requires the 
refinement of well-known techniques or the development of new solving approaches (Matys 
et al., 2003; Tompa et al., 2005). Although mutation and selection over millions of years 
can result in considerable divergence between the genomic sequences of different organisms, 
sequences derived from the same ancestral genes or important functional sites are more likely 
to be conserved than other sequences. The identification of these conserved nucleotide patterns 
or motifs and their comparison with annotated genomic data, referred to as motif discovery, 
remains one of the fundamental problems of bioinformatics (Matys et al., 2003; Tompa et al., 
2005; Das and Dai, 2007).

Based on the type of combinatorial methods employed by the algorithm, motif 
discovery algorithms can be categorized into two major groups (Tompa et al., 2005; Li and 
Tompa, 2006; Das and Dai, 2007). In the first group, motifs are found by utilizing exhaustive 
counting and comparison techniques (Tompa et al., 2005). While exhaustive enumeration 
methods guarantee that the most appropriate motifs will be found and while the implementation 
of specialized data structures such as suffix trees increases usability in identifying short 
motifs, the conservation level of the motifs is important and can directly affect the produced 
results (Tompa et al., 2005; Li and Tompa, 2006; Das and Dai, 2007). In the second group of 
algorithms are methods that estimate sequence or motif models by taking advantage of sound 
maximum-likelihood procedures or Bayesian interfaces. The expectation-maximization (EM) 
algorithm, introduced by Lawrence and Reilly (1990), and Gibbs sampling, also proposed by 
Lawrence et al., are effective statistical techniques that are behind popular motif discovery 
techniques, such as MEME and Gibbs sampler (Tompa et al., 2005).

Evolutionary computation techniques have attracted the attention of researchers and 
been used to tackle the motif discovery problem in recent years. Liu et al. (2004) introduced a 
genetic algorithm (GA)-based technique called FMGA. In this study, mutation and crossover 
operators were specialized for the motif discovery problem. When a mutation operator was 
applied to an individual in the population, in order to protect highly conserved regions, 
position weight matrices were used. A similar procedure was also applied to the crossover 
operation. Special gap arrangement and penalization procedures were employed for increasing 
the quality of the offspring (Liu et al., 2004). Another GA-based motif discovery technique 
called MDGA was proposed by Che et al. (2005). Experimental studies for MDGA showed 
that the GA-based technique produced more accurate motifs compared to Gibbs sampling 
(Che et al., 2005). A particle swarm optimization (PSO)-based technique for detecting motifs 
in amino acid sequences was presented by Chang et al. (2004), and these motifs were able to 
achieve better true positive hits than those reported in PROSITE.

Multiobjective adaptation of these algorithms is another important topic in the study 
of motif discovery. Kaya (2007) proposed a GA-based multiobjective solving technique in 
which conflicting arguments, including the number of sequences used to generate a consensus 
sequence and the lengths and similarity values of motifs, are optimized simultaneously. 



3ABC algorithm and detection of highly conserved residue motifs

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 15 (2): gmr.15028645

Gonzalez-Alvarez et al. (2010) used a differential evolution (DE) algorithm with Pareto 
tournaments. They also proposed a multiobjective ABC algorithm with genetic operator in 
order to address the multiobjective optimization of the motif discovery problem and analyzed 
its performance on different multiobjective adaptations, including multiterm fitness function 
and ranking and sorting methodologies (Gonzalez-Alvarez et al., 2011a,b). However, before 
modeling the motif discovery problem as a multiobjective optimization problem and using 
multiobjective implementations of evolutionary computational techniques that were originally 
proposed to solve numerical optimization problems, we should correctly adapt the distinctive 
steps of these techniques to the discrete problems we are hoping to solve. In this study, we 
propose a new discrete ABC algorithm called consensusABC, which adheres to the individual 
effect of the candidate generation approach in the mathematical expression used in the 
employed and onlooker bee phases. In addition to this, a new neighborhood selection strategy 
based on the similarity values of the consensus sequences is also introduced and combined 
with the discretized ABC algorithm. Experimental studies on three different data sets extracted 
from the TRANSFAC database (Matys et al., 2003) showed that the proposed ABC algorithm 
outperforms other metaheuristic techniques used for comparison.

