
©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 10 (2): 588-603 (2011)

Genetic algorithm-based efficient feature 
selection for classification of pre-miRNAs

P. Xuan1, M.Z. Guo1, J. Wang2, C.Y. Wang1, X.Y. Liu1 and Y. Liu1

1School of Computer Science and Technology, Harbin Institute of Technology, 
Harbin, Heilongjiang, P.R. China
2School of Computer and Information Science, Southwest University, 
Chongqing, P.R. China

Corresponding author: M.Z. Guo
E-mail: maozuguo@hit.edu.cn

Genet. Mol. Res. 10 (2): 588-603 (2011)
Received November 7, 2010
Accepted January 8, 2011
Published April 12, 2011
DOI 10.4238/vol10-2gmr969

ABSTRACT. In order to classify the real/pseudo human precursor 
microRNA (pre-miRNAs) hairpins with ab initio methods, numerous 
features are extracted from the primary sequence and second structure 
of pre-miRNAs. However, they include some redundant and useless 
features. It is essential to select the most representative feature subset; 
this contributes to improving the classification accuracy. We propose a 
novel feature selection method based on a genetic algorithm, according 
to the characteristics of human pre-miRNAs. The information gain 
of a feature, the feature conservation relative to stem parts of pre-
miRNA, and the redundancy among features are all considered. Feature 
conservation was introduced for the first time. Experimental results 
were validated by cross-validation using datasets composed of human 
real/pseudo pre-miRNAs. Compared with microPred, our classifier 
miPredGA, achieved more reliable sensitivity and specificity. The 
accuracy was improved nearly 12%. The feature selection algorithm 
is useful for constructing more efficient classifiers for identification of 
real human pre-miRNAs from pseudo hairpins.

Key words: Feature selection; Genetic algorithm; Pre-miRNA; 
Information gain; Conservation



589

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 10 (2): 588-603 (2011)

Genetic algorithm-based efficient feature selection

INTRODUCTION

MicroRNAs (miRNA) are non-coding RNAs about 21~23 nucleotides (nt) in length, 
which can play important roles in gene regulation by targeting mRNAs for cleavage or 
translational repression (Bartel, 2004; Chatterjee and Grosshans, 2009). It has been shown 
that miRNAs usually participate in a set of important life processes, including growth pro-
cesses, hematopoiesis, organ formation, apoptosis, and cell proliferation. Furthermore, they 
are closely related to many kinds of human diseases, including cancer (Bushati and Cohen, 
2007). Due to the difficulty of systematically detecting miRNAs from a genome using exist-
ing experimental techniques, computational methods play important roles in the identifica-
tion of new miRNAs.

Precursor miRNAs (pre-miRNAs) of 60~70 nt have stem-loop hairpin structures, 
which are an important characteristic feature used in the computational identification of 
miRNAs. Recently, the ab initio method based on machine learning was presented and 
applied to distinguish real pre-miRNAs from candidate hairpin sequences. Through learn-
ing from known miRNAs and pre-miRNAs, the features of primary sequence and second 
structure are extracted. These features are used to construct the classifiers, such as support 
vector machines (SVM) (Sewer et al., 2005; Xue et al., 2005; Ng and Mishra, 2007; Batu-
wita and Palade, 2009), probabilistic co-learning model (Nam et al., 2005), naive Bayes 
(Yousef et al., 2006, 2008), random forest (Jiang et al., 2007), and kernel density estima-
tion (Chang et al., 2008). These classifiers could then classify a candidate sequence as a 
real pre-miRNA or a pseudo pre-miRNA. However, there are quite a lot extracted features. 
Not all these features are beneficial, because some features provide little information gain 
or because some features are redundant relative to other features. Therefore, it is necessary 
to select the most representative feature subset, which contributes to the improvement of 
the classification performance.

Triplet-SVM (Xue et al., 2005) classifies human real pre-miRNAs and pseudo pre-
miRNAs with 32 structure-sequence features, which considers the structure compositions 
of 3 adjacent nucleotides and the middle nucleotide among the 3, such as “U(((“ and “A((.”. 
Xue et al. (2005) used all 32 features to train an SVM classifier. MiPred (Jiang et al., 2007) 
is the extension of Triplet-SVM, which uses 2 additional features such as the minimum of 
free energy (MFE) and the randomization test (P value), totaling 34 features. In addition, 
MiPred estimates and ranks the relative importance of a feature. It has been shown that P 
value and MFE are more important than the other 32 structure-sequence features. miPred 
(Ng and Mishra, 2007) is another SVM-based method for classifying human pre-miRNAs 
from genome pseudo hairpins based on a group of 29 global and intrinsic folding features. 
These 29 features are evaluated with the F-scores F1 and F2 on the class-conditional dis-
tributions to measure their discriminative power. A subset of 26 features is selected and 3 
strongly correlated features are excluded. microPred (Batuwita and Palade, 2009) collects 
the 29 features from miPred and presents 19 new features, totaling 48 features. The follow-
ing feature selection methods based on filtering are applied for searching the feature space: 
Divergence, Transformed divergence and Jeffries-Matusita distance. However, the methods 
described above do not consider feature conservation and redundancy among the features. 
Therefore, we present a novel method to select a feature subset from the original feature set 
of pre-miRNA.
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MATERIAL AND METHODS

