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Abstract

The number of non-isomorphic cubic fields L sharing a common discriminant dL = d is called the multiplicity m = m(d)
of d. For an assigned value of d, these fields are collected in a homogeneous multiplet Md = (L1, . . . , Lm). By entirely
new techniques for the construction and classification, we determine the differential principal factorization types τ(Li) ∈
{α1, α2, α3, β1, β2, γ, δ1, δ2, ε} of the members Li of each multiplet Md of non-cyclic totally real cubic fields with discriminants
d < 107. This is a new kind of arithmetical invariants which provide succinct information about ambiguous principal
ideals and capitulation in the normal closures N of non-Galois cubic fields L. The classification is arranged with respect to
increasing 3-class rank % of the quadratic subfields K of the S3-fields N , and to ascending number of prime divisors of the
conductor f of N/K. The Scholz conjecture concerning the distinguished index of subfield units (UN : U0) = 1 for ramified
extensions N/K with conductor f > 1 is also verified by a tremendous minimal discriminant d = 18 251 060 outside of the
systematic range d < 107.
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differential principal factorizations; capitulation of 3-class groups; statistics; Scholz conjecture.
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1. Introduction

We present entirely new techniques for the construction and classification of non-Galois cubic fields L as subfields L < Kf

of a 3-ring class field Kf modulo a 3-admissible conductor f over a quadratic field K. In [35], we used the new methods to
classify all complex and totally real cubic fields L with discriminants −2 · 104 < dL < 105, computed between 1972 and 1976

by Angell [1,2].
In this paper, we omit simply real cubic fields with a few types only, and we rather put our focus on triply real cubic

fields L with nine possible types τ(L) ∈ {α1, α2, α3, β1, β2, γ, δ1, δ2, ε}, which refine the coarse classification with five types
α, β, γ, δ, ε by Moser [36]. According to the historical development of systematic investigations, we arrange our refined
classification of homogeneous multiplets Md of totally real cubic fields L in four steps with increasing upper boundsB ≤ 107

for the discriminants dL < B.
In Section 4, we summarize our results reported in [35] concerning the range dL < 105 of Angell [1, 2]. In Section

5, we continue with an update of our extension to dL < 2 · 105 given in [26, 27], which was computed in 1991 by means
of the Voronoi algorithm [40]. Whereas the count of discriminants and fields and the collection of fields into multiplets
were correct, the classification into type δ2 instead of β2 was partially erroneous, because absolute principal factors do not
necessarily show up among the lattice minima in the chains of Voronoi’s algorithm. The highlights of this paper will be
established in Sections 6 and 7, where we use our new techniques employing Fieker’s class field routines [11] in Magma [25]
to classify the range dL < 5 · 105 of Ennola and Turunen [9,10] and the range dL < 107 of Llorente and Quer [24], the most
extensive ranges deposited in files of unpublished mathematical tables (UMT). This coronation expands our restricted
investigations [29,32] of unramified normal closures N/K (absolute Hilbert 3-class fields) to all ramified cases N/K with
arbitrary conductors f ≥ 1 (3-ring class fields). Statistical evaluations and theoretical conclusions are given in Section 8.

We mention that Belabas [5] has given a fast method for simply counting cubic fields even in bigger ranges, without
computation of arithmetical invariants, like fundamental systems of units and class group structures, and without classi-
fication into differential principal factorization types.
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The latter are introduced in Section 3, where we prove that the Fp-vector space PN/K/PK of primitive ambiguous
principal ideals of a number field extension N/K with odd prime degree p can be endowed with a natural trichotomic
direct product structure and corresponding invariants (A,R,C).

Finally, as an application of the notions of multiplets and DPF types, the Scholz conjecture [39] concerning the distin-
guished index of subfield units (UN : U0) = 1 of the normal closure N of L is stated, refined, and proved completely in
Section 9.

We clarify in advance why we present the results of our classification for several intervals 0 < dL < B of positive cubic
discriminants instead of focussing on the most extensive of these ranges: Firstly, we want to add value to the classical tables
of Angell, Ennola and Turunen, Llorente and Quer, which did not illuminate the constitution of multiplets (L1, . . . , Lm) of
totally real cubic fields as subfields of a common 3-ring class field Kf modulo a 3-admissible conductor f over a quadratic
base field K, let alone the differential principal factorization types (τ(L1), . . . , τ(Lm)). Secondly, it is our intention to show
the increasing wealth of arithmetical structure in three successive extensions of the upper boundB from 105 to 2 ·105, 5 ·105,
and finally 107. There arise increasing 3-class ranks % of K, conductors f divisible by an ascending number of primes, new
types τ(L), and heterogeneous multiplets M(Kf ) = [Mc2d]c|f = [(Lc,1, . . . , Lc,m(c))]c|f with increasing complexity.

2. Construction as subfields of a ring class field

2.1. Structure and multiplicity of cubic discriminants
LetK be a quadratic number field with fundamental discriminant d = dK (square free, except possibly for the 2-contribution).

Definition 2.1. A positive integer f is called a 3-admissible conductor for K, if it has the shape f = 3e · q1 · · · qt with
an integer exponent e ∈ {0, 1, 2}, t ≥ 0, and pairwise distinct prime numbers q1, . . . , qt ∈ P \ {3}, such that the following
conditions are satisfied:

Kronecker symbol
(
d

qi

)
≡ qi (mod 3), for all 1 ≤ i ≤ t,

and

e ∈


{0, 2} if d ≡ ±1 (mod 3),

{0, 1} if d ≡ +3 (mod 9),

{0, 1, 2} if d ≡ −3 (mod 9).

So, a 3-admissible conductor f for K is essentially square free, except possibly for the critical contribution by the prime 3.
The condition involving the Kronecker symbol means that a non-critical prime divisor q 6= 3 of f must remain inert in K,
if q ≡ −1 (mod 3), and must split in K, if q ≡ +1 (mod 3). The critical prime divisor 3 of f is 3-admissible if and only if it
ramifies in K, that is, if d ≡ ±3 (mod 9). Otherwise only the critical prime power divisor 9 of f is 3-admissible. (Recall that
3 remains inert in K if d ≡ −1 (mod 3) and 3 splits in K if d ≡ +1 (mod 3).) So far, all contributions to f are regular. There
is, however, the possibility of an irregular 3-admissible critical prime power divisor 9 of f , when d ≡ −3 (mod 9).

Definition 2.2. An integerD = f2 ·d is called a formal cubic discriminant if f is a 3-admissible conductor for the quadratic
field K with fundamental discriminant d. (Since the square f2 and the fundamental discriminant d are congruent to 0 or 1

modulo 4, this is also the case for a formal cubic discriminant D. We shall see that D is not necessarily discriminant dL of
a cubic field L.)

Note that this definition does not include discriminants dL of cyclic cubic fields Lwhich are perfect squares f2 of conductors
f exactly divisible by primes congruent to 1 modulo 3, and possibly also by the prime power 32. In order to determine the
multiplicity of dL, we need further definitions.

Definition 2.3. An algebraic number α 6= 0 in the quadratic field K is called a 3-virtual unit, if its principal ideal αOK
is the cube j3 of an ideal j of K. Obviously all units η in UK and all third powers α3 6= 0 in (K×)3 are 3-virtual units of K.
Let I denote the group of all 3-virtual units of K, and let K× = K \ {0} denote the multiplication group of K. The F3-vector
space V := I/(K×)3 is called the 3-Selmer space of K.

For any positive integer n and a set X of algebraic numbers, let X(n) be the subset of X consisting of elements coprime
to n. The 3-Selmer space V of K is isomorphic to the direct product of the 3-elementary class group ClK/Cl3K and the
3-elementary unit group UK/U3

K of K [31, p. 2212]. Since any ideal class contains an ideal coprime to an assigned positive
integer n, it follows that ClK = IK/PK ' IK(n)/PK(n), and since trivially UK = UK(n), we have V ' I(n)/K(n)3 [31, Dfn.
2.2, p. 2211].
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Definition 2.4. Let f be a positive integer. Denote by Sf := {α ∈ K | α ≡ 1 (mod f)} the ray modulo f of K, and by
Rf := Q(f) ·Sf the ring modulo f ofK. The subspace V (f) := (I(f)∩Rf ·K(f)3)/K(f)3 of the 3-Selmer space V is called the
3-ring space modulo f of K. Its codimension δ(f) := codim(V (f)) = dimF3

(V/V (f)) is called the 3-defect of f with respect to
K.

In order to enable comparison and binary operations (in particular, intersection) of two different ring spaces V (f) and
V (f ′), we need the concept of a modulus of declaration, that is a positive integer n which is a common multiple of f and
f ′. Then V (f) ' (I(n) ∩Rf ·K(n)3)/K(n)3 and V (f ′) ' (I(n) ∩Rf ′ ·K(n)3)/K(n)3, whence it makes sense to speak about
inclusion and meet.

Remark 2.1. It is possible to avoid the requirement of a modulus of declaration, if the theory of ring spaces is based on the
approach via idèle groups. This has been done by Satgé [37] for prime conductors f = q and will be expanded further by
ourselves for any f in a future paper.

2.2. Homogeneous and heterogeneous multiplets
If f is a 3-admissible conductor with 3-defect δ(f) for a quadratic fieldK with fundamental discriminant d and 3-class rank
%, then the sum of all multiplicities m(D) of formal cubic discriminants D = c2d with c running over all divisors of f is
given by ∑

c|f

m(c2d) =
1

2
(3%f − 1)

in terms of the 3-ring class rank modulo f of K [31, Theorem 2.1, p. 2213],

%f = %+ t+ w − δ(f),

where t := #{q ∈ P \ {3} | vq(f) = 1}, and w is defined in terms of the 3-valuation v3(f) of f ,

w :=


0 if v3(f) = 0,

1 if v3(f) = 1 or [v3(f) = 2 and d ≡ ±1 (mod 3)],

2 if v3(f) = 2 and d ≡ 6 (mod 9).

Definition 2.5. Let f be a 3-admissible conductor for a quadratic field K.

1. For each divisor c of f which is also a 3-admissible conductor for K, the multiplet

Mc2d := (Lc,1, . . . , Lc,m) with m = m(c2d)

is called the homogeneous multiplet of cubic fields Lc,i with discriminant c2d.

2. The multiplet M(Kf ) := [Mc2d]c|f is called the heterogeneous multiplet of the 3-ring class fieldKf modulo f ofK. (The
normal closures of all cubic fields Lc,i with c | f and 1 ≤ i ≤ m(c2d) are subfields of the ring class field Kf .)

3. The family sgn(M(Kf )) := [m(c2d)]c|f of all partial multiplicities associated with f is called the signature of the
heterogeneous multiplet M(Kf ).

D = c2d is only a formal but not an actual cubic discriminant if and only if the multiplicity m(c2d) = 0 vanishes, that is, if
Mc2d = ∅ is a nilet (denoted by the empty set symbol).

Definition 2.6. By the type of the 3-ring class field Kf modulo f of K we understand the following pair (Obj(Kf ), Inv(Kf ))

of heterogeneous multiplets
Obj(Kf ) := M(Kf ) = [(Lc,i)1≤i≤m(c2d)]c|f

Inv(Kf ) := τ(M(Kf )) = [(τ(Lc,i))1≤i≤m(c2d)]c|f
(1)

consisting of all non-cyclic cubic fields Lc,i with discriminants c2d dividing f2d as objects and their differential principal
factorization types τ(Lc,i) as invariants.
(See [33,34] and the next section Section 3.)

3



D. C. Mayer / Electron. J. Math. 1 (2021) 1–40 4

2.3. Algorithmic process of construction
The computational technique which will be employed for the construction of totally real cubic fields in the sections Sections
4, 5, 6, and 7 consists of two steps. For an assigned real quadratic field K with fundamental discriminant d and a 3-
admissible conductor f for K, initially all cyclic cubic extensions N/K with conductor f are constructed as subfields of
the ray class field modulo f of K. Then the members N of this family are tested for their absolute automorphism group
G = Gal(N/Q), and only those with G ' S3 are permitted to pass the filter. As a double check, we additionally make sure
that the non-Galois subfields L < N have the required discriminant dL = f2 ·d, and thus N is subfield of Kf , the ring class
field modulo f of K, which is contained in the ray class field modulo f of K. The result is the multiplet Mf2d, because the
fields N are certainly not subfields of Kc for proper divisors c of f .

Before we apply this algorithm, however, we have to introduce the concept of differential principal factorizations (DPF)
in section Section 3.

3. Differential principal factorization types

Our intention in this section is to prepare sound foundations for the concept of differential principal factorization (DPF)
types and to establish a common theoretical framework for the classification

• of dihedral fields N/Q of degree 2p with an odd prime p, viewed as subfields of suitable p-ring class fields over a
quadratic field K (see the left part of Figure 1), and

• of pure metacyclic fields N = K( p
√
D) of degree (p − 1) · p with an odd prime p, viewed as Kummer extensions of a

cyclotomic field K = Q(ζp) (see the right part of Figure 1),

by the following arithmetical invariants:

1. the Fp-dimensions of subspaces of the space PN/K/PK of primitive ambiguous principal ideals, which are also called
differential principal factors, of N/K,

2. the capitulation kernel ker(TN/K) of the transfer homomorphism TN/K : Clp(K) → Clp(N), aPK 7→ (aON )PN , of
p-classes from K to N , and

3. the Galois cohomology Ĥ0(G,UN ), H1(G,UN ) of the unit group UN as a module over the cyclic automorphism group
G = Gal(N/K) ' Cp.

u
Q
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��

��

[K : Q] = 2

u
K = Q(

√
d)

quadratic field
[L : Q] = p

cyclic extension

eL
L1, . . . , Lp−1

p conjugates �
��

�
��

uN = L ·K
dihedral field
of degree 2p

u
Q

rational field ��
��

��

[K : Q] = p− 1

u u
K = Q(ζp)

cyclotomic field
[L : Q] = p

6

intermediate
fields

?
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eL = Q( p
√
D)

L1, . . . , Lp−1

p conjugates �
��

�
��e uN = L ·K

metacyclic field
of degree (p− 1)p

Figure 1: Dihedral and metacyclic situation.

3.1. Primitive ambiguous ideals
Let p ≥ 2 be a prime number, and N/K be a relative extension of number fields with degree p (not necessarily Galois).

Definition 3.1. The group IN of fractional ideals of N contains the subgroup of ambiguous ideals of N/K, denoted by the
symbol IN/K := {A ∈ IN | Ap ∈ IK}. The quotient IN/K/IK is called the Fp-vector space of primitive ambiguous ideals of
N/K. (Cfr. [33, Dfn. 3.1, p. 1991].)
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Proposition 3.1. Let L1, . . . ,Lt be the totally ramified prime ideals of N/K, then a basis and the dimension of the space
IN/K/IK over Fp are finite and given by

IN/K/IK '
t∏
i=1

(〈Li〉/〈Lpi 〉) ' Ftp, dimFp(IN/K/IK) = t, (2)

whereas IN/K is an infinite Abelian group containing IK .

Proof. According to the definition of IN/K , the quotient IN/K/IK is an elementary Abelian p-group. By the decomposition
law for prime ideals of K in N , the space IN/K/IK is generated by the totally ramified prime ideals (with ramification
index e = p) of N/K, that is to say IN/K = 〈L ∈ PN | Lp ∈ PK〉IK . According to the theorem on prime ideals dividing the
discriminant, the number t of totally ramified prime ideals L1, . . . ,Lt of N/K is finite.

If L is another subfield of N such that N = L ·K is the compositum of L and K, and N/L is of degree q coprime to p,
then the relative norm homomorphism NN/L induces an epimorphism

NN/L : IN/K/IK → IL/F /IF , (3)

where F := L∩K denotes the intersection ofL andK in Figure 2. Thus, by the isomorphism theorem (see also [33, Theorem
4.2, pp. 1995–1996]), we have proved:

Theorem 3.1. There are the following two isomorphisms between finite Fp-vector spaces:

(IN/K/IK)/ ker(NN/L) ' IL/F /IF (quotient),
IN/K/IK ' (IL/F /IF )× ker(NN/L) (direct product).

(4)

u
F = L ∩K

base field ��
�
��
�

[K : F ] = q

u
K

field of degree q
[L : F ] = p

uLfield of degree p ��
��

��
uN = L ·K

compositum of degree p · q

Figure 2: Hasse subfield diagram of N/F .

Definition 3.2. Since the relative different of N/K is essentially given by DN/K =
∏t
i=1 Lp−1i [33, Theorem 3.2, p. 1993],

the space IN/K/IK '
∏t
i=1 (〈Li〉/〈Lpi 〉) of primitive ambiguous ideals of N/K is also called the space of differential factors

of N/K. The two subspaces in the direct product decomposition of IN/K/IK in formula (4) are called
• subspace IL/F /IF of absolute differential factors of L/F , and
• subspace ker(NN/L) of relative differential factors of N/K.