MATERIAL AND METHODS

Determination of conserved regions in sequences

In long nucleotide sequences, functional regions and coding or non-coding segments 
can be identified based on nucleotide composition, codon composition, and hexamer usage or 
frequencies (Mathé et al., 2002; Wang et al., 2004). Among the large variety of such statistical 
measures, hexamers (six-nucleotide long sequences) and their occurrence periodicities are one of 
the primary discriminative variables (Mathé et al., 2002; Wang et al., 2004). The characteristics 
of hexamer frequency indicate an important aspect of the sequences, namely that evolutionary 
processes protect or conserve some sequential nucleotides more than other regions.

Consider a given set of N different DNA sequences, each of which contains an equal 
number of nucleotides L, and suppose that we try to find N different lmers (l-nucleotide 
long sequences) in which conservation or similarity in terms of nucleotide types at the same 
location is higher than or equal to the conservation levels or similarity values belonging to 
the other possible group of lmers. To generate these mentioned lmers from the given set of 
sequences, select random start positions and then define a vector that holds all start positions 
p = (p1,p2,...,pN) where 1 ≤ pi ≤ (L-l+1) and 1 ≤ i ≤ N. By using start positions stored in the 
vector p, the nucleotides included in each lmer can be organized into a matrix form in which 
the ith row corresponds to the lmer in the ith initial sequence and the jth column of the ith 
row corresponds to the (pi+j-1)th nucleotide of the ith sequence in the set of sequences. When 
this matrix, also called the alignment matrix, is transformed into a more informative form on 
the basis of the nucleotide frequencies found in each alignment column, a profile or profile 
matrix can be obtained, in which there are four rows, each representing a different nucleotide 
type, and l columns. In the profile or profile matrix, an element in the ith row and jth column 
of the matrix actually holds the number of times nucleotide type i appears in the jth alignment 
position. By utilizing the residue type and frequency information stored in the alignment and 
profile matrices, a more compact representation for the discovered motifs, named a consensus 
sequence, can be introduced. A consensus sequence is compiled by inserting the nucleotide 
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occurring most often at each position in the alignment and profile matrices. Generation of 
alignment and profile matrices and consensus sequences is illustrated over four hypothetical 
nucleotide sequences in Figure 1.

Figure 1. Generation of alignment and profile matrices for four nucleotide motifs.

In the motif discovery process, the representation of the conservation level or 
similarity value plays a key role in determining the most appropriate start positions. One of the 
commonly used similarity calculation schemas depends on taking the sum of the maximum 
values of each column of the alignment matrix and can be formulated as Equation 1 (Lesk, 
2002; Jones and Pevzner, 2004; Kaya, 2007; Gonzalez-Alvarez et al., 2010):

1

max( ( ))( )
l

i

p iSim P
l N=

=
×∑ (Equation 1)

where max(p(i)) and l represent the frequency of the dominant nucleotide of the ith column in 
the profile matrix and the length of the motif, respectively. Another important approach used 
in similarity value calculation is finding the entropy of the given profile matrix. Given that P 
is a 4×l profile matrix and p(i,j) is the element of ith row and jth column of P, the entropy can 
be calculated as in Equation 2 (Lesk, 2002; Jones and Pevzner, 2004):
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Artificial bee colony algorithm

Division of labor and self-organization, which are two remarkable features of intelligent 
swarms, have led to the emergence of a minimal foraging behavior in honey bee colonies. 
According to this foraging behavior, bees classified as employed and unemployed foragers 
minimize energy consumption during the search progress. Employed bees are assigned to 
exploit a specific nectar source that has been previously explored and are responsible for 
giving information to unemployed foragers about the quality of the assigned nectar source. 
The quality of a food source is based on the concentration of its honey, proximity to the hive, 
and difficulties of extracting nectar. Onlooker bees, which are a subgroup of the unemployed 
foragers, wait in the hive and attempt to find food sources by means of the information shared 
by employed bees in the dance area. They watch numerous waggle dances before selecting 
a food source and the tendency for onlookers to choose a particular food source is directly 
proportional to the quality of the food sources. If a food source is exploited or abandoned, an 
employed bee associated with this source becomes a scout bee and searches the environment 
randomly to find a new food source. Scout bees are another type of unemployed forager and 
look for new sources without using any information given by the employed bees (Akay and 
Karaboga, 2012; Karaboga and Aslan, 2015).