Features of pre-miRNA

The current research indicates that pre-miRNAs have many features about both the 
primary sequence and secondary structure. These features could be used to classify the real 
pre-miRNA and pseudo hairpin sequences with an ab initio method. 

miPred extracted 29 global and intrinsic folding features from human real and pseudo 
pre-miRNAs. These features are: 1) seventeen base composition variables, including 16 di-
nucleotide frequencies, that is, XY% where X,Y∈{A,C,G,U}, and (G+C)% content; 2) six 
folding measures, adjusted base pairing propensity, dP (Schultes et al., 1999), adjusted MFE 
of folding denoted as dG (Seffens and Digby, 1999; Freyhult et al., 2005), adjusted base pair 
distance dD (Moulton et al., 2000; Freyhult et al., 2005), adjusted Shannon entropy dQ (Frey-
hult et al., 2005), MFE index 1 (MFEI1) (Zhang et al., 2006), and MFE index 2 (MFEI2); 3) 
one topological descriptor, which is the degree of compactness dF (Fera et al., 2004; Gan et 
al., 2004), and 4) five normalized variants of dP, dG, dQ, dD, and dF: zP, zG, zQ, zD, and zF.

In addition to the above 29 features, microPred extracted 19 new features, totaling 
48 features. These features are: 1) two MFE-related features, MFE index 3 (MFEI3) and MFE 
index 4 (MFEI4); 2) four RNAfold-related features, normalized ensemble free energy, NEFE, 
frequency of the MFE structure Freq, structural diversity denoted as Diversity, and a com-
bined feature Diff; 3) six thermodynamic features, structure entropy dS and dS/L, structure 
enthalpy dH and dH/L, melting energy of the structure Tm and Tm/L, where L is the length 
of pre-miRNA sequence, and 4) seven-base pair-related features: |A-U|/L, |G-C|/L, |G-U|/L, 
average base pairs per stem Avg_BP_Stem, (A-U)%/n_stems, (G-C)%/n_stems, (G-U)%/n_
stems, where n_stems is the number of stems in the secondary structure.

It has been shown that the above 48 features could efficiently represent the character-
istic in primary sequence and secondary structure of pre-miRNA (Batuwita and Palade, 2009). 
Therefore, we selected a representative feature subset from these 48 features and avoided the 
redundant features, which is helpful for improving classification performance.

Influencing factors of feature selection

Feature selection aims to select a group of more representative features, which could 
conserve most information of the original data and distinguish each sample in the dataset. Our 
feature selection method considers some effective influencing factors, including information 
gain, feature conservation, and feature redundancy. Here, feature conservation is introduced 
in this study for the first time.

Information gain

Since all the features of pre-miRNAs are discrete, the feature discrimination is mea-
sured by information gain based on Shannon entropy. Suppose a feature of pre-miRNA is x, 
and the entropy of x is denoted as H(x). When the value of feature y is known, the conditional 
entropy is H(x|y).

The information gain of features x and y is IG(x, y) (Quinlan, 1993) as shown in 
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Equation 1. Classification of real or pseudo pre-miRNAs is a two-class problem. IG(c, 
x) is the information gain of feature x relative to classification feature c, and IG (c, x) = 
H(c) - H(c| x). IG(c, x) are used to measure feature discrimination for the training dataset 
composed of real or pseudo pre-miRNAs. The features with greater information gain 
should be selected first.

                     IG (x, y) = H (x) - H (x|y)                                  (Equation 1)

However, some features have very small information gain. The features would not 
improve classification performance and would even have a negative effect on the classifier. 
Thus, they are useless features and should not be selected.