3.2. Splitting off the norm kernel
The second isomorphism in formula (4) gives rise to a dichotomic decomposition of the space IN/K/IK of primitive
ambiguous ideals of N/K into two components, whose dimensions can be given under the following conditions:

Theorem 3.2. Let p ≥ 3 be an odd prime and put q = 2. Among the prime ideals of L which are totally ramified over
F , denote by p1, . . . , ps those which split in N , piON = PiP

′
i for 1 ≤ i ≤ s, and by q1, . . . , qn those which remain inert in

N , qjON = Qj for 1 ≤ j ≤ n. Then the space IN/K/IK of primitive ambiguous ideals of N/K is the direct product of the
subspace IL/F /IF of absolute differential factors of L/F and the subspace ker(NN/L) of relative differential factors

5
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of N/K, whose bases and dimensions over Fp are given by

IL/F /IF '
s∏
i=1

(〈pi〉/〈ppi 〉)×
n∏
j=1

(〈qj〉/〈qpj 〉) ' Fs+np , dimFp(IL/F /IF ) = s+ n,

ker(NN/L) '
s∏
i=1

(
〈Pi(P

′
i)
p−1〉/〈(Pi(P

′
i)
p−1)p〉

)
' Fsp, dimFp(ker(NN/L)) = s.

(5)

Consequently, the complete space of differential factors has dimension dimFp(IN/K/IK) = n+ 2s.

Proof. Whereas the qualitative formula (4) is valid for any prime p ≥ 2 and any integer q > 1 with gcd(p, q) = 1, the
quantitative description of the norm kernel ker(NN/L) is only feasible if we put q = 2 and therefore have to select an odd
prime p ≥ 3. Replacing N by L and K by F in formula (2), we get t = n+ s and thus the first isomorphism of formula (5).
For N and K, however, we obtain t = n + 2s. We point out that, if s = 0, that is, if none of the totally ramified primes of
L/F splits in N , then the induced norm mapping NN/L in formula (3) is an isomorphism. For the constitution of the norm
kernel, see [33, Theorem 3.4 and Cor. 3.3(3), p. 1994].

3.3. Primitive ambiguous principal ideals
The preceding result concerned primitive ambiguous ideals ofN/K, which can be interpreted as ideal factors of the relative
different DN/K . Formula (2) and Theorem 3.2 show that the Fp-dimension of the space IN/K/IK increases indefinitely with
the number t of totally ramified prime ideals of N/K.
Now we restrict our attention to the space PN/K/PK of primitive ambiguous principal ideals or differential principal
factors (DPF) of N/K. We shall see that fundamental constraints from Galois cohomology prohibit an infinite growth of
its dimension over Fp, for quadratic base fields K.

3.4. Splitting off the capitulation kernel
We have to cope with a difficulty which arises in the case of a non-trivial class group ClK = IK/PK > 1, because then
PN/K/PK cannot be viewed as a subgroup of IN/K/IK . Therefore we must separate the capitulation kernel of N/K, that
is the kernel of the transfer homomorphism TN/K : ClK → ClN , a · PK 7→ (aON ) · PN , which extends classes of K to classes
of N :

ker(TN/K) = {a · PK | (∃A ∈ N) aON = AON} = (IK ∩ PN )/PK . (6)

On the one hand, ker(TN/K) = (IK ∩ PN )/PK is a subgroup of IK/PK = ClK , consisting of capitulating ideal classes of K.
On the other hand, since IK ≤ IN/K consists of ambiguous ideals of N/K, ker(TN/K) = (IK ∩ PN )/PK is a subgroup of
PN/K/PK , consisting of special primitive ambiguous principal ideals of N/K, and we can form the quotient

(PN/K/PK)/
(
(IK ∩ PN )/PK

)
' PN/K/(IK ∩ PN ) = PN/K/(IK ∩ PN/K) ' (PN/K · IK)/IK . (7)

This quotient relation of Fp-vector spaces is equivalent to a direct product relation

PN/K/PK ' (PN/K · IK)/IK × ker(TN/K). (8)

Since (PN/K · IK)/IK ≤ IN/K/IK is an actual inclusion, the factorization of IN/K/IK in formula (4) restricts to a factor-
ization

(PN/K · IK)/IK ' (PL/F /PF )×
(

ker(NN/L) ∩
(
(PN/K · IK)/IK

))
, (9)

provided that F is a field with trivial class group ClF , that is IF = PF and thus PL/F /PF ≤ IL/F /IF . Combining the
formulas (8) and (9) for the rational base field F = Q , we obtain:

Theorem 3.3. There is a trichotomic decomposition of the space PN/K/PK of differential principal factors of N/K into
three components,

PN/K/PK ' PL/Q/PQ ×
(

ker(NN/L) ∩
(
(PN/KIK)/IK

))
× ker(TN/K), (10)

• the absolute principal factors, PL/Q/PQ, of L/Q,
• the relative principal factors, ker(NN/L) ∩

(
(PN/KIK)/IK

)
, of N/K, and

• the capitulation kernel, ker(TN/K), of N/K.

6
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3.5. Galois cohomology
In order to establish a quantitative version of the qualitative formula (10), we suppose that N/K is a cyclic relative exten-
sion of odd prime degree p and we use the Galois cohomology of the unit group UN as a module over the automorphism
group G = Gal(N/K) = 〈σ〉 ' Cp. In fact, we combine a theorem of Iwasawa [20] on the first cohomology H1(G,UN ) with a
theorem of Hasse [13] on the Herbrand quotient of UN [18], and we use Dirichlet’s theorem on the torsion-free unit rank
of K. By EN/K = UN ∩ ker(NN/K) we denote the group of relative units of N/K.

H1(G,UN ) ' EN/K/Uσ−1N ' PN/K/PK (Iwasawa),
Ĥ0(G,UN ) ' UK/NN/K(UN ), with (UK : NN/K(UN )) = pU , 0 ≤ U ≤ r1 + r2 − θ,

#H1(G,UN )

#Ĥ0(G,UN )
= [N : K] = p (Hasse),

(11)

where (r1, r2) is the signature of K, and θ = 0 if K contains the pth roots of unity, but θ = 1 else.

Corollary 3.1. If N/K is cyclic of odd prime degree p ≥ 3, then the Fp-dimensions of the spaces of differential principal
factors in Theorem 3.3 are connected by the fundamental equation

U + 1 = A+R+ C, where (12)

• A := dimFp(PL/Q/PQ) is the dimension of absolute principal factors,
• R := dimFp

(
ker(NN/L) ∩

(
(PN/KIK)/IK

))
is the dimension of relative principal factors, and

• C := dimFp(ker(TN/K)) is the dimension of the capitulation kernel.

Corollary 3.2. Under the assumptions p ≥ 3, q = 2 of Theorem 3.1, in particular forN dihedral of degree 2p, the dimensions
in Corollary 3.1 are bounded by the following fundamental estimates

0 ≤ A ≤ min(n+ s,m), 0 ≤ R ≤ min(s,m), 0 ≤ C ≤ min(%p,m), (13)

where %p := rankp(ClK), and m := 1 + r1 + r2 − θ denotes the cohomological maximum of U + 1. In particular, we have
m = 2 for real quadratic K with (r1, r2) = (2, 0) or K = Q(

√
−3) if p = 3,

m = 1 for imaginary quadratic K with (r1, r2) = (0, 1), except for K = Q(
√
−3) when p = 3.

Remark 3.1. For N pure metacyclic of degree (p − 1)p, the space PL/Q/PQ of absolute principal factors contains the one-
dimensional subspace ∆ = 〈 p

√
D〉 generated by the radicals, and thus

1 ≤ A ≤ min(t,m), 0 ≤ R ≤ m− 1, 0 ≤ C ≤ min(%p,m− 1), (14)

where m = p+1
2 for cyclotomic K with (r1, r2) = (0, p−12 ). In particular, there is no capitulation, C = 0, for a regular prime p

with %p = 0, for instance p < 37.

Remark 3.2. We mentioned that in general PN/K/PK cannot be viewed as a subgroup of IN/K/IK . In fact, for a dihedral
field N which is unramified with conductor f = 1 over K, we have n = s = 0, consequently A = R = 0, and IN/K/IK ' 0 is
the nullspace, whereas PN/K/PK ' ker(TN/K) is at least one-dimensional, according to Hilbert’s Theorem 94 [19], and at
most two-dimensional by the estimate C ≤ min(%p,m) ≤ min(%p, 2) ≤ 2.

In the next two sections, we apply the results of Sections 3.1 – 3.5 to various extensions N/K.

3.6. Differential principal factorization (DPF) types of complex dihedral fields
Let p be an odd prime. We recall the classification theorem for pure cubic fields L = Q( 3

√
D) and their Galois closure

N = Q(ζ3,
3
√
D), that is the metacyclic case p = 3. The coarse classification of N according to the cohomological invariants

U and A alone is closely related to the classification of simply real dihedral fields of degree 2p with any odd prime p by
Nicole Moser [36, Dfn. III.1 and Prop. III.3, p. 61], as illustrated in Figure 3. The coarse types α and β are completely
analogous in both cases. The additional type γ is required for pure cubic fields, because there arises the possibility that
the primitive cube root of unity ζ3 occurs as relative normNN/K(Z) of a unit Z ∈ UN . Due to the existence of radicals in the
pure cubic case, the Fp-dimension A of the vector space of absolute DPF exceeds the corresponding dimension for simply
real dihedral fields by one.
The fine classification of N according to the invariants U , A, R and C in the simply real dihedral situation with U + 1 =

A+R + C splits type α with A = 0 further in type α1 with C = 1 (capitulation) and type α2 with R = 1 (relative DPF). In
the pure cubic situation, however, no further splitting occurs, since C = 0, and R = U + 1 − A is determined uniquely by
U and A already. We oppose the two classifications in the following theorems.

7
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Figure 3: Classification of simply real dihedral and pure cubic fields.

Theorem 3.4. Each simply real dihedral field N/Q of absolute degree [N : Q] = 2p with an odd prime p belongs to
precisely one of the following 3 differential principal factorization types, in dependence on the triplet (A,R,C):

Type U U + 1 = A+R+ C A R C

α1 0 1 0 0 1

α2 0 1 0 1 0

β 0 1 1 0 0

Proof. Consequence of Cor. 3.1 and 3.2. See [36, Dfn. III.1 and Prop. III.3, p. 61] and [26].

Theorem 3.5. Each pure metacyclic field N = Q(ζ3,
3
√
D) of absolute degree [N : Q] = 6 with cube free radicand D ∈ Z,

D ≥ 2, belongs to precisely one of the following 3 differential principal factorization types, in dependence on the invariant U
and the pair (A,R):

Type U U + 1 = A+R A R

α 1 2 1 1

β 1 2 2 0

γ 0 1 1 0

Proof. A part of the proof is due to Barrucand and Cohn [4] who distinguished 4 different types, I=̂β, II, III=̂α, and IV=̂γ.
However, Halter-Koch [12] showed the impossibility of one of these types, namely type II. Our new proof with different
methods is given in [3, Theorem 2.1, p. 254].

3.7. Differential principal factorization (DPF) types of real dihedral fields
Now we state the classification theorem for pure quintic fields L = Q( 5

√
D) and their Galois closure N = Q(ζ5,

5
√
D), that is

the metacyclic case p = 5. The coarse classification of N according to the invariants U and A alone is closely related to the
classification of totally real dihedral fields of degree 2p with any odd prime p by Nicole Moser [36, Theorem III.5, p. 62],
as illustrated in Figure 4. The coarse types α, β, γ, δ, ε are completely analogous in both cases. Additional types ζ, η, ϑ
are required for pure quintic fields, because there arises the possibility that the primitive fifth root of unity ζ5 occurs as
relative norm NN/K(Z) of a unit Z ∈ UN . Due to the existence of radicals in the pure quintic case, the Fp-dimension A of
the vector space of absolute DPF exceeds the corresponding dimension for totally real dihedral fields by one (see Remark
3.1).
The fine classification of N according to the invariants U , A, R and C in the totally real dihedral situation with U + 1 =

A + R + C splits type α with U = 1, A = 0 further in type α1 with C = 2 (double capitulation), type α2 with C = R = 1

(mixed capitulation and relative DPF), type α3 with R = 2 (double relative DPF), type β with U = A = 1 in type β1 with
C = 1 (capitulation), type β2 with R = 1 (relative DPF), and type δ with U = A = 0 in type δ1 with C = 1 (capitulation),
type δ2 with R = 1 (relative DPF). In the pure quintic situation with U + 1 = A + I + R [33], however, we arrive at the
second of the following theorems where we oppose the two classifications.

Theorem 3.6. Each totally real dihedral field N/Q of absolute degree [N : Q] = 2p with an odd prime p belongs to
precisely one of the following 9 differential principal factorization types, in dependence on the invariant U and the triplet
(A,R,C).

8
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Figure 4: Classification of totally real dihedral and pure quintic fields.

Type U U + 1 = A+R+ C A R C

α1 1 2 0 0 2

α2 1 2 0 1 1

α3 1 2 0 2 0

β1 1 2 1 0 1

β2 1 2 1 1 0

γ 1 2 2 0 0

δ1 0 1 0 0 1

δ2 0 1 0 1 0

ε 0 1 1 0 0

Proof. Consequence of the Corollaries 3.1 and 3.2. See also [36, Theorem III.5, p. 62] and [26].

Theorem 3.7. Each pure metacyclic field N = Q(ζ5,
5
√
D) of absolute degree [N : Q] = 20 with 5-th power free radicand

D ∈ Z, D ≥ 2, belongs to precisely one of the following 13 differential principal factorization types, in dependence on the
invariant U and the triplet (A, I,R).

Type U U + 1 = A+ I +R A I R

α1 2 3 1 0 2

α2 2 3 1 1 1

α3 2 3 1 2 0

β1 2 3 2 0 1

β2 2 3 2 1 0

γ 2 3 3 0 0

δ1 1 2 1 0 1

δ2 1 2 1 1 0

ε 1 2 2 0 0

ζ1 1 2 1 0 1

ζ2 1 2 1 1 0

η 1 2 2 0 0

ϑ 0 1 1 0 0

The types δ1, δ2, ε are characterized additionally by ζ5 6∈ NN/K(UN ), and the types ζ1, ζ2, η by ζ5 ∈ NN/K(UN ).

Proof. The proof is given in [33, Theorem 6.1].

Remark 3.3. Our classification of totally real dihedral fields in Theorem 3.6 refines the classification by Moser [36] who
uses the results on integral representations of the dihedral group Dp by Lee [21]. She denotes by b = (UK : NN/K(UN )) the
unit norm index and obtains UN = UK · EN/K as a split extension (direct product) of UK by EN/K for b = p (types α, β, γ),
and (UN : UK ·EN/K) = p as a non-split extension (of modules over Z[Dp]) for b = 1 (types δ, ε), due to a non-trivial relation
NN/K(H) = H1+σ+...+σp−1

= η for the fundamental unit η of K and a unit H ∈ UN \ (UK · EN/K).

9
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For p = 3, a geometric interpretation of the unit lattice in logarithmic space, i.e., the Dirichlet-Minkowski image of UN ,
has been given by Hasse [15,16].

4. Classifying Angell’s range 0 < dL < 100 000

In Table 1 and all the following tables, we present the results of our classification of totally real cubic fields L and their
normal closures N into differential principal factorization types τ(L) = τ(N). The rows correspond to the numerous steps
where we applied our algorithm (Section 2.3) to various configurations of 3-class rank %3 of the real quadratic subfield K
of N and 3-admissible conductors f of N/K. Here, d denotes the fundamental discriminant of K, and q, q1, q2, respectively
`, `1, `2, denote prime numbers congruent to 2, respectively 1 modulo 3. In Table 1, the types α2 and α3 do not yet occur.

Table 1: Totally real cubic discriminants dL = f2 · d in the range 0 < dL < 105.

Multiplicity Differential Principal Factorization
f Condition 0 1 2 3 4 α1 β1 β2 γ δ1 δ2 ε Total
1 %3 = 0 27089 0

q ≡ 2 (mod 3) 2219 806 806 806

3 d ≡ 3 (mod 9) 287 109 109 109

3 d ≡ 6 (mod 9) 284 105 105 105

9 d ≡ 6 (mod 9) 9 38 1 41 41

9 d ≡ 2 (mod 3) 102 34 34 34

9 d ≡ 1 (mod 3) 96 31 8 20 3 31

` ≡ 1 (mod 3) 316 86 20 59 7 86

q1q2 30 38 2 38 4 42

3q d ≡ 3 (mod 9) 23 23 23 23

3q d ≡ 6 (mod 9) 19 25 1 25 2 27

9q d ≡ 6 (mod 9) 4 1 9 2 11

9q d ≡ 2 (mod 3) 6 8 8 8

9q d ≡ 1 (mod 3) 5 10 10 10

q` 13 29 1 29 2 31

3` d ≡ 3 (mod 9) 1 5 5 5

3` d ≡ 6 (mod 9) 2 3 3 3

9` d ≡ 2 (mod 3) 1 1 1

3q1q2 d ≡ 3 (mod 9) 1 1 3 3

1 %3 = 1 3300 3300 3300

q ≡ 2 (mod 3) 261 14 4 36 2 42

3 d ≡ 3 (mod 9) 27 0

3 d ≡ 6 (mod 9) 34 1 3 3

9 d ≡ 6 (mod 9) 1 0

9 d ≡ 2 (mod 3) 6 0

9 d ≡ 1 (mod 3) 10 0

` ≡ 1 (mod 3) 25 3 3 6 9

q1q2 1 0

3q d ≡ 3 (mod 9) 1 0

3q d ≡ 6 (mod 9) 1 1 3 3

9q d ≡ 1 (mod 3) 1 0

1 %3 = 2 5 16 4 20

Summary 4652 9 21 5 16 10 76 106 3349 79 1117 4753

According to Table 1, the number of non-cyclic totally real cubic fields L with discriminant 0 < dL < 105 is 4753, in
perfect accordance with the results by Llorente and Oneto [22,23], who discovered the ommission of ten fields in the table
by Angell [1, 2]. Together with 51 cyclic cubic fields in Table 2, the total number is 4804 (rather than 4794, as announced
erroneously in [2]).
According to Table 2, the number of cyclic cubic fields L with discriminant 0 < dL < 105 is 51, with 31 arising from singlets
having conductors f with a single prime divisor, and 20 from doublets having two prime divisors of the conductor f . (M
denotes the multiplicity.)