The ABC algorithm, a swarm-intelligence based optimization algorithm proposed by 
Karaboga for solving multi-variable numerical problems, models the foraging behavior of 
honey bees. The ABC algorithm has been used for optimizing larger sets of constrained or 
unconstrained numerical and combinatorial problems compared with other swarm-intelligence 
and evolutionary algorithms (Akay and Karaboga, 2012; Karaboga and Aslan, 2015). When 
using the ABC algorithm to solve an optimization problem, food sources in the search space 
correspond to the possible solutions of the problem, and the nectar amount of the food source 
represents the fitness value of the solution. The main steps of the ABC algorithm, which reflect 
the cyclical relationship between employed, onlooker, and scout bees, as mentioned above, are 
summarized in Figure 2.

Figure 2. Fundamental steps of the ABC algorithm.
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Generating initial food sources

The ABC algorithm begins the optimization progress by randomly generating an 
initial set of food sources that correspond to the possible solutions. In the ABC algorithm, for 
a numerical problem that needs to optimize D different parameters, the parameter xij, identified 
by lower bound xj

min and upper bound xj
max, of the solution vector xi in the initial food source 

population in which there are SN different solution vectors is formulated as given in Equation 
3 (Akay and Karaboga, 2012; Karaboga and Aslan, 2015):

( )( )min max min0,1 1,2,..., 1, 2,...,x x rand x x i SN and j Dij j j j= + − = = (Equation 3)

As mentioned previously, the motif discovery problem could be considered a 
combinatorial optimization problem for which the main objective is to find the appropriate 
start positions in a manner that maximizes the number of matched residues in each alignment 
column. Taking the discrete structure of the problem and the changing effect of the evolutionary 
mechanisms into consideration, specific procedures of the ABC algorithm should be altered 
to solve the motif discovery problem more effectively. When solving the motif discovery 
problem with the ABC algorithm, the food sources in the search space correspond to the start 
points and the nectar amount of the food source is represented by the similarity value of the 
conserved regions whose start positions are stored in the position vector.

Sending bees to new food sources

In the ABC algorithm, each food source is associated with only one artificial bee, and 
this bee attempts to produce a new food source using the location information in its memory. 
If the nectar quality of the new food source is better than a known source, the bee will decide 
to forget the previous food source information and keep the new food source information in its 
memory, which could be considered a greedy selection mechanism, for utilization in the next 
cycle. The mathematical expression using both the employed and onlooker bees to produce a 
candidate food source in the neighborhood of the memorized food source is given in Equation 4 
(Akay and Karaboga, 2012; Bolaji et al., 2013; Karaboga and Aslan, 2015; Celik et al., 2015):

( )v x x xij ij ij ij kjφ= + − (Equation 4)

ϕij is a random number between -1 and 1, k ∈ 1, 2, …, SN, and j ∈ 1, 2, …, D, where SN and 
D denote the number of food sources and the dimensions of the solution vectors, respectively, 
and are randomly chosen indexes. Although the value of k is randomly determined, it 
should be noted that identical values are not assigned to the k and i indices. vij is the newly 
created jth parameter for the solution vector vi, whose parameters have the same value as 
the solution vector xi except for the randomly selected jth parameter value. However, when 
solving the motif discovery problem with the ABC algorithm, the mathematical model used to 
generate candidate solutions should be predisposed by considering the discrete structure and 
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representation of the food sources. In the proposed model for the discretized ABC algorithm, 
a neighbor is determined by utilizing the consensus sequences of the profile matrices. If an 
employed or onlooker bee will be sent to a new food source by referencing the ith memorized 
food source, which also corresponds to the position vector and its alignment and profile matrix 
counterparts, selection of the kth neighbor to generate a candidate position vector is directly 
related to the similarity between consensus sequences. After deciding on the kth food source, 
the ith food source will be updated with a random start position taken from the kth food 
source. In order to understand the basic properties of the proposed model, the creation of the 
candidate food source around the neighborhood of the ith food source with the kth food source 
is examined in Figure 3.