Feature conservation

Pre-miRNAs are typically 60~70 nt, and contain an ~22-bp double-stranded stem and 
an ~10-nt terminal loop. Recently, computational phylogenetic shadowing showed that the 
stems of pre-miRNAs are highly conserved in whole genome alignments, whereas most termi-
nal loop sequences are only loosely conserved (Berezikov et al., 2005). Therefore, the conser-
vation degree of a feature is measured through observing the consistent degree of nucleotide 
sequence in stems. If a feature can reflect the conservation of stems well, a candidate hairpin 
sequence with a value of the feature similar to one of real pre-miRNAs is more likely a real 
pre-miRNA. This kind of features should be selected first.

Feature redundancy

The similarity between feature x and y is calculated with Equation 2. Thus, Sim(x, y) 
ranges from 0 to 1. Sim(x, y) = 0 means that these two features x and y are completely irrel-
evant. Sim(x, y) = 1 means that x and y are completely relevant.

(Equation 2)

When Sim(x, y) is greater than a threshold, the features x and y are redundant. Select-
ing both features simultaneously is not useful for improving classification performance. At 
this time, the feature with greater information gain and feature conservation should be selected 
and the other one should be filtered out.

Feature conservation extraction

In order to extract the feature conservation, we truncate the conserved stems from 
pre-miRNA hairpins and count how many same k-mer sequences there are between two stems 
from two pre-miRNAs. k-mer restricts special k nucleotides to being adjacent. 2-mer and 
3-mer are not strict enough for the combination of adjacent nucleotides. However, 5-mer is too 
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strict. Therefore, 4-mer is selected to measure the similarity between two stems.
Figure 1 shows the procedure of extracting feature conservation based on a clustering 

algorithm. 1) Given the primary sequences of pre-miRNAs, such as the primary sequence of 
hsa-mir-192, the secondary structures of the pre-miRNAs are predicted by RNAfold (Hofacker 
et al., 1994). The central loop and the unpaired part between the 5' and 3' arm are then cut off to 
obtain the conserved stem. 2) Both arms in the stem of pre-miRNAs are scanned with a sliding 
window whose length is 4 nt and the step length is 1 nt. The frequencies of each 4-mer in the 5' and 
3' arm are counted. 3) In the initial stage, each known real pre-miRNA is to be as a single cluster. 
4) Two clusters are iteratively merged with the most similar stems into one cluster until the value 
of similarity between any two clusters is less than a threshold. The threshold is determined by our 
experiment. When the threshold is set at 12, most of the pre-miRNAs with similar stems could 
be gathered into a cluster. 5) After the process of clustering, the feature differences are calculated. 
The feature difference is used to measure the average variation of a feature among all the clusters. 
Finally, the conservation of each feature is calculated.

Figure 1. Procedure of extracting feature conservation based on clustering.

Suppose x is a feature and the pre-miRNAs have been gathered into M clusters. Ni 
is the number of pre-miRNAs in the ith cluster, vij is the 48-dimensional feature vector of the 
jth pre-miRNA in the ith cluster, and vij[k] is the kth dimensional feature value of the jth pre-
miRNA. The vector set of the ith cluster is Vi = {vi1,vi2,…viNi}. The mean value of the kth feature 
in the ith cluster is Avgik, which is shown as Equation 3. The root-mean-square value of the kth 
feature is DAvgik in Equation 4. The average difference value of the kth feature in M clusters 
is described with Equation 5. As shown in Equation 6, Con(xk) represents the conservation 
degree of feature xk.
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Genetic algorithm-based feature selection

Since the pre-miRNA has 48 dimension features, there are 248
 feature subsets. It 

is not feasible to find the optimal feature subset with an exhaustive method. Therefore, 
we propose a feature selection method based on a genetic algorithm.

The process of feature selection is shown in Figure 2. Given the original com-
plete feature set composed of 48 features, each individual represents a feature subset. 
First, 200 (the size of population) feature subsets are created as an initial population. The 
fitness of each feature subset is then calculated. The feature subsets with greater fitness 
are selected to participate in the crossover and mutation operations. The child feature 
subsets from crossover and mutation operations and the better feature subsets from the 
current population are used to generate the new population. The fitness of each feature 
subset is calculated and the new population is generated iteratively until the stopping 
condition is satisfied. The best feature subset in the iteration process is the result of our 
feature selection.

(Equation 3)

(Equation 4)

(Equation 5)

(Equation 6)
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Individual encoding

Each individual is represented with a binary vector of L dimensions and L is the size of 
the complete feature set. Each bit in the binary vector represents whether a feature is included 
in the current feature subset. xi = 1 means the ith feature is included in the current feature sub-
set. Otherwise, the value of xi is 0. For instance, the complete feature set is composed of six 
features, including feature 1 to feature 6. A vector such as (1, 1, 0, 1, 1, 0) means a selected 
feature subset including feature 1, feature 2, feature 4, and feature 5. L is 48 for the 48-dimen-
sional pre-miRNA dataset, which is composed of real pre-miRNAs and pseudo pre-miRNAs.