10
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Table 2: Cyclic cubic discriminants dL = f2 in the range 0 < dL < 105.

M DPF f dL
f Condition 1 2 ζ

9 d = 1 1 1 9 81

` ≡ +1 (mod 3) 30 30 7 49

9` d = 1 4 8 63 3 969

`1`2 ≡ +1 (mod 3) 6 12 91 8 281

Summary 31 10 51

Although we have given a succinct survey of the DPF types of all multiplets in Angell’s range 0 < dL < 105 in the conclu-
sion of [35], we arrange them again in a more ostensive tabular form with absolute frequency and minimal discriminant
dL = f2 · d.

All doublets in Table 3 are pure. In bigger ranges, there will also occur mixed doublets, e.g. in Table 19. The corre-
sponding 3-class rank is always % = 0.

Table 3: Types of doublets in the range 0 < dL < 105.

DPF Type Frequency d f dL
(τ(L1), τ(L2))

(γ, γ) 4 33 45 66 825

(ε, ε) 5 373 10 37 300

Total: 9

The triplets with % = 1 in Table 4 have been partially classified in a coarse sense by Schmithals in 1985 [38]. He merely
decided whether capitulation occurs or not, indicating C = 1 by the symbol “+” and C = 0 by “−”. This admits the detection
of type ε but fails to distinguish between the types β1 and δ1.

Table 4: Types of triplets in the range 0 < dL < 105.

DPF Type Frequency d f dL
% (τ(L1), . . . , τ(L3))

0 (γ, γ, γ) 1 69 18 22 356

0 (ε, ε, ε) 1 717 9 58 077

1 (β1, β1, β1) 1 1 509 6 54 324

1 (β1, β1, ε) 2 14 397 2 57 588

1 (β1, δ1, δ1) 3 1 765 7 86 485

1 (δ1, δ1, δ1) 13 7 053 2 28 212

Total: 21

The quartets in Table 5 belong to unramified cyclic cubic extensions of quadratic fields with % = 2. In fact, they have been
classified by Heider and Schmithals in 1982 [17, p. 24]. In 2006, respectively 2008, respectively 2009, we have detected the
remaining capitulation numbers ν(K) = 0, respectively 1, respectively 2, which show up in Table 16. See [29,32].

4.1. Numerical results by Nicole Moser
In her paper [36] on the units UN and class groups ClN of dihedral fields N of degree 2p with an odd prime p, Nicole Moser
has given a small table [36, V.4, pp. 72–73] of 34 totally real cubic fields L with discriminants 0 < dL < 1500 in order to
illustrate her (coarse) classification by concrete examples for p = 3. She found 26 fields of type δ, unramified with conductor
f = 1, without exceptions, and thus more precisely of our finer type δ1. The frequency 26

34 ≈ 76% corresponds to Angell’s
3349
4753 ≈ 70%. Discriminants dL = 12 · d = d are

229, 257, 316, 321, 469, 473, 568, 697, 733, 761, 785, 892, 940, 985, 993,

1016, 1101,1129, 1229, 1257, 1304, 1345, 1373, 1384, 1436, 1489.
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Table 5: Types of quartets in the range 0 < dL < 105.

DPF Type Capitulation Number ν(K) Frequency dL = d

(τ(L1), . . . , τ(L4)) (according to [8])
(α1, α1, α1, α1) 4 1 62 501

(α1, α1, α1, δ1) 3 4 32 009

Total: 5

In fact, each of the normal closures N of degree 3 over its quadratic subfield K is precisely the Hilbert 3-class field F1
3(K)

of K, with one exception d = 1129, where K has class number 9. Here, Moser’s table entries a = 9, hN = 9 are incorrect
and must be replaced by a = 3, hN = 3. She uses two invariants, the index of subfield units a = (UN : (UK · UL · ULσ )) in
Formula (16), and the unit norm index b = (UK : NN/K(UN )) in Remark 3.3 for her characterization of the types α, β, γ, δ, ε.

Among the remaining 8 fields, one is of type γ with d = 21 ≡ 3 (mod 9), f = 2 · 3, dL = 62 · 21 = 756, and seven are of
type ε. Among the latter, five have f = 2 and d ∈ {37, 101, 141, 197, 269}, dL ∈ {148, 404, 564, 788, 1076}, two have f = 3 and
d = 69 ≡ 6 (mod 9), dL = 621, respectively d = 93 ≡ 3 (mod 9), dL = 837. The frequency 7

34 ≈ 21% corresponds to Angell’s
1117
4753 ≈ 24%.

However, it must be pointed out that 4 fields are missing: one is of type γ with d = 13, f = 2 · 5, dL = 102 · 13 = 1300,
and three are of type ε with d = 349, f = 2, dL = 1396, respectively d = 57, f = 5, dL = 1425, respectively d = 373, f = 2,
dL = 1492.

On the other hand, it is very instructive that there is also a superfluous field: although f = 2 is a 3-admissible conductor
for d = 229, since 2 remains inert in K = Q(

√
d), D = 22 · d = 4 · 229 = 916 is only a formal cubic discriminant, because

the defect of 2 is δ(2) = 1. So M4d = ∅ is a nilet, and the given polynomial X3 −X2 − 6X + 4 generates the cubic field with
conductor f = 1 and discriminant dL = 229. In this case, Moser is uncertain whether the type of the hypothetical cubic
field with discriminant 916 is ε or γ. Type γ, however, is never possible for a field with prime conductor, such as f = 2.
Since % = 1 for d = 229, the types β1, δ1 and ε would be possible, but Moser’s claim a = 9 discourages types β1 and δ1. It is
mysterious how she determined the invariant a for a non-existent field without knowing the class number hN . In view of
the errors in Moser’s table, it is worth ones while to state a summarizing theorem which also pays attention to the modest
contribution by cyclic cubic fields. Cutting off Table 1 at dL = 1500 we obtain:

Theorem 4.1. Among the 44 totally real cubic fields L with discriminants 0 < dL < 1500, there are 2 (4%) of type γ, 26

(59%) of type δ1, and 10 (23%) of type ε. These 38 non-Galois cubic fields are complemented by 6 (14%) cyclic cubic fields with
conductors f ∈ {7, 9, 13, 19, 31, 37}. With respect to the multiplicity m, all 44 fields form singlets with m = 1.

Obviously, Moser was not in possession of Angell’s UMT [1], otherwise she would have been able to detect the gaps in
her table. She rather refers to an unpublished table by René Smadja.

Outside of the range 0 < dL < 1500, Moser gives an example of a field with type β, more precisely our finer type β2, for
d = 29, f = 2 · 7, dL = 142 · 29 = 5684. The conductor is divisible by the prime 7 which splits in K, as required for type β2.

Moser did not know any examples of her type α. From Table 5 we know that the minimal discriminant of such a field
is 32009, discovered by Heider and Schmithals [17]. Due to f = 1 it is more precisely our finer type α1. See Theorem 8.2
and Example 8.4.

5. Update of our 1991 classification for 0 < dL < 200 000

As announced in [35], Table 1 with 0 < dL < 105 was completed on Tuesday, 29 December 2020. One week later, on
Tuesday, 05 January 2021, we finished the updated Table 6 containing the revised classification of all totally real cubic
fields L with discriminants 0 < dL < 2 · 105, which we had investigated in August 1991 [27].
According to Table 6, the total number of all non-cyclic totally real cubic fields L with discriminants d < 2 · 105 is 9945.
Together with 70 cyclic cubic fields in Table 7 the number is 10015,
According to Table 7, the number of cyclic cubic fields L with discriminant 0 < dL < 2 · 105 is 70, with 42 arising from
singlets having conductors f with a single prime divisor, and 28 from doublets having two prime divisors of the conductor
f . (M denotes the multiplicity.)

As predicted in the introduction, several fields of type β2 were unduly classified as type δ2, since Voronoi’s algorithm [40]
did not find any absolute principal factors along the chains of lattice minima. Since the table [27, p. 3] accumulates
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Table 6: Totally real cubic discriminants dL = f2 · d in the range 0 < dL < 2 · 105.

Multiplicity Differential Principal Factorization
f Condition 0 1 2 3 4 α1 α3 β1 β2 γ δ1 δ2 ε Total
1 %3 = 0 53848 0

q ≡ 2 (mod 3) 4338 1656 1656 1656

3 d ≡ 3 (mod 9) 551 221 221 221

3 d ≡ 6 (mod 9) 561 222 222 222

9 d ≡ 6 (mod 9) 22 68 3 77 77

9 d ≡ 2 (mod 3) 192 74 74 74

9 d ≡ 1 (mod 3) 184 71 17 48 6 71

` ≡ 1 (mod 3) 624 196 45 140 11 196

q1q2 65 66 2 66 4 70

3q d ≡ 3 (mod 9) 45 46 1 46 2 48

3q d ≡ 6 (mod 9) 35 45 6 45 12 57

9q d ≡ 6 (mod 9) 8 1 15 4 19

9q d ≡ 2 (mod 3) 15 16 16 16

9q d ≡ 1 (mod 3) 10 20 20 20

q` 30 57 3 56 1 6 63

3` d ≡ 3 (mod 9) 4 9 9 9

3` d ≡ 6 (mod 9) 6 5 5 5

9` d ≡ 2 (mod 3) 1 3 3 3

9` d ≡ 1 (mod 3) 1 1 1

q1q2q3 1 2 2

3q1q2 d ≡ 3 (mod 9) 1 1 3 3

3q1q2 d ≡ 6 (mod 9) 1 2 2

9q1q2 d ≡ 1 (mod 3) 1 1 1

q1q2` 1 2 2

3q` d ≡ 3 (mod 9) 1 2 2

1 %3 = 1 6924 6924 6924

q ≡ 2 (mod 3) 576 28 12 68 4 84

3 d ≡ 3 (mod 9) 66 2 2 3 1 6

3 d ≡ 6 (mod 9) 63 2 6 6

9 d ≡ 6 (mod 9) 3 0

9 d ≡ 2 (mod 3) 16 1 3 3

9 d ≡ 1 (mod 3) 20 0

` ≡ 1 (mod 3) 51 5 4 10 1 15

q1q2 3 0

3q d ≡ 3 (mod 9) 3 0

3q d ≡ 6 (mod 9) 4 1 3 3

9q d ≡ 1 (mod 3) 2 0

1 %3 = 2 16 50 14 64

Summary 9702 25 43 16 50 1 21 155 201 7028 188 2301 9945

Table 7: Cyclic cubic discriminants dL = f2 in the range 0 < dL < 2 · 105.

M DPF
f Condition 1 2 ζ

9 d = 1 1 1

` ≡ 1 (mod 3) 41 41

9` d = 1 6 12

`1`2 ≡ 1 (mod 3) 8 16

Summary 42 14 70
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information on conductors with similar behavior and thus has a format different from Table 6, we compile a translation of
critical rows in both tables, subtracting contributions by cyclic cubic fields in [27].

Table 8: Accumulation of rows in Table 6 for comparison with [27, p. 3].

Multiplicity Differential Principal Factorization
f Condition 1 2 3 4 α1 α3 β1 β2 γ δ1 δ2 ε Total
9 d ≡ 1 (mod 3), % = 0 71 17 48 6 71

` ≡ 1 (mod 3), % = 0 196 45 140 11 196

Together 267 62 188 17 267

` ≡ 1 (mod 3), % = 1 5 4 10 1 15

Summary 9702 25 43 16 50 1 21 155 201 7028 188 2301 9945

[27] m = 1, t = s = 1, % = 0 267 53 198 16 267

[27] m = 3, t = s = 1, % = 1 5 3 11 1 15

[27] total 9702 25 43 16 50 1 20 146 201 7029 198 2300 9945

Table 8 shows that the failures in [27, p. 3] are located in two rows concerning singlets, respectively triplets, with
conductors f divisible by one prime which splits in the real quadratic field K with 3-class rank % = 0, respectively % = 1,
that is, m = 1, respectively m = 3, and t = s = 1, n = 0. For % = 0, there are 10 fields of type δ2 too much, 9 fields of type β2
too less, and 1 field of type ε too less. They concern [27, Part I, % = 0, Section 3.1–5 and 3.14] and are corrected in Table 9.
For % = 1, there is 1 field of type δ1 too much, which is of correct type β1. Consequently, there is a corresponding erroneous
impact on the row “total”. Wrong counters in [27] are printed with boldface font.

Table 9: Corrections in the range 0 < dL < 2 · 105.

No. dL f Erroneous Type Correct Type
[27] τ(L)

1 96 481 7 δ2 β2
2 98 833 7 β2 ε

3 160 377 7 ε β2
4 179 144 7 δ2 β2
5 130 329 9 β2 ε

6 65 741 13 δ2 β2
7 110 357 13 δ2 β2
8 114 413 13 δ2 β2
9 125 736 13 δ2 β2

10 193 857 19 δ2 β2
11 93 217 31 δ2 β2
12 134 540 31 δ2 β2
13 114 005 151 δ2 β2

We also give arithmetical invariants of the single erroneous triplet explicitly: For d = 568 ≡ 1 (mod 3), f = ` = 13 ≡
1 (mod 3) and dL = f2 · d = 95 992, we have the pure type (δ1, δ1, δ1) in [27, Part III, % = 1, Section 2.2] instead of the correct
type (β1, δ1, δ1), since the Voronoi algorithm did not find an absolute principal factor and we concluded A = 0 instead of the
correct A = 1. In the coarse classification of Schmithals [38], there is no difference between these two types, since both are
characterized by (+,+,+).

5.1. Gain of arithmetical structure for 100 000 < dL < 200 000

Over real quadratic fields K with 3-class rank % = 0, this range brings some most remarkable gains:

1. first doublet for f = 3q, d ≡ 3 (9), and first type (ε, ε) (d = 5 277, q = 2, dL = 189 972),

2. first type γ for f = q` (d = 21, q = 2, ` = 43, f = 86, dL = 155 316, singlet (γ)),

3. first nilet for f = 9`, d ≡ 2 (3) (d = 29, ` = 7, f = 63, D = 115 101),
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4. first occurrence of a conductor divisible by two splitting primes, s = 2, namely f = 9`, d ≡ 1 (3), exploited immediately
by the first occurrence of type α3 which requires s ≥ 2, and consequently the first verification of the Scholz
conjecture with unexpected two-dimensional relative principal factorization instead of two-dimensional capitulation
(d = 37, ` = 7, f = 63, dL = 146 853, singlet (α3), see Theorems 6.2 and 9.2),

5. first occurrence of f = q1q2q3 as a doublet of type (γ, γ) (d = 13, f = 110, dL = 157 300),

6. first occurrence of f = 3q1q2, d ≡ 6 (9), as a doublet of type (γ, γ)

(d = 213, q1 = 2, q2 = 5, f = 30, dL = 191 700),

7. first occurrence of f = 9q1q2, d ≡ 1 (3), as a singlet of type (γ)

(d = 13, q1 = 2, q2 = 5, f = 90, dL = 105 300),

8. first occurrence of f = q1q2` as a doublet of type (γ, γ) (d = 37, f = 70, dL = 181 300),

9. first occurrence of f = 3q`, d ≡ 3 (9), as a doublet of type (γ, γ)

(d = 93, q = 2, ` = 7, f = 42, dL = 164 052).

The following phenomena arise within 3-ring class fields Kf , f > 1, over real quadratic fields K with 3-class rank % = 1:

1. first occurrence of f = 3, d ≡ 3 (9), as triplets containing types β1, δ1, ε
(d = 12 081, dL = 108 729, type (δ1, δ1, δ1), and d = 19 749, dL = 177 741, type (β1, β1, ε)),

2. first occurrence of f = 9, d ≡ 2 (3), as a triplet (δ1, δ1, δ1) (d = 1 901, dL = 153 981),

3. first type ε in a triplet with f = ` (d = 3 873, ` = 7, dL = 189 777, type (δ1, δ1, ε)).