Figure 3. Generation of new food source by employed or onlooker bees.

Choosing or abandoning a food source

The ABC algorithm accommodates a preference for a food source by an onlooker bee 
with the nectar amount of that food source. After employed bees have shared the information 
stored in their memory on the dance area, an onlooker bee chooses a food source depending on 
the probability value associated with that food source. The probability of a food source, which 
increases with the nectar quality of the source, is calculated as given in Equation 5:

i
i SN

jj

fitnessp
fitness

=
∑

(Equation 5)

where fitnessi is the fitness value of the solution represented by the food source at position i, 
and SN is the number of food sources.

The process undertaken by onlooker bees in choosing a food source is managed with 
a selection schema similar to the roulette wheel, in which a higher quality food source is 
more likely to be chosen. As detailed previously, the exploitation process is carried out with 
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employed and onlooker bees. In a robust search, a good balance between exploitation and 
exploration processes should be maintained. If a food source cannot be improved through a 
predetermined number of iterations, the employed bee associated with that food source will 
become a scout bee and leave the food source to start a random search operation. The number 
of cycles before abandonment of a source is an important control parameter of the ABC 
algorithm called the limit. In the ABC algorithm, the food source for which the limit value has 
been exceeded most often is abandoned, with one employed bee becoming a scout bee in each 
cycle (Akay and Karaboga, 2012; Karaboga and Aslan, 2015).

RESULTS

In this section, we conducted experimental studies to analyze the performance 
of the proposed model. To detect conserved nucleotide groups among sequences with the 
consensusABC algorithm, we used three real data sets selected from the TRANSFAC database 
(Matys et al., 2003). The sequences in each data set store information about a functional 
transcription factor binding site, which plays a vital role in gene expression. The first data 
set, identified with the code hm03r, contained 10 human sequences of 1500 bp (Matys et al., 
2003). The second and third data sets, identified as yst04r and yst08r, contained 7 and 15 yeast 
sequences, respectively, of 1000 bp each (Matys et al., 2003).

For fair comparison with other metaheuristics, population or colony size and the 
number of maximum cycles or generations, which are common control parameters and directly 
determine the total number of evaluations, were chosen to be 200 and 3000, respectively (Kaya, 
2007; Gonzalez-Alvarez et al., 2010, 2011a). In order to make a more detailed investigation 
of the proposed discrete model based on similarity between consensus sequences of the ABC 
algorithm, we used six different values for the limit parameter: 50, 100, 200, 300, 500, and 
a. For each data set and the selected motif length, 30 independent runs were carried out with 
different random seeds (Kaya, 2007; Gonzalez-Alvarez et al., 2010, 2011a). The highest 
and mean similarity values and standard deviations of the 30 runs for each combination of 
parameters are given in Tables 1-3 for the hm03r, yst04r, and yst08r data sets.

Table 1. Mean and highest similarity values and standard deviations for hm03r data set.

Motif length limit = 50 limit = 100 limit = 200 
Mean Best Std. Dev. Mean Best Std. Dev. Mean Best Std. Dev. 

9 0.84185 0.86666 1.2945e-02 0.84000 0.85555 1.1149e-02 0.82777 0.85555 1.6180e-02 
10 0.82600 0.86000 1.3287e-02 0.82400 0.85000 9.6846e-03 0.81600 0.84000 1.3287e-02 
11 0.81121 0.83636 1.1861e-02 0.80939 0.82727 1.2515e-02 0.80606 0.83636 1.3363e-02 
14 0.77904 0.80714 1.2001e-02 0.77690 0.80000 1.0390e-02 0.77119 0.79285 1.0854e-02 
Motif length limit = 300 limit = 500 limit = i 