Population initializing

In order to increase the diversity of individuals, the genetic algorithm typically ran-
domly initializes the population. However, random initializing population would result in the 

Figure 2. Procedure of feature selection based on genetic algorithm.
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very slow convergence rate of the genetic algorithm. Therefore, we chose random initialization 
and preference initialization to initialize the first population, which contributes to improving 
convergence rate and guarantees the diversity of individuals. In random initialization, each bit 
of an individual is set to 1 with a probability that is selected randomly from the probability set 
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. After this procedure, 100 feature subsets are cre-
ated. Second, each bit is set to 1 with the probability of 0.5, and 50 feature subsets are created. 
In preference initialization, if a feature has greater information gain, the corresponding bit in the 
individual is preferably 1. The probability of it being set to 1 is according to the rate where the 
information gain of current feature accounts for the sum of information gains about all features. 
Thus, another 50 feature subsets are created and the total is 200 individuals in a population.

Fitness calculating

Fitness describes the optimality of an individual (feature subset) so that a particular 
feature subset may be ranked against all the other feature subsets. In order to generate the next 
population, the genetic algorithm selects the individuals with greater fitness to participate in 
the process of crossover and mutation. As a better feature subset, first, each feature should have 
greater information gain with respect to the class. Second, a selected feature should reflect the 
conservation of stem well. Third, the redundant features should be avoided for selection.

Suppose a group of features are x1,x2,x3,x4,…, and xm, k features are selected and the 
vector of a feature subset is X′ ={x′1,x′2,x′3,x′4,…x′k}. x′i is the ith selected feature in vector 
X′. E(X′) estimates the whole contribution of feature subset X′ for classification of real pre-
miRNAs and pseudo pre-miRNAs. When calculating E(X′), information gain weight (IGW), 
the conservation weight (ConW), and the redundancy weight (RduW) should be considered.

1) Information gain weight. Assume the class is c. c is positive (c = 1) if the candidate 
sequence is classified to be real pre-miRNA. c is negative (c = -1) if the candidate sequence 
is classified to be pseudo pre-miRNA. IG(c, x′i) represents the information gain of feature 
x′i relative to c, which is used to measure the ability of discriminating real and pseudo pre-
miRNAs in the training dataset by x′i.

The minimum, maximum and average value of IG(c, x′i) are 0.0087, 0.886 and 
0.188, respectively. As shown in Equation 7, when IG(c, x′i) is more than 0.08 (0.08 is de-
termined according to prior experience (Sewer et al., 2005; Ng and Mishra, 2007), IGW(x′i) 
is 1+IG[c,x′i]. Otherwise, feature x′i is of little benefit for classification. Thus, IGW(x′i) is as-
signed to -(1-IG[c,x′i]).

              
' '

'
'

1 ( , )       ( , ) 0.08
( )

(1 ( , ))
i i

i
i

IG c x if IG c x
IGW x

IG c x otherwise

 + >== 
− −

             (Equation 7)

2) Conservation weight. Con(x′i) represents the conservation degree of feature x′i. The 
feature conservation ranges from 0 to 1 and its average value is 0.65. As shown in Equation 
8, when the feature conservation is more than 0.65 (0.65 is determined according to Sewer et 
al., 2005 and Ng and Mishra, 2007), the feature contributes to improving the prediction ac-
curacy of the classifier. Therefore, ConW(x′i) is assigned a plus score. Otherwise, ConW(x′i) is 
assigned a minus score.
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3) Redundancy weight. The feature selection should avoid selecting the redundant 
features, which are strongly relevant to other features. The similarity between two features x′i 
and x′j is measured with Sim(x′i,x′j). When Sim(x,y) is greater than the threshold, the features 
x and y are redundant. The minimum of the Sim(x′i, x′j) between the feature pair x′i and x′j is 
0.0039, the maximum is 0.696, and the averaged value is 0.071. When two features are re-
dundant, selecting both features is not beneficial for classification. The assignment of RduW 
is shown in Equation 9.

             
' ' ' '

' ' ( , ) ( , ) 0.5
( , )

0
i j i j

i j

Sim x x if Sim x x
RduW x x

otherwise

 >== 


              (Equation 9)

E(X′) is calculated as Equation 10. Since the IGW is more important than the ConW, 
ConW is multiplied by 1/2 to coordinate the proportion between IGW and ConW.