Example 5.1. Heterogeneous multiplets arise from d = 37 with % = 0 and 3-Selmer space V = 〈η〉, where η denotes
the fundamental unit of K = Q(

√
37). For (4), we have a singlet Inv(K63) = [∅; ∅, ∅; (α3)], corresponding to the divisors

(1; 7, 9; 63) of f = 63, since V (7) = V (9) = 0. For (8), we have a quartet Inv(K70) = [∅; (ε), ∅, ∅; ∅, (β2), ∅; (γ, γ)], corresponding
to (1; 2, 5, 7; 10, 35, 14; 70), the divisors of f = 70, since V (2) = V but V (5) = V (7) = 0. Recall that 148 = 22 · 37 is the
well-known minimum of all non-cyclic positive cubic discriminants. Its type is the singlet (ε). The type of 45 325 = 352 · 37

is the singlet (β2). Padding nilets ∅ illuminate the arithmetical structure.

6. Classifying Ennola and Turunen’s range 0 < dL < 500 000

The increasing contributions by new types of conductors f in the range 0 < dL < 5 · 105 enforce a splitting into Table 10
for % = 0 and Table 11 for % ∈ {1, 2}.
According to Table 11, the total number of all non-cyclic totally real cubic fields L with discriminants d < 5 · 105 is 26330.
Together with 110 cyclic cubic fields in Table 12 the number is 26440,
According to Table 12, the number of cyclic cubic fields L with discriminant 0 < dL < 5 · 105 is 110, with 60 arising from
singlets having conductors f with a single prime divisor, and 50 from doublets having two prime divisors of the conductor
f . (M denotes the multiplicity.)

Example 6.1. In Table 10, the second line with conductor f = q, a prime number q ≡ 2 (mod 3), lists 10515 nilets, starting
with the formal cubic discriminant f2 · d = 22 · 5 = 20, which does not belong to an actual cubic field, and 4296 singlets with
minimal discriminant dL = f2 ·d = 22 ·37 = 148 of an actual cubic field L. Theoretical justifications for these facts are given
in [35, Theorem 4.1]: the 3-Selmer space V3 = 〈η〉 of the real quadratic field K = Q(

√
d) is generated by the fundamental

unit η ∈ UK . In the case of a nilet, the 3-ring space mod q, V3(q), is the null space of codimension δ3(q) = 1 in V3, since
η /∈ Oq. In the case of a singlet, we have V3(q) = V3 with defect δ3(q) = 0.

Since minor counting errors have occurred in the tables by Moser, Angell and Llorente/Quer (whereas the table by En-
nola/Turunen was correct), we explicitly state the ultimate counters of totally real cubic fields L in five ranges of discrim-
inants 0 < dL < B with various upper bounds B.

Theorem 6.1. The number of cyclic, respectively non-Galois, respectively all, non-isomorphic totally real cubic fields L with
discriminants in the range 0 < dL < B is given by

1. 6, respectively 38, respectively 44, for B = 1 500,

2. 51, respectively 4 753, respectively 4 804, for B = 100 000,
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Table 10: Totally real cubic discriminants dL = f2 · d in the range 0 < dL < 5 · 105.

Multiplicity Differential Principal Factorization
f Condition 0 1 2 3 4 α1 α3 β1 β2 γ δ1 δ2 ε Total
1 %3 = 0 133534 0

q ≡ 2 (3) 10515 4296 4296 4296

3 d ≡ 3 (9) 1339 573 573 573

3 d ≡ 6 (9) 1364 554 554 554

9 d ≡ 6 (9) 46 166 7 187 187

9 d ≡ 2 (3) 453 197 197 197

9 d ≡ 1 (3) 468 178 45 116 17 178

` ≡ 1 (3) 1530 539 124 374 41 539

q1q2 147 159 10 161 18 179

3q d ≡ 3 (9) 102 107 8 107 16 123

3q d ≡ 6 (9) 89 109 14 109 28 137

9q d ≡ 6 (9) 2 20 3 39 10 49

9q d ≡ 2 (3) 31 41 1 41 2 43

9q d ≡ 1 (3) 30 39 3 39 6 45

q` 83 129 6 125 4 12 141

3` d ≡ 3 (9) 12 20 1 20 2 22

3` d ≡ 6 (9) 11 16 1 16 2 18

9` d ≡ 6 (9) 1 2 2

9` d ≡ 2 (3) 4 8 8 8

9` d ≡ 1 (3) 3 1 1 1

`1`2 1 2 2 2

q1q2q3 1 2 2

3q1q2 d ≡ 3 (9) 2 3 8 8

3q1q2 d ≡ 6 (9) 1 1 3 3

9q1q2 d ≡ 2 (3) 2 2 2

9q1q2 d ≡ 1 (3) 1 1 3 3

q1q2` 1 2 1 4 5

3q` d ≡ 3 (9) 2 1 4 4

3q` d ≡ 6 (9) 2 4 4

9q` d ≡ 2 (3) 1 2 2

Subtotal 7143 77 10 3 380 493 490 5961 7327

3. 70, respectively 9 945, respectively 10 015, for B = 200 000,

4. 110, respectively 26 330, respectively 26 440, for B = 500 000,

5. 501, respectively 592 421, respectively 592 922, for B = 10 000 000.

Proof. See the tables in Sections 4 – 7.

Recall that no examples of the types α2 and α3 occurred in Angell’s range 0 < dL < 105, and type α2 remained unknown
even in Ennola and Turunen’s range 0 < dL < 5·105. Since this problem is intimately connected with the Scholz Conjecture
in Section 9, we now emphasize the following theorem.

Theorem 6.2. The minimal discriminants dL = f2 · d of totally real cubic fields L with conductor f and quadratic funda-
mental discriminant d such that τ(L) is one of the extremely rare differential principal factorization types α3, respectively
α2, are given by

1. 146 853 with f = 63 = 9 · 7, s = 2, and d = 37, % = 0 (unique field in a singlet, m = 1), respectively

2. 966 397 with f = 19, s = 1, and d = 2 677, % = 1 (two of the fields in a triplet, m = 3).

Proof. The unique field L with discriminant 146 853 has been discovered in August 1991 already [27, Part I, % = 0, Section
6.1] and was confirmed in the row with conductor f = 9`, d ≡ 1 (mod 3), of Table 6. According to Theorem 9.2, this field
forms a singlet with DPF type α3.
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Table 11: Table 10 with 0 < dL < 5 · 105 continued for %3 ≥ 1.

Multiplicity Differential Principal Factorization
f Condition 0 1 2 3 4 α1 α3 β1 β2 γ δ1 δ2 ε Total
1 %3 = 1 18378 18378 18378

q ≡ 2 (3) 1603 92 48 213 15 276

3 d ≡ 3 (9) 188 8 7 15 2 24

3 d ≡ 6 (9) 190 6 2 15 1 18

9 d ≡ 6 (9) 17 2 2 3 1 6

9 d ≡ 2 (3) 54 1 3 3

9 d ≡ 1 (3) 53 1 1 2 3

` ≡ 1 (3) 150 8 5 16 3 24

q1q2 15 3 9 9

3q d ≡ 3 (9) 11 2 3 3 6

3q d ≡ 6 (9) 18 2 6 6

9q d ≡ 6 (9) 1 0

9q d ≡ 2 (3) 1 1 3 3

9q d ≡ 1 (3) 3 0

q` 10 1 3 3

3` d ≡ 3 (9) 1 0

3` d ≡ 6 (9) 1 0

1 %3 = 2 61 175 69 244

Subtotal 18378 127 61 175 89 18714 25 19003

Total 25521 77 137 61 175 3 89 380 493 18714 490 5986 26330

Table 12: Cyclic cubic discriminants dL = f2 in the range 0 < dL < 5 · 105.

M DPF
f Condition 1 2 ζ

9 d = 1 1 1

` ≡ 1 (mod 3) 59 59

9` d = 1 9 18

`1`2 ≡ 1 (mod 3) 16 32

Summary 60 25 110

The triplet (L1, L2, L3) with discriminant 966 397 was found by direct search on 19 November 2017. It is now confirmed
by gapless construction in the row with conductor f = ` ≡ 1 (mod 3) for %3 = 1 in Table 14. According to Theorem 9.3, the
DPF type of the triplet is (α2, α2, δ1).

6.1. Gain of arithmetical structure for 200 000 < dL < 500 000

The following new features arise within 3-ring class fields Kf , f > 1, over real quadratic fields K with 3-class rank % = 0,

1. first doublet of type (ε, ε) for f = 9q, d ≡ 2 (3) (d = 1 157, q = 2, dL = 374 868),

2. first doublet of type (ε, ε) for f = 9q, d ≡ 1 (3) (d = 877, q = 2, dL = 284 148),

3. first doublet of type (ε, ε) for f = 3`, d ≡ 3 (9) (d = 597, ` = 7, dL = 263 277),

4. first doublet of type (ε, ε) for f = 3`, d ≡ 6 (9) (d = 1 068, ` = 7, dL = 470 988),

5. first occurrence of f = 9`, d ≡ 6 (9), as a doublet (β2, β2) (d = 60, ` = 7, dL = 238 140),

6. first occurrence of f = `1`2 with s = 2 as singlets of type (α3)

(d = 29, f = 91, dL = 240 149 and d = 8, f = 217, dL = 376 712),

7. first singlet of type (γ) for f = 3q1q2, d ≡ 6 (9) (d = 357, f = 30, dL = 321 300),
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8. first occurrence of f = 9q1q2, d ≡ 2 (3), as singlet of type (γ) (d = 53, f = 90, dL = 429 300),

9. first singlet of type (β2) for f = q1q2` (d = 93, f = 70, dL = 455 700),

10. first singlet of type (γ) for f = 3q`, d ≡ 3 (9) (d = 165, f = 42, dL = 291 060),

11. first occurrence of f = 3q`, d ≡ 6 (9), as doublet of type (γ, γ) (f = 42, dL = 248 724),

12. first occurrence of f = 9q`, d ≡ 2 (3), as doublet of type (γ, γ) (d = 29, dL = 460 404).

The following phenomena arise within 3-ring class fields Kf , f > 1, over K with % = 1:

1. first triplet of type (β1, β1, ε) for f = 3, d ≡ 6 (9) (d = 52 197, dL = 469 773),

2. first occurrence of f = 9, d ≡ 6 (9), as triplet (β1, β1, ε) (d = 5 073, dL = 410 913),

3. first occurrence of f = 9, d ≡ 1 (3), as triplet (β1, δ1, δ1) (d = 2 917, dL = 236 277),

4. first occurrence of f = q1q2, as triplet (β1, β1, β1) (d = 3 173, f = 10, dL = 317 300),

5. first occurrence of f = 3q, d ≡ 3 (9), as triplet (β1, β1, β1) (d = 5 637, f = 6, dL = 202 932),

6. first occurrence of f = 9q, d ≡ 2 (3), as triplet (β1, β1, β1) (d = 1 373, f = 18, dL = 444 852),

7. first occurrence of f = q`, as triplet (β1, β1, β1) (d = 1 101, f = 14, dL = 215 796).

First unramified quartet of type (δ1, δ1, δ1, δ1) for % = 2 (d = dL = 214 712 [29,32]).

7. Classifying Llorente and Quer’s range 0 < dL < 10 000 000

As opposed to the smaller ranges, the extension to Llorente and Quer’s upper bound 107 caused unexpected complications
of two kinds. Firstly, for ramified extensions with conductor f = 2 · 9 = 18, d ≡ 1 (mod 3), at several discriminants
dL = f2 · d > 4 941 972, d > 15 253, %3 = 0, respectively dL = f2 · d > 4 249 908, d > 13 117, %3 = 1. Secondly, for unramified
extensions with f = 1 and %3 = 2, at several discriminants dL = d > 5 547 841. Thus, we were very relieved, when a suitable
work-around admitted the completion of the following most extensive and expensive Tables 13 and 14 on Wednesday, 13
January 2021.
According to Table 14, the total number of all non-cyclic totally real cubic fields L with discriminants d < 107 is 592421.
Together with 501 cyclic cubic fields in Table 15 the number is 592922, in perfect accordance with Belabas [5, p. 1231 and
Table 6.2, p. 1232], one field less than in the table of Llorente and Quer [24] (the unknown needle in a gigantic hay stack).
We emphasize the difference between the number of discriminants (without multiplicities),

559784 + 2231 + 5543 + 2879 + 5 = 570442,

and the number of pairwise non-isomorphic fields (including multiplicities in a weighted sum),

1 · 559784 + 2 · 2231 + 3 · 5543 + 4 · 2879 + 6 · 5 = 559784 + 4462 + 16629 + 11516 + 30 = 592421,

which is confirmed by adding the contributions to the 9 DPF types, α1, α2, α3, β1, β2, γ, δ1, δ2, ε,

7951 + 142 + 122 + 3924 + 7639 + 9420 + 426972 + 11128 + 125123 = 592421.

According to Table 15, the number of cyclic cubic fields L with discriminant 0 < dL < 107 is 501, with 217 arising from
singlets having conductors f with a single prime divisor, 252 from doublets having two prime divisors of the conductor f ,
and 32 from quartets having three prime divisors of the conductor f . (M denotes the multiplicity.)

We point out that cyclic cubic fields are rather contained in ray class fields over Q than in ring class fields over real
quadratic base fields. The single possible DPF type ζ has nothing to do with the 9 DPF types α1, α2, α3, β1, β2, γ, δ1, δ2, ε of
non-Abelian totally real cubic fields in [34].
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Table 13: Totally real cubic discriminants dL = f2 · d in the range 0 < dL < 107.

Multiplicity Differential Principal Factorization
f Condition 0 1 2 3 4 6 α1 α2 α3 β1 β2 γ δ1 δ2 ε

1 %3 = 0 2623325

q ≡ 2 (3) 198952 88925 88925

3 d ≡ 3 (9) 25596 11430 11430

3 d ≡ 6 (9) 25563 11521 11521

9 d ≡ 6 (9) 947 2947 308 3871

9 d ≡ 2 (3) 8669 3846 3846

9 d ≡ 1 (3) 8594 3860 888 2676 296

` ≡ 1 (3) 28591 11937 2768 8252 917

q1q2 2706 3092 429 3140 810

3q d ≡ 3 (9) 1811 2003 305 2038 575

3q d ≡ 6 (9) 1826 1973 318 1997 612

9q d ≡ 6 (9) 58 340 77 1 727 190

9q d ≡ 2 (3) 599 701 89 714 165

9q d ≡ 1 (3) 610 686 84 691 4 34 125

q` 1908 2308 280 2273 68 92 435

3` d ≡ 3 (9) 250 307 28 312 1 11 39

3` d ≡ 6 (9) 254 300 38 301 3 6 66

9` d ≡ 6 (9) 5 47 14 110 26

9` d ≡ 2 (3) 89 105 6 105 12

9` d ≡ 1 (3) 72 89 3 72 19 4

`1`2 60 86 2 50 38 1 1

q1q2q3 6 19 12 43

3q1q2 d ≡ 3 (9) 14 32 51 134

3q1q2 d ≡ 6 (9) 14 25 40 105

9q1q2 d ≡ 6 (9) 5 1 26

9q1q2 d ≡ 2 (3) 4 13 16 45

9q1q2 d ≡ 1 (3) 6 11 14 6 33

q1q2` 13 35 44 20 103

3q` d ≡ 3 (9) 8 27 34 14 81

3q` d ≡ 6 (9) 6 20 24 1 25 44 3

9q` d ≡ 6 (9) 1 3 1 14

9q` d ≡ 2 (3) 2 11 12 7 28

9q` d ≡ 1 (3) 10 11 29 3

q`1`2 6 3 12

3`1`2 d ≡ 3 (9) 1 1

3q1q2` 1 2

Subtotal 146326 2231 400 9 2 122 7620 9353 11076 123865

7.1. Unramified Quartets
According to Theorem 8.2, the 413 458 unramified singlets N/K with conductor f = 1 over quadratic base fields K with 3-
class rank % = %3(K) = 1 form an overwhelming crowd of colorless, monotonous, and boring fields which share the common
type δ1.

In contrast, the 2870 unramified quartetsN/K over quadratic fieldsK with % = 2 show an interesting statistical dis-
tribution of types. We consider the type (τ(L1), . . . , τ(L4)) of a quartet (L1, . . . , L4) as ordered lexicographically, regardless
of permutations. Smallest d see Table 16.

As known from [29] and [32], the 2391 quartets of mixed type (α1, α1, α1, δ1) are extremely dominating with a relative
frequency of 83.31%. Moderate contributions are provided by the 234, respectively 175, quartets of pure type (δ1, δ1, δ1, δ1),
respectively (α1, α1, α1, α1). Quartets with mixed type (α1, δ1, δ1, δ1) are rare with 62 hits, and the 8 quartets with mixed type
(α1, α1, δ1, δ1) are almost negligible. The reason for this behavior is well understood, because the corresponding capitulation
types κ(K) = (ker(TN1/K), . . . , ker(TN4/K)) enforce certain second 3-class groups Gal(F2

3(K)/K) of the quadratic base fields
K which can be realized easily for the quartets with high frequency, due to modest group orders, but require huge groups
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Table 14: Table 13 with 0 < dL < 107 continued for %3 ≥ 1.