Mean Best Std. Dev. Mean Best Std. Dev. Mean Best Std. Dev. 
9 0.82370 0.86666 1.9732e-02 0.81111 0.84444 1.4294e-02 0.68037 0.73333 1.8611e-02 
10 0.80900 0.85000 1.5833e-02 0.78966 0.82000 1.5421e-02 0.66600 0.73000 2.6986e-02 
11 0.79333 0.82727 1.3491e-02 0.77909 0.80909 1.6041e-02 0.66030 0.73636 3.4139e-02 
14 0.75833 0.77857 1.1267e-02 0.75214 0.77857 1.6476e-02 0.62738 0.68571 2.0979e-02 

 
From the results given in Tables 1-3, it can be clearly seen that the consensus ABC 

algorithm produces more efficient results, in terms of mean and highest similarity values, when 
the limit parameter value is set to 50. The similarity values of the consensus ABC algorithm 
with the support values set to equal the number of sequences in each data set were calculated 
utilizing Equation 1 (Kaya, 2007; Gonzalez-Alvarez et al., 2010, 2011a) and compared with the 
MOGOMOD (Kaya, 2007), DEPT (Gonzalez-Alvarez et al., 2010) and MOABC (Gonzalez-
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Alvarez et al., 2011a) algorithms. For the MOGAMOD, DEPT, and MOABC algorithms, each 
experiment was performed 30 times with the given population and maximum number of cycles 
and the final Pareto front was created by combining the Pareto fronts found in all 30 independent 
runs. In other words, the final Pareto front contains the solutions with the highest similarity 
values. When considering these situations, the highest similarity values of the motifs of different 
lengths obtained by the consensus ABC algorithm with a limit value of 50 were compared to 
the results from MOGAMOD, DEPT, and MOABC. From a comparison of results (Tables 
4-6), it can be seen that the consensus ABC algorithm outperforms all of other algorithms. The 
neighbor selection strategy based on similarity values between consensus sequences improved 
the probability of the selection of a food source in which the position vector might contain more 
suitable elements that can enhance the similarity value. The efficiency of the consensus ABC 
algorithm can be seen at the level of matched columns in the produced alignment matrices. 
The alignment matrix produced by the consensus ABC algorithm for the hm03r data set for 
10-nucleotide motifs contains at least 3 more matches than that of the DEPT algorithm, at least 
5 more matches than that of the MOABC algorithm, and at least 7 more matches than that of the 
MOGAMOD algorithm where the dominant residue types of the columns are concerned.

Table 2. Mean and highest similarity values and standard deviations for yst04r data set.

Motif length limit = 50 limit = 100 limit = 200 
Mean Best Std. Dev. Mean Best Std. Dev. Mean Best Std. Dev. 

8 0.92857 0.96428 1.5553e-02 0.92738 0.96428 1.5506e-02 0.91904 0.94642 1.8000e-02 
9 0.90423 0.93650 1.4727e-02 0.90740 0.95238 1.3236e-02 0.90105 0.92063 8.0001e-03 
13 0.85824 0.87912 1.1668e-02 0.85897 0.87912 9.1638e-03 0.85164 0.87912 1.1083e-02 
22 0.77770 0.80519 1.0042e-02 0.77554 0.80519 9.4460e-03 0.77034 0.77922 6.4898e-03 
Motif length limit = 300 limit = 500 limit = i 

Mean Best Std. Dev. Mean Best Std. Dev. Mean Best Std. Dev. 
8 0.91666 0.94642 1.8952e-02 0.90178 0.92857 1.7389e-02 0.77797 0.82142 2.9911e-02 
9 0.89206 0.92063 1.4678e-02 0.87883 0.90476 1.4727e-02 0.76190 0.87301 3.7976e-02 
13 0.84432 0.85714 1.0031e-02 0.83260 0.86813 1.7238e-02 0.73479 0.79120 2.8383e-02 
22 0.76839 0.79220 1.1095e-02 0.76255 0.79870 1.1525e-02 0.66385 0.69480 1.9040e-02 

 

Table 3. Mean and highest similarity values and standard deviations for yst08r data set.

Motif length limit = 50 limit = 100 limit = 200 
Mean Best Std. Dev. Mean Best Std. Dev. Mean Best Std. Dev. 