'
' ' '
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= = = +
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As the value of E(X′i) is greater, the fitness of the ith feature subset X′i in the population 
should be greater. Thus, the fitness of X′i could be estimated by Equation 11,

                       _
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E Xf X
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′
′

′

=

=

∑
                                   (Equation 11)

where pop_size is the number of feature subsets in a population.

Genetic operation

In order to create the next population, a set of feature subsets with greater fitness 
should be selected to participate in the process of crossover and mutation. The selection strat-
egy, crossover strategy and mutation strategy are described respectively as following.

1) Selection strategy. Selection operation is applied to determine which feature sub-
sets within a population would participate in crossover and mutation, as well as which feature 
subsets can survive to the next generation. The roulette wheel selection is applied to choose 
feature subsets according to the proportion of their fitness. Generally, the feature subsets with 
greater fitness should have a greater chance of survival than the weaker ones. However, the 
weaker ones are not without any chance. In addition, the roulette wheel selection is helpful in 
decreasing the probability of the genetic algorithm, achieving local optimal resolution.

(Equation 8)
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2) Crossover strategy. Crossover is a genetic operator that combines two individuals 
(parents) to produce the new individuals (offspring). In the current population, two feature 
subsets are chosen with the roulette wheel selection method, referred to as Parent1 and Par-
ent2. There are two crossover strategies, as shown in Figure 3A and B.

Figure 3. Strategies of crossover and mutation. A. Crossover strategy 1. B. Crossover strategy 2. C. Mutation 
strategy.

First, a point P is randomly selected. The bits before P in Parent1 and Parent2 are 
maintained, and the bits after P are exchanged to generate two new offspring feature subsets. 
Second, two points are randomly selected and represented as P1 and P2. The bits between P1 
and P2 of two parent feature subsets are maintained and the rest of bits are exchanged. In the 
iteration process of the genetic algorithm, these two crossover strategies are alternately used, 
which helps to increase the diversity of individuals. The crossover rate is set to 80%. Thus, 
80% of individuals (160 feature subsets), which are selected according to individual fitness, 
would participate in the crossover process. 

3) Mutation strategy. Mutation operation could be helpful in maintaining the diversity 
of individuals in a population. As shown in Figure 3C, a point P is randomly chosen and the 
value of P is reversed. That is, if the value of P is 1, the value would be set to 0. If the value is 
0, it would be set to 1. The 5% selected individuals (10 feature subsets) would participate in 
the mutation process. In addition, the 15% individuals (30 feature subsets) with greater fitness 
of the current population would be directly added to the next population, which contributes to 
protecting the better individuals of each population.
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Stopping conditions

There are two conditions to stop the genetic iteration process. First, if the average 
fitness of the whole population is not changed in the recent N iteration or if the difference is 
smaller than a certain threshold, it means that the evolutionary trend of the population is very 
slow. Second, the maximum number of iterations is set to finish the genetic algorithm. When 
either condition is satisfied, the iteration process would be stopped.

Evaluation method

The feature subset could be used to construct an SVM classifier to evaluate our meth-
od. The performance of the classifier is measured with three parameters: sensitivity (SE), spec-
ificity (SP), and geometric mean ( mG SE SP= × ). SE is the proportion of positive samples (real 
pre-miRNAs) correctly classified, and SP is the proportion of the negative samples (pseudo 
pre-miRNAs) correctly classified.

Implementation

Our feature selection method is implemented as GAFeatureSelect in Java JDK 1.6. 
GAFeatureSelect can be used in any OS with JVM, including Windows, Linux, Unix, etc. 
After feature selection, the SVM classifier is created with the libSVM2.9 package (http://
www.csie.ntu.edu.tw/~cjlin/libsvm/). Discretization of feature value could help to compute 
the entropy value and information gain value of each feature. We discretize a group of values 
of each feature with the discretization package supported by Weka 3.7.0.

Our GAFeatureSelect offers a tool for the high-dimensional data about pre-miRNAs 
to select a representative feature subset. The selected feature subset contributes to improving 
classification performance. The feature vectors corresponding to known real pre-miRNAs and 
pseudo pre-miRNAs are put into the GAFeatureSelect as input. The output is the feature sub-
set that could be used to construct an SVM classifier to classify real pre-miRNAs and pseudo 
hairpin sequences.

RESULTS AND DISCUSSION

Data collection

A classifier of pre-miRNA should distinguish real human pre-miRNAs from both 
pseudo hairpins and other non-coding RNAs (ncRNAs). Therefore, the positive dataset should 
be composed of known human pre-miRNAs, while the negative dataset should be composed 
of both pseudo hairpins and other ncRNAs. 