Multiplicity Differential Principal Factorization
f Condition 0 1 2 3 4 6 α1 α2 α3 β1 β2 γ δ1 δ2 ε

1 %3 = 1 413458 413458

q ≡ 2 (3) 38302 3239 2022 6958 737

3 d ≡ 3 (9) 4798 375 199 857 69

3 d ≡ 6 (9) 4760 359 223 773 81

9 d ≡ 6 (9) 393 99 61 211 25

9 d ≡ 2 (3) 1441 115 83 241 21

9 d ≡ 1 (3) 1489 124 27 85 232 7 21

` ≡ 1 (3) 4470 386 95 230 8 706 33 86

q1q2 534 115 278 12 55

3q d ≡ 3 (9) 370 78 1 187 15 3 35

3q d ≡ 6 (9) 399 84 1 174 9 4 71

9q d ≡ 6 (9) 13 25 1 69 12

9q d ≡ 2 (3) 111 20 43 5 12

9q d ≡ 1 (3) 117 24 6 57 3 3 3

q` 364 67 6 160 6 2 6 21

3` d ≡ 3 (9) 44 7 3 17 1

3` d ≡ 6 (9) 36 12 24 3 9

9` d ≡ 6 (9) 4 12

9` d ≡ 2 (3) 12

9` d ≡ 1 (3) 12 1 3

`1`2 4 1 2 1

q1q2q3 1

3q1q2 d ≡ 3 (9) 3 1 3

3q1q2 d ≡ 6 (9) 4 4 12

9q1q2 d ≡ 1 (3) 1 3

q1q2` 2 6

3q` d ≡ 3 (9) 3

3q` d ≡ 6 (9) 4

1 %3 = 2 2870 7951 3529

q ≡ 2 (3) 197

3 d ≡ 3 (9) 19

3 d ≡ 6 (9) 18

9 d ≡ 2 (3) 3

9 d ≡ 1 (3) 3

` ≡ 1 (3) 6

3q d ≡ 3 (9) 3

3q d ≡ 6 (9) 1

Subtotal 413458 0 5143 2870 3 7951 142 0 3924 19 67 426972 52 1258

Total 559784 2231 5543 2879 5 7951 142 122 3924 7639 9420 426972 11128 125123

in the case of rare quartets (see [30]).

7.2. Other multiplets
According to Table 14, the number 2231 of doublets, respectively 5543 of triplets, respectively 2879 of quartets, respectively
5 of sextets, agrees with the corresponding counters given in [24, Table 2, p. 588], respectively [24, Table 3, p. 589],
respectively [24, Table 4, p. 589], respectively [24, p. 588 and Table 5, p. 590], in the paper by Llorente and Quer.
However, there are two misprints in the text below Table 4 on page 589 of [24], where the authors intended to state that
2870 among the 2879 quartets belong to real quadratic fields K with 3-class rank % = 2, namely the unramified quartets in
our Table 16. But the remaining 9 quartets are ramified over real quadratic fields K with 3-class rank % = 0 and show up
in our Table 13. They are analyzed in detail in the following example.

Example 7.1. A common feature of all 9 ramified quartets (L1, . . . , L4) with discriminants in the range 0 < dL < 107

is the congruence class of the quadratic fundamental discriminant d ≡ 6 (mod 9) which enables both, conductors with 3-
contribution v3(f) = 1 and v3(f) = 2. The reason for their multiplicity in terms of 3-defects δ3(f) (co-dimensions of 3-ring
spaces V3(f)) was discussed in [28, Supplements Section, Part 1.a, p. S55, and Part 2.d, pp. S57–S58]. Now we are able
to present their differential principal factorizations in Table 17, where the type of the conductor establishes the connection
with Table 13. A generating polynomial for each member L of the quartets is given in [24, Table 6, p. 591], but we point
out that the conductor in the caption of this table should be T = 3mT0 > 1 (our f ), and the discriminant in the table header
should be D = 32mT 2

0 d (our dL).
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Example 7.2. A particular highlight of the range 0 < dL < 107 is the occurrence of 5 sextets, which did not show up in
smaller tables. The reason for their multiplicity in terms of 3-defects δ3(f) (co-dimensions of 3-ring spaces V3(f) modulo f in
the 3-Selmer space V3) was discussed in [28, Supplements Section, Part 1.c, p. S56, Part 2.b, p. S57, Part 2.d, pp. S57–S58,
and Part 2.f, p. S58]. Now we are able to present their differential principal factorizations in Table 18. The leading two
sextets are mixed, and the trailing three sextets are pure. The constitution of the sextets is very heterogeneous: although four
of the quadratic fundamental discriminants d admit the irregular contribution 9 to the conductor f only three conductors
are actually divisible by 9, but they differ either by the 3-rank % or by the kind of the conductor. A generating polynomial
for each member L of the sextets is given in [24, Table 5, p. 590], but again we point out that the discriminant in the table
header should be D = 32mT 2

0 d (our dL = f2 · d). Types for % = 0 are more simple.

Example 7.3. We split the 2231 doublets in the range 0 < dL < 107 according to the shape of f .

• In Table 19, we begin with two non-split prime divisors of f , that is, we accumulate the results for f = q1q2, f = 3q with
d ≡ ±3 (mod 9), and f = 9q with d ≡ 2 (mod 3). The DPF type (ε, ε) is highly dominating over (γ, ε) and (γ, γ). Here and in
the sequel, the given paradigms for dL are not necessarily minimal. Note the constitution 1141 = 429 + 305 + 318 + 89 of
the total frequency.
•The irregular situation f = 9qwith d ≡ 6 (mod 9) in Table 20 shows a reversal of tendencies. DPF type (γ, γ) is dominating,
(ε, ε) remains moderate, mixed type (γ, ε) is almost negligible.
• Table 21 reveals that, for f = q`, f = 3` with d ≡ ±3 (mod 9), f = 9` with d ≡ 2 (mod 3), and f = 9q with d ≡ 1 (mod 3),
DPF type (ε, ε) prevails, followed by (δ2, δ2).
• Again, the irregular situation f = 9` with d ≡ 6 (mod 9) in Table 22 shows a reversal of tendencies. DPF type (β2, β2)

dominates over (ε, ε).
• In the case of three non-split prime divisors of f , i.e., f = q1q2q3 or f = 3q1q2 with d ≡ ±3 (mod 9) or f = 9q1q2 with
d ≡ 2 (mod 3), no table is required, since all 119 = 12 + 51 + 40 + 16 occurrences are of type (γ, γ), e.g. d = 93, f = 30,
dL = 83 700.

Example 7.4. We split the 5543 triplets in the range 0 < dL < 107 according to the shape of f .

• Triplets are usually due to elevated 3-class rank % ≥ 1 of the real quadratic fieldK. However, the simplest case of triplets
with % = 0 arises for the irregular prime power conductor f = 9, d ≡ 6 (mod 9). The minimal occurrence is d = 717,
dL = 58 077. Each of the 308 triplets is embedded in a heterogeneous quartet Inv(K9) = [(ε), (ε, ε, ε)].
• There are 77 cases of triplets with irregular conductors f = 9q, d ≡ 6 (mod 9), with % = 0. They are all of pure type
(γ, γ, γ), for instance d = 69, q = 2, f = 18, dL = 22 356.
• For the irregular case f = 9`, d ≡ 6 (mod 9), with % = 0, all 14 occurrences are of type (β2, β2, β2), for instance d = 177,
` = 7, dL = 702 513. There always exists an associated singlet of type (ε) with conductor f = 3, that is, the the triplet
and the singlet are embedded in a heterogeneous quartet Inv(K9`) = [∅, (ε), ∅, ∅, ∅, (β2, β2, β2)] corresponding to the divisors
(1, 3, 9, `, 3`, 9`) of f .
• A unique example of f = 9q`, d ≡ 6 (mod 9), with % = 0, is given by d = 69, q = 2, ` = 13, f = 234, dL = 3 778 164. It is a
triplet of mixed type (β2, γ, γ).
• For % = 1 and non-critical split f = ` ≡ 1 (mod 3), the mixed DPF type (β1, δ1, δ1) prevails, followed by mixed type (δ1, δ1, ε).
Mixed types have only two distinct components. See Table 23.
• For % = 1 and critical split f = 9, d ≡ 1 (mod 3), again the mixed DPF type (β1, δ1, δ1) prevails, followed by mixed type
(δ1, δ1, ε). Here, all examples have minimal discriminant dL. See Table 24.

Table 15: Cyclic cubic discriminants dL = f2 in the range 0 < dL < 107.

M DPF f dL
f Condition 1 2 4 ζ

9 d = 1 1 1 9 81

` ≡ 1 (mod 3) 216 216 7 49

9` d = 1 33 66 63 3 969

`1`2 ≡ 1 (mod 3) 93 186 91 8 281

9`1`2 d = 1 6 24 819 670 761

`1`2`3 ≡ 1 (mod 3) 2 8 1729 2 989 441

Summary 217 126 8 501
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• For % = 1 and non-split f = q ≡ 2 (mod 3) or f = 3 or f = 9, d ≡ 2 (mod 3), the pure DPF type (δ1, δ1, δ1) is dominating,
followed by the mixed type (β1, β1, ε). Mixed type (β1, δ1, ε) with three distinct components is very rare. See Table 25, where
4088 = 3239 + 359 + 375 + 115.
• Table 26 gives the distribution of DPF types for f = q1q2, f = 3q, and f = 9q, d ≡ 2 (mod 3), where 297 = 115+78+84+20.
Pure DPF type (β1, β1, β1) prevails, followed by pure type (ε, ε, ε).
• Table 27 shows the triplets with f = q`, f = 3`, and f = 9q, d ≡ 1 (mod 3). (There are no hits for f = 9`, d ≡ 2 (mod 3).)
The pure DPF type (β1, β1, β1) prevails, followed by pure type (ε, ε, ε). Here, 110 = 67 + 7 + 12 + 24.
• There are only two triplets with two split ramified primes:
mixed type (α2, α2, β2) for f = `1`2 (d = 940, f = 91, dL = 7 784 140), and
pure type (α2, α2, α2) for f = 9`, d ≡ 1 (mod 3) (d = 2 101, f = 63, dL = 8 338 869).
We conclude this section on multiplets with information on singlets.

Theorem 7.1. (Ramified and unramified singlets)

1. A ramified singlet (with conductor f > 1) can only be of type (α3), (β2), (γ), (δ2), (ε).

2. An unramified singlet (with conductor f = 1) must be of type (δ1).

Proof. According to the fundamental inequalities in Corollary 3.2 and the fundamental equation in Corollary 3.1, we have:

1. For f > 1, the multiplicity formula shows that 3% divides m [31, Theorem 3.2, p. 2215, Theorem 3.3–3.4, p. 2217, and
Theorem 4.1–4.2, p. 2224–2225]. Thus, a singlet can only occur for % = 0, and this implies C = 0, i.e. no capitulation
can happen. By Theorem 3.6, we conclude τ(L) /∈ {α1, α2, β1, δ1}, and consequently τ(L) ∈ {α3, β2, γ, δ2, ε}.

2. For f = 1, we have the multiplicity formula m = (3% − 1)/2 [31, Theorem 3.1, p. 2214]. Therefore, a singlet with
m = 1 occurs for % = 1. On the other hand, f = 1 implies t = s = 0, and thus A = R = 0. The fundamental equation
degenerates to U + 1 = C, where % = 1 implies the bound C ≤ 1. Thus, C = 1 and U = 0, that is the unique type
δ1.

Example 7.5. Indeed, singlets of all the types in Theorem 7.1 actually do occur. Their minimal discriminants dL are given
in Table 28.

Concerning the frequency of singlets for 0 < dL < 107, the first row in Table 14 proves that unramified singlets (δ1) form
the definite hichamp 413 458 among all contributions. The last row (Subtotal) in Table 13 illuminates the second extreme
contribution 146 326 by all the other ramified singlets (α3), (β2), (γ), (δ2), and clearly dominating (ε).

Another interesting observation is enabled by the rows with regular conductors f divisible by exactly two primes, i.e.
t = 2, in Table 13. It appears that, under certain conditions, non-split extensions N/K with UK = NN/K(UN ) in the sense
of Remark 3.3 are forbidden. Generalizing a proof for singlets of type (γ) by Moser at the top of p. 74 in [36], we partition
the case t = 2, according to the number 0 ≤ s ≤ 2 of prime divisors of f which split in the real quadratic field K. The
crucial assumption % = 0, that is, the class number of K is not divisible by 3 (and thus capitulation is discouraged, C = 0),
implies that there are only three possible types of split extensions N/K, namely the singlets (α3), (β2), (γ).

Theorem 7.2. (Ramified singlets of split extensions N/K)
Suppose that K is a real quadratic field with 3-class rank % = 0, and let f be a regular 3-admissible conductor for K
with exactly two restrictive prime divisors, t = 2. Denote by 0 ≤ s ≤ 2 the number of prime divisors of f which split
in the real quadratic field K. Then the following conditions enforce a split extension N/K with UN = UK · EN/K , where
EN/K = UN ∩ ker(NN/K) denotes the subgroup of relative units of N/K.

Table 16: Types of unramified quartets in the range 0 < dL < 107.

DPF Type Capitulation Number ν(K) Frequency dL = d

(τ(L1), . . . , τ(L4)) (according to [8])
(α1, α1, α1, α1) 4 175 62 501

(α1, α1, α1, δ1) 3 2391 32 009

(α1, α1, δ1, δ1) 2 8 710 652

(α1, δ1, δ1, δ1) 1 62 534 824

(δ1, δ1, δ1, δ1) 0 234 214 712

Total: 2870
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Table 17: Nine explicit ramified quartets in the range 0 < dL < 107.

No. dL d f Kind of Conductor DPF Type
(τ(L1), . . . , τ(L4))

1 1 725 300 213 90 = 9 · 2 · 5 9q1q2 (γ, γ, γ, γ)
2 2 238 516 141 126 = 9 · 2 · 7 9q` (γ, γ, γ, γ)
3 2 891 700 357 90 = 9 · 2 · 5 9q1q2 (γ, γ, γ, γ)
4 4 641 300 573 90 = 9 · 2 · 5 9q1q2 (γ, γ, γ, γ)
5 6 810 804 429 126 = 9 · 2 · 7 9q` (γ, γ, γ, γ)
6 7 557 300 933 90 = 9 · 2 · 5 9q1q2 (γ, γ, γ, γ)
7 7 953 876 501 126 = 9 · 2 · 7 9q` (γ, γ, γ, γ)
8 8 250 228 4677 42 = 3 · 2 · 7 3q` (γ, ε, ε, ε)
9 8 723 700 1077 90 = 9 · 2 · 5 9q1q2 (γ, γ, γ, γ)

1. If s = 0 and N has 3-class number 1, then N is a singlet of type (γ).

2. If s = 1 and N has 3-class number 3, then N is a singlet of type (β2).

3. If s = 2 and N has 3-class number 9, then N is a singlet of type (α3) [or (γ)].

Proof. The assumption % = 0 implies that the 3-Selmer space V ofK is generated by the fundamental unit η ofK. Since we
suppose t = 2 with regular restrictive prime divisors q1, q2 of the conductor f , in the sense of Remark 8.1, η is not contained
in the 3-ring spaces V (q1) and V (q2), and the multiplicity of f is m = 1, i.e., we have a singlet [31, Theorem 3.3, p. 2217].

According to [36, Theorem A, p. 70], the subgroup ClσN of weakly ambiguous ideal classes of ClN , with respect to
Gal(N/K) = 〈σ〉, is of order #Cl3(K) ·3T−1/3Q, where the norm index is denoted by 3Q = (UK : (UK ∩NN/K(N×))) and T is
the number of prime ideals of K which ramify in N . In our situation, we have #Cl3(K) = 1, and #Cl3(N) = 3s is divisible
by 3T−1−Q, where T = 2 + s, that is, s ≥ 1 + s − Q, respectively Q ≥ 1 and thus Q = 1. A fortiori, the unit norm index is
b = (UK : NN/K(UN )) = (UK : (UK ∩NN/K(N×))) · ((UK ∩NN/K(N×)) : NN/K(UN )) = 3, because η is not norm of a number
in N×, let alone of a unit in UN . Thus, N/K is a split extension, in the sense of Remark 3.3, and the types (δ1) and (ε) in
item (1) of Theorem 7.1 are impossible.

Equation (16) in additive form, VN = 2 · VL + VK + E − 2, where VF := v3(#ClF ) for a number field F , degenerates to
VN = 2 · VL + E − 2 under our assumption VK = 0. This gives rise to a parity condition for E:

1. If s = 0 and VN = 0, then 2 · VL = 2− E and E must be even, E = 2, N of type (γ).

2. If s = 1 and VN = 1, then 2 · VL = 3− E and E must be odd, E = 1, N of type (β2).

3. If s = 2 and VN = 2, then 2 · VL = 4− E and E must be even,
[either] E = 0, N of type (α3) [or E = 2, N of type (γ), conjectured impossible].