10 0.87636 0.90000 1.2079e-02 0.87787 0.90000 1.0857e-02 0.86969 0.89090 1.0765e-02 
11 0.86281 0.89256 1.0086e-02 0.86115 0.89256 1.1151e-02 0.85206 0.86776 1.2152e-02 
14 0.81688 0.85064 1.0288e-02 0.81753 0.84415 1.0697e-02 0.81125 0.83116 1.0079e-02 
21 0.76277 0.77922 6.8588e-03 0.76305 0.78355 8.3489e-03 0.75800 0.77489 7.3982e-03 
Motif length limit = 300 limit = 500 limit = i 

Mean Best Std. Dev. Mean Best Std. Dev. Mean Best Std. Dev. 
10 0.86303 0.89090 1.4110e-02 0.84697 0.88181 1.6206e-02 0.72545 0.79090 3.0796e-02 
11 0.84297 0.88429 1.6241e-02 0.83719 0.87603 1.7785e-02 0.71680 0.76033 2.1478e-02 
14 0.80389 0.81818 6.4711e-03 0.78831 0.81168 1.0174e-02 0.69913 0.75324 2.1184e-02 
21 0.75093 0.77056 7.7717e-03 0.74603 0.76190 8.9033e-03 0.65238 0.69264 2.0967e-02 

 

Table 4. Comparison of consensus ABC algorithm with MOGAMOD algorithm.

Data set Motif length Similarity 
MOGAMOD (Kaya, 2007) Consensus ABC 

hm03r 9 0.81 0.86 
10 0.79 0.86 
11 0.74 0.83 

yst04r 8 0.84 0.96 
9 0.80 0.93 

yst08r 10 0.77 0.90 
11 0.80 0.89 
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Additional assessment of the consensus ABC algorithm was carried out by analyzing 
the running times observed with the limit parameter value of 50. For each of the 30 independent 
experiments for each data set and motif length, a system equipped with an Intel® i7 2600 
CPU at 3.40 GHz with 4 GB of main memory running the Fedora 22 operating system was 
used, and the total elapsed time until completion of the 3000 cycles was recorded in seconds. 
Average elapsed times over the 30 runs are shown in Figure 4, where it can be seen that there is 
a near-linear relationship between the length of the motif and the elapsed run time. In addition, 
when comparing across data sets, we can see that more time is required to find motifs in data 
sets containing more sequences or longer sequences.

Table 5. Comparison of consensus ABC algorithm with DEPT algorithm.

Data set Motif length Similarity 
DEPT (Gonzalez-Alvarez et al., 2010) Consensus ABC 

hm03r 9 0.85 0.86 
10 0.83 0.86 
11 0.81 0.83 
14 0.79 0.80 

yst04r 8 0.96 0.96 
9 0.92 0.93 
22 0.80 0.80 

yst08r 10 0.89 0.90 
11 0.88 0.89 
21 0.77 0.78 

 

Table 6. Comparison of consensus ABC algorithm with MOABC algorithm.

Data set Motif length Similarity 
MOABC (Gonzalez-Alvarez et al., 2011a) Consensus ABC 

hm03r 9 0.84 0.86 
10 0.81 0.86 
11 0.80 0.83 

yst04r 8 0.94 0.96 
9 0.90 0.93 

13 0.84 0.87 
yst08r 11 0.85 0.89 

14 0.80 0.85 
 

Figure 4. Comparison of the average elapsed times for hm03r (a), yst04r (b), and yst08r (c) data sets.

DISCUSSION

In this paper, we proposed a new discrete ABC algorithm, the consensus ABC 
algorithm, for solving motif discovery problems. The consensus ABC algorithm has been 
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tested on three different data sets with different motif lengths and limit parameter values. 
In addition, performance of the consensus ABC algorithm was compared with a GA-based 
technique (MOGAMOD), a DE-based technique (DEPT), and a genetic operator-based ABC 
algorithm (MOABC). Comparison of results showed that the consensus ABC algorithm, in 
which the neighbor selection strategy references the similarity analysis between consensus 
counterparts of the solutions, provided comparable or better results with appropriate values 
of the limit parameter. Due to the promising results obtained with the consensus ABC 
algorithm, use of a consensus-based neighbor selection strategy could be more efficient on the 
multiobjective optimization techniques and parallel implementation on distributed or shared 
memory architectures.
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