Positive dataset

In order to compare our feature selection method with the microPred’s method, we 
use the same positive dataset with microPred. Therefore, the dataset includes 695 human 
pre-miRNA sequences published in miRBase12.0 (Griffiths-Jones et al., 2008) instead of the 
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current version miRBase15.0. After the redundant sequences have been filtered out, there are 
691 non-redundant sequences. A total 660 of these sequences are folded into hairpin second-
ary structures, and the remaining 31 sequences have multi-branched loops folded with the 
RNAfold program. In order to identify multiple types of pre-miRNAs, all of these 691 non-
redundant pre-miRNA sequences are used as the positive dataset.

Negative dataset

We select 8494 human pseudo hairpin sequences, which are extracted from the protein 
coding regions and have been previously used in triple-SVM, MiPred, miPred, and micro-
Pred. The criteria for selecting the pseudo miRNAs are: a minimum of 18 base pairings on 
the stem of hairpin structure, maximum of -15 kcal/mol free energy of secondary structure, 
and no multiple loops, which ensure that the extracted pseudo pre-miRNAs are similar to real 
pre-miRNAs. In addition, the negative dataset also includes 754 other ncRNAs collected by 
microPred, where some ncRNAs have multiple loops, totaling 9248 sequences.

Positive and negative training dataset

Because the classification performance of SVM is also impacted by the training data-
set, we propose a two-stage clustering method to select training samples. In the first stage, the 
samples (real pre-miRNAs or pseudo pre-miRNAs) are clustered according to stem similarity. 
The samples with similar stems are gathered into a cluster. The clustering method in this stage 
is the same as the one used in the “Feature conservation extraction” section. The clustered 
result is as initial status of the second stage. Since 22 features have been selected with our 
GAFeatureSelect, the real or pseudo pre-miRNAs are further clustered according to their posi-
tions in 22-dimensional sample space. The classical K-Means clustering algorithm is used in 
the second stage. However, the distance between a sample and the central point of each cluster 
is calculated with a new distance formula. Suppose the 22-dimensional feature vector of a 
sample is x and there are N initial clusters. The vector set of central points is M = {m1, m2, …, 
mN}, where mi represents the feature vector of the central point in the ith cluster. The distance 
between the sample x (real pre-miRNA or pseudo pre-miRNA) and the central point of the ith 
cluster is defined as Equation 12,

                         1
i

t
i

xm t t t
i i i

x md
x x m m x m

⋅
= −

⋅ + ⋅ − ⋅
                         (Equation 12)

where xt means the transposed vector x. The greater the value of d is, the farther the distance 
between the sample and the central point of the ith cluster is. Thus, the samples, which are close 
together, are merged into the same cluster. Suppose the selection rate is 1/n and the size of the 
ith cluster is Ni. Next, we randomly select Ni/n individuals from the ith cluster and add them to 
the training dataset. A total 333 pre-miRNAs are selected from 691 known real pre-miRNAs 
as the positive training set, and 442 pseuso pre-miRNAs are selected from 9248 pseudo pre-
miRNAs as the negative training set. The selected training dataset is referred to as 775 train-
ing dataset.
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Positive and negative testing dataset

Two groups of positive and negative testing datasets are created. The first group is com-
posed of 350 real pre-miRNAs and 350 pseudo pre-miRNAs. The 350 real pre-miRNAs are 
randomly selected from the remaining dataset excluding the 333 training pre-miRNAs known 
pre-miRNAs, and the 350 pseudo pre-miRNAs are selected from 8494 pseudo pre-miRNAs, 
which is referred to as 700 random testing dataset. In the second group, the positive testing 
dataset is composed of 691 known real pre-miRNAs, and the negative dataset consists of 754 
ncRNA sequences. The second group is referred to as 1445 real and ncRNA testing dataset. It 
is well known that some ncRNAs are often wrongly classified by many classifiers as real pre-
miRNAs. Therefore, we select all the ncRNAs to create the second negative testing dataset.

Comparison with other methods

The microPred applied the following feature subset selection methods for search-
ing the feature space, including Divergence (D), Transformed Divergence (TD) and Jeffries-
Matusita distance (J-M). Jeffries-Matusita distance achieved the best classification perfor-
mance in microPred. Thus, we compare our feature selection method with the method based 
on J-M. The 22 features are selected with our GAFeatureSelect, and their information gain 
and conservation are listed as follows. First, as shown in Table 1, 12 features (bold) overlap 
with the 21 features selected by microPred. Second, when evaluated statistically onto the 691 
non-redundant pre-miRNAs, four pairs of attributes are strongly correlated: dQ versus dD, dQ 
versus zQ, zQ versus zD, and dD versus zD. zQ is selected due to its higher information gain 
and conservation compared to dQ, dD and zD. There is a very consensus result in miPred, 
which indirectly certificates our selected feature subset. Third, we found two new strongly 
correlated pairs of attributes: dH versus dS, and dH/L versus dS/L, where dH and dH/L are 
selected, respectively.