8. Statistical evaluation and theoretical interpretation of the tables

Now we illuminate and analyze our extensive numerical (computational, experimental) results with the aid of statistical
evaluations and theoretical statements.

Table 18: Five explicit sextets in the range 0 < dL < 107.

No. dL d % f Kind of Conductor DPF Type
(τ(L1), . . . , τ(L6))

1 3 054 132 84 837 ≡ 3 (9) 1 6 = 3 · 2 3q (β1, β1, δ1, δ1, δ1, ε)
2 4 735 467 131 541 ≡ 6 (9) 1 6 = 3 · 2 3q (β1, δ1, δ1, δ1, δ1, ε)
3 5 807 700 717 ≡ 6 (9) 0 90 = 9 · 2 · 5 9q1q2 (γ, γ, γ, γ, γ, γ)
4 6 367 572 19 653 ≡ 6 (9) 1 18 = 9 · 2 9q (β1, β1, β1, β1, β1, β1)
5 9 796 788 30 237 ≡ 6 (9) 0 18 = 9 · 2 9q (ε, ε, ε, ε, ε, ε)
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Table 19: Types of doublets with two non-split prime divisors of regular f .

DPF Type Frequency d f dL
(τ(L1), τ(L2))

(γ, γ) 40 33 45 66 825

(γ, ε) 40 9973 10 997 300

(ε, ε) 1061 373 10 37 300

Total: 1141

Table 20: Types of doublets with two non-split prime divisors of irregular f .

DPF Type Frequency d f dL
(τ(L1), τ(L2))

(γ, γ) 245 213 18 69 012

(γ, ε) 6 9213 18 2 985 012

(ε, ε) 89 141 18 45 684

Total: 340

8.1. Stagnation and evolution of arithmetical structures
Some features in the Tables 1, 6, 10, 11, 13, and 14 reveal stagnation, that is, multiplicities and DPF types remain constant,
and only the statistical counters show monotonic growth, usually slightly faster than linear. Other phenomena stick out
with conspicuous evolution, leading to new multiplicities and new DPF types. The huge total number 592 922 of all objects
occurring in our investigation of the extensive range 0 < dL < 107 admits sound statistical interpretation and heuristic
predictions in unproven conjectures.

Since the conductor f = 1 is 3-admissible for any quadratic fundamental discriminant d, the quadratic fieldsK = Q(
√
d)

with 3-class rank % = 0 must be considered as giving rise to nilets Md = ∅. Observe that the 3-ring space V (1) modulo
1 coincides with 3-Selmer space V and the multiplicity formula for the unramified situation yields m(d) = m(12 · d) =
1
2 (3% − 1) = 1

2 (30 − 1) = 0.
In the following conjectures, of which certain parts are proven theorems, we always give successive percentages with

respect to the upper bounds 105, 2 · 105, 5 · 105 and 107, in this order.

Conjecture 8.1. The relative frequency of unramified nilets with % = 0 slightly decreases from 89.1% over 88.6% and 87.9%

to 86.3%. The relative frequency of unramified singlets with % = 1 slightly increases from 10.9% over 11.4% and 12.1% to
13.6%. All singlets are of permanent type δ1, showing stagnation. See Theorems 8.2 and 8.6. The relative frequency of
unramified quartets with % = 2 is marginal below 0.1%, but they reveal an interesting evolution of types:

1. Up to 105, 4
5 = 80% are of mixed type (α1, α1, α1, δ1), 1

5 = 20% of pure type (α1, α1, α1, α1).

2. Up to 2 · 105, 14
16 = 87.5% are of type (α1, α1, α1, δ1), 2

16 = 12.5% of type (α1, α1, α1, α1).

3. Up to 5 · 105, 53
16 = 86.9% are of mixed type (α1, α1, α1, δ1), 4

61 = 6.6% of pure type (α1, α1, α1, α1), and also 4
61 = 6.6% of

the new pure type (δ1, δ1, δ1, δ1).

4. Up to 107, 2391
2870 = 83.3% are of mixed type (α1, α1, α1, δ1), 234

2870 = 8.6% of pure type (δ1, δ1, δ1, δ1), 175
2870 = 6.1% of pure

type (α1, α1, α1, α1), 62
2870 = 2.2% of the new mixed type (α1, δ1, δ1, δ1), and 8

2870 = 0.3% of another new mixed type
(α1, α1, δ1, δ1).

Conjecture 8.2. For 3-admissible non-split prime(power) conductors f = q, f = 3, and f = 9 with d ≡ 2 (mod 3) over
quadratic fields K = Q(

√
d) with 3-class rank % = 0, the relative frequency of nilets slightly decreases from 73% over 72%

and 71% to 69%, and the relative frequency of singlets slightly increases from 27% over 28% and 29% to 31%. All singlets
are of permanent type ε, showing stagnation. See Theorems 8.3 and 8.6. We conjecture the last percentages for the range
0 < dL < 107 to be close to their asymptotic limit.
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Table 21: Types of doublets with a split prime divisor of regular f .

DPF Type Frequency d f dL
(τ(L1), τ(L2))

(β2, β2) 14 23 717 14 4 648 532

(β2, δ2) 1 5 061 39 7 697 781

(β2, ε) 14 7 589 14 1 487 444

(γ, ε) 9 1 192 65 5 036 200

(δ2, δ2) 71 4 813 14 943 348

(ε, ε) 327 197 14 38 612

Total: 436

Table 22: Types of doublets with a split prime divisor of irregular f .

DPF Type Frequency d f dL
(τ(L1), τ(L2))

(β2, β2) 34 60 63 238 140

(ε, ε) 13 204 63 809 676

Total: 47

8.2. New features for 3-class rank % = 1

Since ramified extensions N/K for % = 2 do not occur in the range 0 < dL < 107, it is sufficient to state the following
theorem for % ≤ 1.

Theorem 8.1. Let K = Q(
√
d) be a real quadratic base field with fundamental discriminant d and 3-class rank % ≤ 1.

Suppose f = q1 · q2 is a regular 3-admissible conductor for K with two prime divisors q1 and q2. Then the heterogeneous
multiplet M(Kf ) associated with the 3-ring class field Kf mod f of K consists of four homogeneous multiplets Mc2d, c ∈
{1, q1, q2, f} with multiplicities m(1), m(q1), m(q2) and m(f). In this order, and in dependence on the 3-ring spaces V (q1),
V (q2) and V (f), these four multiplicities, forming the signature sgn(M(Kf )) of M(Kf ), are given by

1. (0, 1, 1, 2), if V (f) = V (q1) = V (q2) = V (doublet),

2. (0, 1, 0, 0), if 0 = V (f) = V (q2) < V (q1) = V ,

3. (0, 0, 1, 0), if 0 = V (f) = V (q1) < V (q2) = V ,

4. (0, 0, 0, 1), if 0 = V (f) = V (q1) = V (q2) < V (singlet),

if % = 0, and thus 3-Selmer space V is one-dimensional, generated by η ∈ UK = 〈−1, η〉, and by

1. (1, 3, 3, 6), if V (f) = V (q1) = V (q2) = V (sextet),

2. (1, 3, 0, 0), if 0 < V (f) = V (q2) < V (q1) = V ,

3. (1, 0, 3, 0), if 0 < V (f) = V (q1) < V (q2) = V ,

4. (1, 0, 0, 3), if 0 < V (f) = V (q1) = V (q2) < V (triplet),

5. (1, 0, 0, 0), if 0 = V (f) < V (q1) 6= V (q2) < V (nilet with defect δ = 2),

if % = 1, and thus 3-Selmer space V is two-dimensional, generated by η ∈ UK and θ ∈ I \ UK .

Proof. These statements are special cases with p = 3 of [35, Theorem 5.1].

Remark 8.1. We emphasize that in the situation with % = 0 a complete heterogeneous nilet with signature (0, 0, 0, 0) is
impossible, because there always exists a totally real cubic field L with discriminant dL equal to either (q1q2)2d or q21d or q22d.

This is in contrast to the case % = 1 where a total heterogeneous nilet with signature (1, 0, 0, 0), at least with respect to
the ramified components, can occur. In this extreme case of a homogeneous nilet Mf2d with defect δ(f) = 2, neither the

25



D. C. Mayer / Electron. J. Math. 1 (2021) 1–40 26

Table 23: Types of triplets with a non-critical split prime conductor f = `.

DPF Type Frequency d f dL
(τ(L1), τ(L2), τ(L3))

(α2, α2, α2) 10 32 204 7 1 577 996

(α2, α2, δ1) 9 2 677 19 966 397

(α2, α2, δ2) 23 9 749 13 1 647 581

(α2, δ2, δ2) 1 5 477 37 7 498 013

(β1, β2, β2) 4 7 244 19 2 615 084

(β1, δ1, δ1) 226 1 765 7 86 485

(δ1, δ1, δ1) 23 13 688 13 2 313 272

(δ1, δ1, δ2) 1 30 553 13 5 163 457

(δ1, δ1, ε) 86 3 873 7 189 777

(δ1, δ2, δ2) 2 44 641 7 2 187 409

(δ2, δ2, δ2) 1 54 469 7 2 668 981

Total: 386

Table 24: Types of triplets with critical split prime power conductor f = 9.

DPF Type Frequency d f dL
(τ(L1), τ(L2), τ(L3))

(α2, α2, α2) 4 14 197 9 1 149 957

(α2, α2, δ1) 2 31 069 9 2 516 589

(α2, α2, δ2) 5 15 529 9 1 257 849

(α2, δ2, δ2) 1 30 904 9 2 503 224

(β1, δ1, δ1) 85 2 917 9 236 277

(δ1, δ1, δ1) 6 13 861 9 1 122 741

(δ1, δ1, ε) 21 15 733 9 1 274 373

Total: 124

fundamental unit η nor the other generating 3-virtual unit θ belong to the ring Rf modulo f of K, i.e. both of them are
deficient.

We also point out that Theorem 8.1 is not only valid for f = q1q2 with primes qi ≡ 2 (mod 3) but also for f = 3q with
q1 := 3, d ≡ ±3 (mod 9), q2 := q ≡ ±1 (mod 3), for f = 9q with q1 := 9 (the prime power behaves like a prime, formally),
d ≡ ±1 (mod 3), q2 := q ≡ ±1 (mod 3), and for f = q1q2 with any primes qi ≡ ±1 (mod 3). The statement is independent of the
decomposition law of the primes qi in K, but it is essential that the conductor is regular, that is, 9 - f if d ≡ 6 (mod 9).

Example 8.1. We explicitly consider the statistical results for % = 0, f = q1q2 with q1, q2 ≡ 2 (mod 3) in the most extensive
range 0 < dL < 107 (Table 13). Since we want to apply probability theory to independent binary properties, we must start
with data concerning prime conductors f = q.

• Let f = q ≡ 2 (mod 3) prime. Among 287877 admissible discriminants q2d,
198952 (69%) belong to nilets, realizing the event V (q) = 0, and
88925 (31%) belong to singlets, realizing the counter event V (q) = V .

• For f = q1q2, the four field probability table for independent events yields
P = 0.692 ≈ 0.476 for the event [V (q1) = 0 and V (q2) = 0],
P = 0.69 · 0.31 + 0.31 · 0.69 ≈ 0.214 + 0.214 = 0.428 for the (symmetric) event

[V (q1) = 0 and V (q2) = V ] or [V (q1) = V and V (q2) = 0],
P = 0.312 ≈ 0.096 for the event [V (q1) = V and V (q2) = V ],

and these theoretical probabilities are indeed compatible with our experimental result that among 6227 admissible
discriminants f2d,
2706 (43% ≈ 42.8%) belong to nilets, [V (q1) = 0 ∧ V (q2) = V ] ∨ [V (q1) = V ∧ V (q2) = 0],
3092 (50% ≈ 47.6%) belong to singlets, realizing the event [V (q1) = 0 and V (q2) = 0],
429 (7% ≈ 9.6%) belong to doublets, realizing the event [V (q1) = V and V (q2) = V ].
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Table 25: Types of triplets with a non-split prime (power) conductor.

DPF Type Frequency d f dL
(τ(L1), τ(L2), τ(L3))

(β1, β1, β1) 304 55 885 2 223 540
(β1, β1, δ1) 160 30 965 2 123 860
(β1, β1, ε) 640 14 397 2 57 588
(β1, δ1, ε) 5 417 077 2 1 668 308
(β1, ε, ε) 10 492 117 2 1 968 468

(δ1, δ1, δ1) 2869 7 053 2 28 212
(δ1, δ1, ε) 11 486 461 2 1 945 844
(δ1, ε, ε) 35 192 245 2 768 980
(ε, ε, ε) 54 197 445 2 789 780
Total: 4088

Table 26: Types of triplets with two non-split ramified primes.

DPF Type Frequency d f dL
(τ(L1), τ(L2), τ(L3))

(β1, β1, β1) 221 3 173 10 317 300
(β1, β1, γ) 5 63 917 10 6 391 700
(β1, γ, γ) 6 82 397 10 8 239 700
(γ, γ, γ) 6 9 413 22 4 555 892
(γ, γ, ε) 3 64 677 10 6 467 700
(ε, ε, ε) 56 9 293 10 929 300
Total: 297

Since almost identical probabilities as for the conductors f = q1q2 with q1, q2 ≡ 2 (mod 3) arise for all the other regular
conductors with two prime divisors in Theorem 8.1, mentioned explicitly at the end of Remark 8.1, we are convinced of the
following experimental hypothesis.

Conjecture 8.3. (Probability for m ∈ {0, 1, 2} when % = 0)
The probabilities P for the occurrence of various multiplets (L1, . . . , Lm) of totally real cubic fields Li among sets of 3-
admissible pairs (f, d) of regular conductors f and quadratic fundamental discriminants d > 0 with % = 0 are approximately
given as follows:

1. P ≈ 31% for a singlet, and P ≈ 69% for a nilet, when f = q,

2. P ≈ 7% for a doublet, P ≈ 50% for a singlet, and P ≈ 43% for a nilet, when f = q1q2.

Example 8.2. Now we present new features for % = 1, f = q1q2 with q1, q2 ≡ 2 (mod 3) in the most extensive range 0 < dL < 107

(Table 14). Again, we must begin with prime conductors f = q.

• Let f = q ≡ 2 (mod 3) prime. Among 41541 admissible discriminants q2d,
38302 (92.2%) belong to nilets, realizing the event V (q) < V , and
3239 (7.8%) belong to triplets, realizing the counter event V (q) = V .

• For f = q1q2, the four field probability table for independent events yields
P = 0.9222 ≈ 0.850 for the event [V (q1) < V and V (q2) < V ],
P = 0.922 · 0.078 + 0.078 · 0.922 ≈ 0.072 + 0.072 = 0.144 for the (symmetric) event

[V (q1) < V and V (q2) = V ] or [V (q1) = V and V (q2) < V ],
P = 0.0782 ≈ 0.006 for the event [V (q1) = V and V (q2) = V ],

but these theoretical probabilities are not immediately compatible with our experimental result that among 649 admis-
sible discriminants f2d,

534 (82.3%) belong to nilets,
115 (17.7%) belong to triplets,
0 (0% ≈ 0.6%) belong to sextets, realizing the event [V (q1) = V and V (q2) = V ].

Only the case of sextets is compatible, in the sense that it has simply not occurred yet in this range. At this point,
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Table 27: Types of triplets with non-split and split ramified primes.

DPF Type Frequency d f dL
(τ(L1), τ(L2), τ(L3))

(α2, α2, α2) 5 6 997 14 1 371 412
(β1, β1, β1) 83 1 101 14 215 796
(β1, β1, β2) 1 21 324 21 9 403 884
(β1, β2, β2) 3 29 317 14 5 746 132
(β2, β2, β2) 1 18 661 18 6 046 164
(β1, β1, γ) 2 469 62 1 802 836
(δ2, δ2, δ2) 4 24 621 14 4 825 716

(ε, ε, ε) 11 10 733 14 2 103 668
Total: 110

Table 28: Smallest occurrences of various singlets.

DPF Type d f dL
(τ(L))

(ε) 37 2 148

(δ1) 229 1 229

(γ) 21 6 756

(δ2) 53 7 2 597

(β2) 29 14 5 684

(α3) 37 63 146 853

a new phenomenon appears: the possibility of elevated defect δ(f) = 2, when 0 = V (f) < V (q1) 6= V (q2) < V . We
have to split the event [V (q1) < V ∧ V (q2) < V ], with theoretical probability 85.0%, into two cases, a triplet for
0 < V (f) = V (q1) = V (q2) < V with experimental probability 17.7%, and a nilet for 0 = V (f) < V (q1) 6= V (q2) < V

with unknown probability, which can now be calculated as 85.0%−17.7% = 67.3%, an astonishingly high value. Even-
tually, the sum of the probabilities for nilets with δ = 1 and nilets with δ = 2, that is, 14.4% + 67.3% = 81.7% ≈ 82.3%

agrees with the experimental probability for all nilets, indeed.

Conjecture 8.4. (Probability for m ∈ {0, 3, 6} when % = 1)
The probabilities P for the occurrence of various multiplets (L1, . . . , Lm) of totally real cubic fields Li among sets of 3-
admissible pairs (f, d) of regular conductors f and quadratic fundamental discriminants d > 0 with % = 1 are approximately
given as follows:

1. P ≈ 8% for a triplet, and P ≈ 92% for a nilet, when f = q,

2. P ≈ 1% for a sextet, P ≈ 17% for a triplet, and P ≈ 82% for a nilet, when f = q1q2. Among the 82% for a nilet, there
are 18% nilets with δ = 1 and 82% nilets with δ = 2.

Example 8.3. It is illuminating to give particular realizations of the various multiplets in Theorem 8.1. Let q1 = 2 and
q2 = 5 and consider the composite conductor f = q1q2 = 10.

• Among quadratic fundamental discriminants d with % = 0, there are four d ∈ {5,13, 21, 29} which give rise to nilets
M4d = ∅ before we find a singlet with conductor 2 for d = 37, dL = 148, and there are eight d ∈ {8, 12,13, 17, 28, 33, 37, 53}
giving rise to nilets M25d = ∅ until a singlet with conductor 5 occurs for d = 57, dL = 1425. The consequence of the
simultaneous nilets M4d = M25d = ∅ for d = 13 is the existence of a singlet with conductor f = 10 and dL = 1300 in spite of
positive defect δ(10) = 1. A nilet M100d = ∅ with conductor f = 10 arises for d = 37, because M4d is a singlet and M25d = ∅
is a nilet. We have to wait for the sixteenth discriminant d for which f = 10 is admissible in order to encounter the first
doublet M100d for d = 373, dL = 37300 with vanishing defect δ(10) = 0.
• Among quadratic fundamental discriminants d with % = 1, the probability P ≈ 92% > 69% for a nilet with prime
conductor is higher, and thus we have to skip 56 discriminants, commencing with d ∈ {229, 469,733, . . .} until the first
triplet M4d with conductor 2 occurs for d = 7053, dL = 28212. Similarly, we must overleap 7 discriminants, beginning with
d ∈ {257, 473, 568, 697,733, . . .} before we find a triplet M25d with conductor 5 for d = 1257, dL = 31425. Now the new feature
of elevated defect δ = 2 for positive 3-class rank sets in: The consequence of the simultaneous nilets M4d = M25d = ∅ for
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d = 733 is not at all a triplet, but rather a nilet M100d = ∅ with f = 10, because the ring spaces V (2) and V (5) have trivial
meet, whence δ(10) = 2. This phenomenon continues for further six discriminants starting with d ∈ {1373, 1957, 2213} until
V (10) = V (2) = V (5) coincide for d = 3173, dL = 317300, giving rise to the first triplet M100d. Even later, the first nilet with
moderate defect δ(10) = 1 (it is the 24th in the series of nilets) occurs for d = 7053, since M4d is a triplet and M25d = ∅ is a
nilet. This ostensively shows the dominant role of the 82% nilets M100d = ∅ with δ = 2 as opposed to the 18% with δ = 1,
according to Conjecture 8.4.

8.3. Unramified extensions
The unique conductor without prime divisors is f = 1. It is 3-admissible for any quadratic fundamental discriminant d.

Among the 3 039 653 quadratic fundamental discriminants in the range 0 < d < 107, there are 2 623 325, respectively
413 458, respectively 2 870, which give rise to real quadratic number fields K = Q(

√
d) with 3-class rank % = %3(K) = 0,

respectively 1, respectively 2. According to the multiplicity formulam = m3(K, 1) = 3%−1
3−1 , there exist 0, respectively 413 458,

respectively 11 480, totally real cubic fields L with discriminant dL = f2 · d = 12 · d = d, occurring in nilets, respectively
singlets, respectively quartets. The associated normal closure N of each of these non-Galois cubic fields L is unramified
over its unique quadratic subfield K.

Example 8.4. The smallest discriminant with % = 0 is d = 5. Although it is an actual quadratic fundamental discriminant,
it is only a formal cubic discriminant belonging to a nilet. The minimal discriminants d = 229, respectively d = 32 009, with
% = 1, respectively % = 2, are both, fundamental discriminants of real quadratic fields and actual discriminants of totally
real cubic fields belonging to a singlet, respectively quartet. The latter two discriminants are contained in the table of Angell
with 0 < dL < 105 already.

In the sequel, we briefly speak about the type τ(N) = τ(L) ∈ {α1, α2, α3, β1, β2, γ, δ1, δ2, ε} of a totally real S3-field
N , respectively its three conjugate cubic subfields L, when we specify the differential principal factorization type of N ,
respectively L.

Theorem 8.2. Let L be a non-Galois totally real cubic field whose normal closureN is unramified over its quadratic subfield
K, with conductor f = 1.

1. If the 3-class group Cl3(K) is non-trivial cyclic, then L must be of type τ(L) = δ1.

2. If K has 3-class rank % ≥ 2, then two types τ(L) ∈ {α1, δ1} are possible for L.

Proof. See Theorem 8.6 (1) for item (1), and Theorem 3.6 with t = s = 0 and thus A = R = 0 for item (2).

8.4. Conductors with a single prime divisor
Example 8.5. It is conspicuous, that the range 0 < d < 107 contains an abundance of 197 nilets with formal cubic dis-
criminants f2 · d such that the conductor f = q is a prime q ≡ 2 (mod 3) and the fundamental discriminant d belongs to a
real quadratic field K with 3-class rank % = 2. The smallest values of d occurring among these 197 cases are 32 009, 42 817,
62 501. However, the associated formal cubic discriminants appear in reverse order 250 004 = 22 ·62 501, 1 070 425 = 52 ·42 817,
3 873 089 = 112 · 32 009, due to the conductors which increase in the opposite direction. In particular, the smallest formal
cubic discriminant 250 004 lies in the range 0 < d < 5 · 105 of Ennola and Turunen already. Actual nonets (m = 9) of cubic
fields with these discriminants do not exist. According to a private communication by Karim Belabas on 31 January 2002,
the discriminant 18251060 = 22 · 4 562 765 in Theorem 9.4 is not only minimal with a ramified (f = 2) component of type
α1, as required for the proof of the Scholz Conjecture, but even the minimal discriminant of totally real cubic nonets at
all (see http://www.algebra.at/KarimDan5.htm).

Theorem 8.3. Let L be a totally real cubic field whose normal closureN is ramified over its quadratic subfieldK with % = 0

and conductor f divisible by a single non-split prime,

1. either f = q a prime q ≡ 2 (mod 3), inert in K,

2. or f = 3 with d ≡ 3 (mod 9) or d ≡ 6 (mod 9)

3. or f = 9 with d ≡ 6 (mod 9)

4. or f = 9 with d ≡ 2 (mod 3).

29



D. C. Mayer / Electron. J. Math. 1 (2021) 1–40 30

In the second and third case, 3 ramifies in K, in the fourth case, 3 remains inert in K.
Then L must necessarily be of type τ(L) = ε.

Proof. See Theorem 8.6 (2).

8.5. General conditions for differential principal factorizations
The nine possible types τ(L) = τ(N) ∈ {α1, α2, α3, β1, β2, γ, δ1, δ1, ε} of differential principal factorizations of a non-cyclic
totally real cubic field L, more precisely of the totally real Galois closureN of L, are defined with the aid of three invariants
A, R and C which are F3-dimensions of canonical subspaces of the vector space PN/K/PK of primitive ambiguous principal
ideals of N over its quadratic subfield K.

The most restrictive necessary conditions are imposed by the three types α1, α3, γ which are characterized by two-
dimensional subspaces.

Theorem 8.4. (Necessary conditions for two-dimensional subspaces)

1. For type γ with two-dimensional absolute principal factorization A = 2, the conductor f must have at least two prime
divisors, t ≥ 2.

2. For type α3 with two-dimensional relative principal factorization R = 2, the conductor f must have at least two prime
divisors which split in K, s ≥ 2 (and a fortiori t ≥ 2).

3. For type α1 with two-dimensional capitulation C = 2, the 3-class rank % of K must be at least two (independently of
the conductor f ≥ 1).

Proof. We make use of the fundamental inequalities in Corollary 3.2:

0 ≤ A ≤ min(n+ s, 2), 0 ≤ R ≤ min(s, 2), 0 ≤ C ≤ min(%, 2).

1. Type γ ⇐⇒ A = 2 =⇒ min(n+ s, 2) = 2, i.e. t = n+ s ≥ 2.

2. Type α3 ⇐⇒ R = 2 =⇒ min(s, 2) = 2, i.e. s ≥ 2, and thus t = n+ s ≥ s ≥ 2.

3. Type α1 ⇐⇒ C = 2 =⇒ min(%, 2) = 2, i.e. % ≥ 2.

Looser necessary conditions are required for non-trivial subspaces.

Theorem 8.5. (Necessary conditions for one-dimensional subspaces)

1. For the types β1, β2, ε with one-dimensional absolute principal factorization A = 1, the conductor f must have at least
one prime divisor, t ≥ 1.

2. For the types α2, β2, δ2 with one-dimensional relative principal factorization R = 1, the conductor f must have at least
one prime divisor which splits in K, s ≥ 1 (thus t ≥ 1).

3. For the types α2, β1, δ1 with one-dimensional capitulation C = 1, the 3-class rank % of K must be at least one.

For each of the types α2, β1, β2, two suitable among these conditions may be combined.

Proof. According to the definitions of DPF types and the fundamental inequalities in Corollary 3.2:

1. Type β1, β2, ε⇐⇒ A = 1 =⇒ min(n+ s, 2) ≥ 1, i.e. t = n+ s ≥ 1.

2. Type α2, β2, δ2 ⇐⇒ R = 1 =⇒ min(s, 2) ≥ 1, i.e. s ≥ 1, and thus t = n+ s ≥ s ≥ 1.

3. Type α2, β1, δ1 ⇐⇒ C = 1 =⇒ min(%, 2) ≥ 1, i.e. % ≥ 1.

Due to the fact that the occurrence of absolute principal factorizations is usually unpredictable as soon as the conductor
f > 1 has at least one prime divisor, t ≥ 1, there a only very few sufficient conditions for DPF types. Only two types can be
enforced unambiguously.

Theorem 8.6. (Sufficient conditions for types δ1 and ε)

1. If N/K is unramified with conductor f = 1 and K has 3-class rank % = 1, then τ(N) = δ1.
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2. If the conductor f of N/K has precisely one prime divisor which does not split in K and the class number of K is not
divisible by 3, then τ(N) = ε.

In both cases, there exists a unit H ∈ UN such that η = NN/K(H) is a fundamental unit of K.

Proof. According to the fundamental inequalities in Corollary 3.2 and the fundamental equation in Corollary 3.1, we have:

1. t = 0, % = 1 =⇒ A ≤ min(n + s, 2) = min(t, 2) = 0, s ≤ t = 0, R ≤ min(s, 2) = 0, C ≤ min(%, 2) = 1, but on the other
hand C = 0 + 0 + C = A+R+ C = U + 1 ≥ 1 =⇒ A = R = 0, C = 1⇐⇒ Type δ1.

2. t = 1, s = 0, % = 0 =⇒ A ≤ min(n + s, 2) = min(t, 2) = 1, R ≤ min(s, 2) = 0, and C ≤ min(%, 2) = 0, but on the other
hand A = A+ 0 + 0 = A+R+ C = U + 1 ≥ 1 =⇒ A = 1, R = C = 0⇐⇒ Type ε.

In both cases, we obtain U = 0 as a byproduct, i.e. NN/K(UN ) = UK .

9. Complete verification of the Scholz conjecture

Let L be a non-cyclic totally real cubic field. Then L is non-Galois over the rational number field Q with two conjugate fields
L′ and L′′. The Galois closure N of L is a totally real dihedral field of degree 6, i.e. an S3-field, which contains a unique
real quadratic field K, as illustrated in Figure 5.

u
Q = L ∩K

rational number field ��
��

��

[K : Q] = 2

u
K

quadratic field
[L : Q] = 3

eL
L′, L′′

three conjugate cubic fields ��
��

��
uN = L ·K

S3-field (dihedral field of degree 6)

Figure 5: Hasse subfield diagram of the normal closure N/Q of L.

In 1930, Hasse [14] determined the discriminants dL of L [14, pp. 567 (1) and 575] and dN of N [14, p. 566 (2)], in
dependence on the discriminant d = dK of K and on the class field theoretic conductor f = fN/K of the cyclic cubic, and
thus Abelian, relative extension N/K:

dL = f2 · d, and dN = f4 · d3. (15)

Three years later, Scholz [39, p. 216] determined the relation

hN =
a

9
· h2L · hK (16)

between the class numbers of the fieldsN , L andK, in dependence on the index of subfield units, a = (UN : U0) = 3E , where
U0 = 〈UK , UL, UL′ , UL′′〉 and E ∈ {0, 1, 2}.

Note that E = 0, respectively a = 1, is the distinguished situation where the unit group UN of the normal field N is
entirely generated by all proper subfield units, that is, UN = U0.

Scholz was able to give explicit numerical examples [39, p. 216] for E = 1 (e.g. dL = 229), and E = 2 (e.g. dL = 148), but
not for E = 0, and he formulated the following hypothesis.

Conjecture 9.1. (The Scholz Conjecture, 1933, illustrated in Figure 6)
There should exist non-Galois totally real cubic fields L whose Galois closure N is either

1. unramified, with conductor f = 1, over some real quadratic field K with 3-class rank %3(K) = 2 whose complete 3-
elementary class group capitulates in N such that UN = U0 (in the terminology of Scholz, N is an absolute class field
over K) [39, p. 219], or
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Figure 6: Hilbert and ring class fields over K.

2. ramified, with conductor f > 1, over some real quadratic field K such that UN = U0 (here, Scholz calls N a ring class
field over K, by abuse of language) [39, p. 221].

We point out that, in the unramified situation f = 1, dL = d is a quadratic fundamental discriminant, and dN = d3 is a
perfect cube, according to Formula (15). In this unramified case, the verification of Conjecture 9.1 can be obtained from a
more general theorem, since any real quadratic fieldK with 3-class rank %3(K) = 2 possesses a multiplet of four unramified
cyclic cubic extensionsN1, . . . , N4, that is a quartet of absolutely dihedral fields of degree 6 [29] with non-Galois totally real
cubic subfields L1, . . . , L4, each of them selected among three conjugate fields.

For such a quartet, Chang and Foote [8] introduced the concept of the capitulation number 0 ≤ ν(K) ≤ 4, defined as
the number of those members of the quartet in which the complete 3-elementary class group of K capitulates. For this
number ν(K), the following theorem holds.

Theorem 9.1. For each value 0 ≤ ν ≤ 4, there exists a real quadratic field K with 3-class rank %3(K) = 2 and capitulation
number ν(K) = ν. It is even possible to restrict the claim to fields with elementary 3-class group of type Cl3(K) ' C3 × C3.

Proof. From the viewpoint of finite p-group theory, this theorem is a proven statement about the possible transfer ker-
nel types of finite metabelian 3-groups G with abelianization G/G′ ' (3, 3) applied to the second 3-class group G :=

Gal(F 2
3 (K)/K) of K [29]. However, it is easier to give explicit numerical paradigms for each value of ν(K). We have

the following minimal occurrences:
ν(K) = 4 for dK = 62 501,
ν(K) = 3 for dK = 32 009,
ν(K) = 2 for dK = 710 652,
ν(K) = 1 for dK = 534 824,
ν(K) = 0 for dK = 214 712,
which have been computed by ourselves in [29]. The existence of these cases completes the proof.

Remark 9.1. We have the priority of discovering the first examples of real quadratic fields K with ν(K) ∈ {0, 1, 2} in [29].
However, the first examples of real quadratic fields K with ν(K) ∈ {3, 4} are due to Heider and Schmithals [17], who
performed a mainframe computation on the CDC Cyber of the University at Cologne, and thus the following corollary is
proven since 1982 already.

Corollary 9.1. (Verification of Conjecture 9.1, (1) for unramified extensions; see Figure 7)
There exist non-Galois totally real cubic fields L whose Galois closure N is unramified, with conductor f = 1, over a real
quadratic fieldK with 3-class rank %3(K) = 2 whose complete 3-elementary class group capitulates inN , and which therefore
has UN = U0. The minimal discriminant of such a field L is dL = 32 009 (discovered in [17], actually, the first three members
of this quartet with DPF type (α1, α1, α1, δ1) in Table 5 satisfy the relation UN = U0).

Proof. It suffices to take a real quadratic field K with 1 ≤ ν(K) ≤ 4 in Theorem 9.1. In view of the minimal discriminant,
we select ν(K) = 3 and obtain UN = U0 for dL = dK = 32 009.

Concerning the ramified situation f > 1 in Conjecture 9.1 (2), Scholz does not explicitly impose any conditions on the
underlying real quadratic field K. We suppose that he also tacitly assumed a real quadratic field K with 3-class rank
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Figure 7: Hilbert class field over K.