Rank	 AttrName	 IG(c, attr)	 Con(x′i)	 Rank	 AttrName	 IG(c, attr)	 Con(x′i)

  1	 Diversity	 0.886	 0.579	 11	 Tm	 0.277	 0.429
  2	 Freq	 0.732	 0.698	 12	 EAFE	 0.242	 0.949
  3	 MFEI1	 0.596	 0.897	 13	 ZF	 0.222	 0.673
  4	 ZG	 0.575	 0.581	 14	 (A-U)%/stems	 0.212	 0.624
  5	 dP	 0.427	 0.546	 15	 dH/L	 0.147	 0.999
  6	 ZP	 0.409	 0.588	 16	 dF	 0.144	 0
  7	 ZQ	 0.357	 0.655	 17	 dH	 0.139	 0.929
  8	 Avg_Bp_Stem	 0.32	 0.44	 18	 Diff	 0.134	 0.78
  9	 |A-U|/L	 0.29	 0.816	 19	 UA%	 0.114	 0.932
10	 dG	 0.287	 0.808	 20	 MFEI4	 0.114	 0.824
11	 MFEI2	 0.279	 0.678	 21	 (G+C)%	 0.087	 0.852

Twelve features (in bold) overlap with the 21 features selected by microPred.

Table 1. Selected features ranked according to their information gain.

The 22 features are used to create the SVM classifiers respectively, referred to as 
miPredGA. 5-Fold cross-validation is performed on the training data to compare the perfor-
mance of the two classifiers. We performed 10 repeated evaluations as above for each testing 
dataset and averaged the results as shown in Table 2. The experimental results indicate that 
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our classifier miPredGA outperforms microPred. The result of 5-fold cross-validation with 
J-M was obtained from the publication on microPred. Other testing results of microPred were 
obtained through accessing the web server of microPred (http://web.comlab.ox.ac.uk/people/
manohara.rukshan.batuwita/microPred.htm). First, SE increased by 9.5% on average with our 
method. The improvement of SE could benefit for detecting more new pre-miRNAs. Second, 
there was an average increase in SP of 14.82%. Specificity is usually more important than sen-
sitivity in genome analysis because slight increases in specificity values can greatly decrease 
false predictions because of the large size of genome sequences. Therefore, the improvement 
of SP is a very significant increase. Thus, our miPredGA achieved higher and, especially, much 
more reliable classification results than microPred in terms of both sensitivity and specificity.

Almost all the pre-miRNAs with multiple loops in the testing dataset could be clas-
sified correctly, which indicates that, unlike previously reported methods, our method could 
be sensitive enough to identify pre-miRNAs with multi-loops. There were 4 pre-miRNAs, 
which are easily misjudged in the positive testing dataset composed of 691 known pre-
miRNAs. There are multiple big loops in the precursor of hsa-mir-375. All the precursors of 
hsa-mir-1308, hsa-mir-1469, and hsa-mir-1825 only include 15 bp. Thus, the minimum of 
free energy of their secondary structure is higher. The description above could explain why 
our classifier could not classify these 4 pre-miRNAs.

Complexity analysis

Our feature selection algorithm includes conservation statistics, population initiali-
zation and genetic iteration. In the conservation calculation step, when the number of real 
pre-miRNAs is l, the total running time of conservation statistic is O(l2). In the initialization 
step, m individuals are constructed. The total running time of initialization is O(m). The ge-
netic iteration consists of calculating the individual fitness, the crossover and the mutation 
operation. Suppose k is the number of average selected features in all the feature subsets of 
a population, and the algorithm iterates n times. Thus, the average running time of the itera-
tion step is O(n*m* k2). The average total running time of feature selection is O(l2+m+n*m* 
k2)≈O(n*m* k2).

In addition, in order to construct an SVM classification model, we just need to select 
the feature subset only once, and there is no need to select many times. The classification model 
could then be used to classify real pre-miRNAs and pseudo pre-miRNAs again and again. There-
fore, it is worth selecting a representative feature subset to improve classification performance.

CONCLUSIONS

In this paper, we proved that the information gain, conservation and feature re-
dundancy are all important for efficient feature selection. The feature selection algorithm 
GAFeatureSelect obtained the representative feature subset composed of 22 features. The 
classifier miRNAPred trained with the selected samples achieved higher sensitivity and speci-
ficity. Further analysis indicated that the improvement of classification accuracy was due to 
the representative features. In addition, the feature selection algorithm can be used to select 
informative feature subset for other SVM classifiers, such as triplet-SVM, MiPred, miPred, 
to increase their classification performance.



603

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 10 (2): 588-603 (2011)

Genetic algorithm-based efficient feature selection

ACKNOWLEDGMENTS

Research supported in part by the Chinese Natural Science Foundation (under grant 
#60932008 and #60871092), the Fundamental Research Funds for the Central Universities 
(under grant #HIT.ICRST.2010 022), the China Postdoctoral Science Special Foundation (un-
der grant #201003446), and the Returned Scholar Foundation of Educational Department of 
Heilongjiang Province in China (under grant #1154hz26).

REFERENCES

Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.
Batuwita R and Palade V (2009). microPred: effective classification of pre-miRNAs for human miRNA gene prediction. 

Bioinformatics 25: 989-995.
Berezikov E, Guryev V, van de Belt J, Wienholds E, et al. (2005). Phylogenetic shadowing and computational identification 

of human microRNA genes. Cell 120: 21-24.
Bushati N and Cohen SM (2007). microRNA functions. Annu. Rev. Cell Dev. Biol. 23: 175-205.
Chang DT, Wang CC and Chen JW (2008). Using a kernel density estimation based classifier to predict species-specific 

microRNA precursors. BMC Bioinformatics 9 (Suppl 12): S2.
Chatterjee S and Grosshans H (2009). Active turnover modulates mature microRNA activity in Caenorhabditis elegans. 

Nature 461: 546-549.
Fera D, Kim N, Shiffeldrim N, Zorn J, et al. (2004). RAG: RNA-As-Graphs web resource. BMC Bioinformatics 5: 88.
Freyhult E, Gardner PP and Moulton V (2005). A comparison of RNA folding measures. BMC Bioinformatics 6: 241.
Gan HH, Fera D, Zorn J, Shiffeldrim N, et al. (2004). RAG: RNA-As-Graphs database - concepts, analysis, and features. 

Bioinformatics 20: 1285-1291.
Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ (2008). miRBase: tools for microRNA genomics. Nucleic Acids 

Res. 36: D154-D158.
Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, et al. (1994). Fast folding and comparison of RNA secondary 

structures. Monatshefte fur Chemie/Chemical Monthly 125: 167-188.
Jiang P, Wu H, Wang W, Ma W, et al. (2007). MiPred: classification of real and pseudo microRNA precursors using 

random forest prediction model with combined features. Nucleic Acids Res. 35: W339-W344.
Moulton V, Zuker M, Steel M, Pointon R, et al. (2000). Metrics on RNA secondary structures. J. Comput. Biol. 7: 277-292.
Nam JW, Shin KR, Han J, Lee Y, et al. (2005). Human microRNA prediction through a probabilistic co-learning model of 

sequence and structure. Nucleic Acids Res. 33: 3570-3581.
Ng KL and Mishra SK (2007). De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using 

global and intrinsic folding measures. Bioinformatics 23: 1321-1330.
Quinlan JR (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo.
Schultes EA, Hraber PT and LaBean TH (1999). Estimating the contributions of selection and self-organization in RNA 

secondary structure. J. Mol. Evol. 49: 76-83.
Seffens W and Digby D (1999). mRNAs have greater negative folding free energies than shuffled or codon choice 

randomized sequences. Nucleic Acids Res. 27: 1578-1584.
Sewer A, Paul N, Landgraf P, Aravin A, et al. (2005). Identification of clustered microRNAs using an ab initio prediction 

method. BMC Bioinformatics 6: 267.
Xue C, Li F, He T, Liu GP, et al. (2005). Classification of real and pseudo microRNA precursors using local structure-

sequence features and support vector machine. BMC Bioinformatics 6: 310.
Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, et al. (2006). Combining multi-species genomic data for microRNA 

identification using a naive Bayes classifier. Bioinformatics 22: 1325-1334.
Yousef M, Jung S, Showe LC and Showe MK (2008). Learning from positive examples when the negative class is 

undetermined - microRNA gene identification. Algorithms Mol. Biol. 3: 2.
Zhang BH, Pan XP, Cox SB, Cobb GP, et al. (2006). Evidence that miRNAs are different from other RNAs. Cell Mol. 

Life Sci. 63: 246-254.