%3(K) = 2. However, more recent extensions of the theory of dihedral fields by means of differential principal factorizations
and Galois cohomology, two concepts which we have expanded thoroughly in the preparatory Sections 3.2, 3.4, and 3.5,
revealed that for UN = U0 no constraints on the p-class rank %p(K) are required. In 1975, Nicole Moser [36] used the Galois
cohomology Ĥ0(G,UN ) ' UK/NN/K(UN ) of the unit group UN of the normal closure N as a module over G = Gal(N/K)

to establish a fine structure with five possible types α, β, γ, δ, ε on the coarse classification by three possible values of the
index of subfield units:
(UN : U0) = 1⇐⇒ type α with (UK : NN/K(UN )) = 3,
(UN : U0) = 3⇐⇒ type β with (UK : NN/K(UN )) = 3 or type δ with (UK : NN/K(UN )) = 1,
(UN : U0) = 9⇐⇒ type γ with (UK : NN/K(UN )) = 3 or type ε with (UK : NN/K(UN )) = 1.
Thus, Moser’s refinement does not illuminate the situation UN = U0 (⇐⇒ type α) of Scholz’s conjecture more closely.
Meanwhile, Barrucand and Cohn [4] had coined the concept of (differential) principal factorization ((D)PF) for pure cubic
fields. In 1991, we generalized the theory of DPFs for dihedral fields of both signatures [26], and we obtained a hyperfine
structure by splitting Moser’s types further according to the Fp-dimensions C of the capitulation kernel ker(TK,N ) and R
of the space of relative DPFs of N/K, which we recalled in the preparatory section 3.7. In particular, type α with UN = U0

splits into three subtypes:
type α1 ⇐⇒ C = 2, R = 0, which implies %p(K) ≥ 2,
type α2 ⇐⇒ C = 1, R = 1, which implies %p(K) ≥ 1 and a split prime divisor of f (s ≥ 1),
type α3 ⇐⇒ C = 0, R = 2, which is compatible with any %p(K) ≥ 0, but requires s ≥ 2.

Consequently, we were led to the following refinement of Conjecture 9.1, (2).

Conjecture 9.2. (Conjecture of D. C. Mayer, 1991)
Non-Galois totally real cubic fields L whose Galois closure N is ramified, with conductor f > 1, over some real quadratic
field K, and is of type α, with UN = U0, should exist for each of the following three situations:

(2.1) type α1 with dimF3(ker(TK,N )) = 2 and %3(K) = 2, s = 0,

(2.2) type α2 with dimF3(ker(TK,N )) = 1 and %3(K) = 1, s = 1,

(2.3) type α3 with dimF3
(ker(TK,N )) = 0 and %3(K) = 0, s = 2,

where TK,N : Cl3(K) → Cl3(N), a · PK 7→ (aON ) · PN , denotes the transfer homomorphism of 3-classes from K to N , and s

counts the prime divisors of the conductor f which split in K.

Theorem 9.2. (Verification of Conjecture 9.2, (2.3), and Conjecture 9.1, (2); see Figure 8)
There exist non-Galois totally real cubic fields L whose Galois closure N is ramified, with conductor f > 1 divisible by two
prime divisors which split in K, i.e. s = 2, over a real quadratic field K with 3-class rank %3(K) = 0, without capitulation
in N , and such that UN = U0. The minimal discriminant of such a field L is dL = 146853 = (7 · 9)2 · 37 (which forms a
singlet [27]).

Proof. This was proved in the numerical supplement [27] of our paper [26] by computing a gapless list of all 10 015 totally
real cubic fields L with discriminants dL < 200 000 on the AMDAHL mainframe of the University of Manitoba. There
occurred the minimal discriminant dL = 146 853 = f2 · dK with dK = 37 and conductor f = 63 = 32 · 7 divisible by
two primes which both split in K, i.e. s = 2. This is a necessary requirement for a two-dimensional relative principal
factorization with R = 2 and is unique up to dL < 200 000. (The next is dL = 240 149 with f = 7 · 13.) There is only a single
field L with this discriminant dL = 146 853 (forming a singlet).
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Figure 8: Ring class field modulo f = 63 = 32 · 7 over K.

Our discovery of the truth of Theorem 9.2 with the aid of the list [27] was a random hit without explicit intention to find
a verification of Scholz’s conjecture. Unfortunately, [27] does not contain examples of the unique missing DPF type α2. It
required more than 25 years until we focused on an attack against this lack of information. In contrast to the techniques
of [27], we did not use the Voronoi algorithm [40] after cumbersome preparation of generating polynomials for totally real
cubic fields, but rather Fieker’s class field theory routines of Magma [6, 7, 11, 25] for a direct generation of the fields as
subfields of 3-ray class fields modulo conductors f > 1.

Theorem 9.3. (Verification of Conjecture 9.2, (2.2), and Conjecture 9.1, (2); see Figure 9)
There exist non-Galois totally real cubic fields L whose Galois closure N is ramified, with conductor f > 1 divisible by
a single prime divisor that splits in K, i.e. s = 1, over a real quadratic field K with 3-class rank %3(K) = 1, with one-
dimensional capitulation of the elementary 3-class group in N , and such that UN = U0. The minimal discriminant of such
a field L is dL = 966397 = 192 · 2 677 (the first two fields of a triplet (α2, α2, δ1), discovered 19 November 2017).

Proof. The proof is conducted in the following Section 9.1.
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Figure 9: Heterogeneous quartet modulo f = 19 over K.

Theorem 9.4. (Verification of Conjecture 9.2, (2.1), and Conjecture 9.1, (2); see Figure 10)
There exist non-Galois totally real cubic fields L whose Galois closure N is ramified, with conductor f > 1 divisible only
by prime divisors which do not split in K, i.e. s = 0, over a real quadratic field K with 3-class rank %3(K) = 2, with two-
dimensional capitulation of the elementary 3-class group in N , and such that UN = U0. The minimal discriminant of such
a field L is

dL = 18251060 = 22 · 4 562 765

(the first five fields of a nonet (α1, α1, α1, α1, α1, β1, δ1, δ1, δ1), discovered 23 November 2017).

Proof. The proof is conducted in the following Section 9.2.

The proof of Theorem 9.3 and Theorem 9.4 is conducted in the following sections on real quadratic base fields with
3-class rank 1 and 2.
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9.1. Real quadratic base fields with 3-class rank 1

In Table 29, we present the results of our search for the minimal discriminant dL, respectively dN , of a non-Galois totally
real cubic field L, respectively its normal closure N , with differential principal factorization type α2. Since % = 1, the
unramified component is a singlet, which must be of DPF type δ1. Since t = s = 1, the DPF types α2, β1, β2, δ1, δ2, ε would
be possible, for each member of the ramified triplet, but only the types α2, δ1, δ2 occur usually.

The desired minimum is clearly given by dL = 192 · 2 677 = 966 397 with two occurrences of ramified extensions having
DPF type α2. For f = 32, the condition d ≡ 1 (mod 3) is required.

Table 29: Heterogeneous quartets of S3-fields with splitting prime (power) f .

unramified component ramified components
f d dL = f2 · d δ1 α2 δ1 δ2

32 14 197 1 149 957 1 3 0 0

7 21 781 1 067 269 1 2 1 0

13 9 749 1 647 581 1 2 0 1

19 2 677 966397 1 2 1 0

31 3 877 3 725 797 1 2 0 1

37 5 477 7 498 013 1 1 0 2

43 4 933 9 121 117 1 3 0 0

61 3 981 14 813 301 1 3 0 0

67 4 493 20 169 077 1 2 0 1

73 10 733 57 196 157 1 3 0 0

Since we know a small candidate dL = 966 397 for the minimal discriminant, and since the smallest quadratic fundamental
discriminant with % = 1 is d = 229, we only have to investigate prime and composite conductors f =

√
dL
dK

with s ≥ 1 and

f ≤
√

966 397

229
≈
√

4220 ≈ 64.9,

which are divisible by a split prime, that is,

f ∈ {7, 9 = 32, 13, 14 = 2 · 7, 18 = 2 · 32, 19, 21 = 3 · 7, 26 = 2 · 13, 31, 35 = 5 · 7, 37,

38 = 2 · 19, 39 = 3 · 13, 42 = 2 · 3 · 7, 43, 45 = 5 · 32, 57 = 3 · 19, 61, 62 = 2 · 31, 63 = 7 · 32}.

The result of the investigations is summarized in Table 30, which clearly shows that dL = 966397, for d = 2 677 and
splitting prime conductor f = 19 bigger than the conductor f = 1 of unramified extensions N/K, is the desired minimal
discriminant of a totally real cubic field with ramified extension N/K, DPF type α2 and UN = U0. The information has
been computed with Fieker’s class field theoretic routines of Magma [11,25].
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Table 30: Heterogeneous quartets of S3-fields with conductor f , where s = 1.

unramified component ramified components
f condition d dL = f2 · d δ1 α2 β1 β2 δ1 δ2
7 21 781 1 067 269 1 2 0 0 1 0

32 d ≡ 1 (3) 14 197 1 149 957 1 3 0 0 0 0

13 9 749 1 647 581 1 2 0 0 0 1

19 2 677 966397 1 2 0 0 1 0

31 3 877 3 725 797 1 2 0 0 0 1

37 5 477 7 498 013 1 1 0 0 0 2

43 4 933 9 121 117 1 3 0 0 0 0

61 3 981 14 813 301 1 3 0 0 0 0

2 · 7 6 997 1 371 412 1 3 0 0 0 0

2 · 32 d ≡ 1 (3) 16 141 5 229 684 1 3 0 0 0 0

3 · 7 d ≡ 3 (9) 28 137 12 408 417 1 3 0 0 0 0

3 · 7 d ≡ 6 (9) 57 516 25 364 556 1 3 0 0 0 0

2 · 13 21 557 14 572 532 1 3 0 0 0 0

5 · 7 14 457 17 709 825 1 3 0 0 0 0

2 · 19 13 765 19 876 660 1 3 0 0 0 0

3 · 13 d ≡ 3 (9) 51 528 78 374 088 1 3 0 0 0 0

3 · 13 d ≡ 6 (9) 37 176 56 544 696 1 3 0 0 0 0

2 · 3 · 7 d ≡ 3 (9) 891 237 1 572 142 068 1 4 1 1 0 0

2 · 3 · 7 d ≡ 6 (9) 474 261 836 596 404 1 2 0 1 0 0

5 · 32 d ≡ 1 (3) 24 952 50 527 800 1 1 0 0 1 1

3 · 19 d ≡ 3 (9) 24 393 79 252 857 1 3 0 0 0 0

3 · 19 d ≡ 6 (9) 39 417 128 065 833 1 3 0 0 0 0

2 · 31 7 573 29 110 612 1 3 0 0 0 0

7 · 32 d ≡ 1 (3) 2 941 11 672 829 1 3 0 0 0 0

7 · 32 d ≡ 2 (3) 23 993 95 228 217 1 3 0 0 0 0

9.2. Real quadratic base fields with 3-class rank 2

In this situation, the unramified quartet is non-trivial, since two DPF types α1 and δ1 are possible. These quartets have
been thoroughly studied in [29], and in Table 31 and 32, we use the corresponding notation for capitulation types.

In Table 31, we present the results of the crucial search for the minimal discriminant dL, respectively dN , of a non-
Galois totally real cubic field L, respectively its normal closure N , with differential principal factorization type α1 such
that N/K is a ramified extension of a real quadratic field K with 3-class rank % = 2. We tried to fix the minimal possible
conductor f > 1, namely f = 2. This experiment was motivated by the fact that the conductor f enters the expression
dL = f2 · d in its second power, whereas the quadratic discriminant d enters linearly. Consequently, the probability to find
the minimum of dL is higher for small f than for small d.

The table is ordered by increasing quadratic fundamental discriminants d and gives dL = 22 · d and the Artin pat-
tern (κ, τ) of the heterogeneous tridecuplet of cyclic cubic relative extensions N/K consisting of an unramified quartet
(N1,1, . . . , N1,4) with conductor f ′ = 1 and a ramified nonet (N2,1, . . . , N2,9) with conductor f = 2, grouped by the possible
two, respectively four, DPF types α1, δ1, respectively α1, β1, δ1, ε. Transfer kernels κ are abbreviated by digits, 0 for two-
dimensional and 1, . . . , 4 for one-dimensional principalization, and an asterisk ∗ for a trivial kernel. Transfer targets τ are
abbreviated by logarithmic Abelian type invariants of 3-class groups. Symbolic exponents always denote iteration.

The desired minimum is given by dL = 4 · 4 562 765 = 18251060 with five occurrences of ramified extensions with DPF
type α1. Generally, there is an abundance of ramified extensions with two-dimensional capitulation kernel: at least three
and at most all nine of a nonet.

Table 32 shows analogous results for the conductor f = 5, that is, dL = 52·d. The minimum dL = 25·1 049 512 = 26 237 800

is clearly beaten by the minimum 4 · 4 562 765 = 18 251 060 in Table 31.
Since we know a small candidate dL = 18 251 060 for the minimal discriminant, and since the smallest quadratic dis-

criminant with % = 2 is d = 32 009, we only have to investigate prime and composite conductors f =
√

dL
dK

with

f ≤
√

18 251 060

32 009
≈
√

570.2 ≈ 23.9,
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Table 31: Artin pattern (κ, τ) of heterogeneous multiplets modulo f = 2.

unramified components ramified components
α1 δ1 α1 β1 δ1 ε

dK Type κ τ κ τ κ τ κ τ κ τ κ τ

4562765 a.3∗ 03 (12)3 1 13 05 2212, (14)4 1 15 142 (213)3

7 339 397 a.3∗ 03 (12)3 1 13 07 (14)7 2 213 1 213

7 601 461 a.3 03 (12)3 1 21 06 2212, (14)5 234 (213)3

7 657 037 a.3 03 (12)3 1 21 06 (14)6 1 213 12 15, 213

7 736 749 a.3∗ 03 (12)3 1 13 07 (14)7 42 (213)2

8 102 053 a.3∗ 03 (12)3 1 13 07 (14)7 23 15, 213

9 182 229 a.2 03 (12)3 4 21 08 2212, (14)7 2 213

9 500 453 a.3 03 (12)3 1 21 08 2212, (14)7 3 213

9 533 357 a.3 03 (12)3 1 21 06 (14)6 1 213 23 (213)2

11 003 845 a.3 03 (12)3 1 21 04 (14)4 12242 15, (213)4

12 071 253 a.3 03 (12)3 1 21 07 (14)7 3 213 2 213

14 266 853 a.3 03 (12)3 1 21 08 2212, (14)7 4 213

14 308 421 a.3∗ 03 (12)3 1 13 04 (14)4 12234 231, (213)3, 15

14 315 765 a.3 03 (12)3 1 21 07 (14)7 23 (213)2

14 395 013 a.3∗ 03 (12)3 1 13 06 (14)6 1 213 23 (213)2

15 131 149 D.10 2414 (21)3, 13 07 (14)7 1 213 1 213

16 385 741 a.3∗ 03 (12)3 1 13 04 (14)4 2324 (213)4 ∗ 3221

Table 32: Artin pattern (κ, τ) of heterogeneous multiplets modulo f = 5.

unramified components ramified components
α1 δ1 α1 β1 δ1 ε

dK Type κ τ κ τ κ τ κ τ κ τ κ τ

1 049 512 a.3 03 (12)3 1 21 04 (14)4 2343 (213)5

2 461 537 a.2 03 (12)3 4 21 07 (14)7 12 (213)2

2 811 613 a.3∗ 03 (12)3 1 13 05 2212, (14)4 2 213 123 (213)3

3 091 133 a.3 03 (12)3 1 21 04 (14)4 4 213 132 (213)4

5 858 753 G.19 2143 (21)4 07 (2212)3, (14)4 3 213 ∗ 214

6 036 188 D.10 3431 13, (21)3 08 (14)8 ∗ 2212

that is,
f ∈ {2, 3, 5, 6 = 2 · 3, 7, 9 = 32, 10 = 2 · 5, 11, 13, 14 = 2 · 7,

15 = 3 · 5, 17, 18 = 2 · 32, 19, 21 = 3 · 7, 22 = 2 · 11, 23}.

The result of the investigations is summarized in Table 33, which clearly shows that dL = 18251060, for d = 4 562 765 and
the smallest possible conductor f = 2 bigger than the conductor f = 1 of unramified extensions N/K, is the desired mini-
mal discriminant of a totally real cubic field with ramified extension N/K, DPF type α1 and UN = U0. The information
has been computed with Fieker’s class field theoretic routines of Magma [11,25].

9.3. Scholz conjecture for p ≥ 5

We have been curious if the conjecture of Scholz can also be verified for dihedral fields N/Q of degrees 10 and 14. This is
indeed the case, and the root discriminants f2 · d in the following theorem are probably minimal.

Theorem 9.5. Let p be an odd prime number. Suppose L is a non-Galois number field of degree pwith totally real absolutely
dihedral Galois closure N of degree 2p, and let K be the unique real quadratic subfield of N . Then N satisfies the condition
UN = U0 := 〈UK , UL, UL(1) , . . . , UL(p−1)〉,

1. if dL = (f2 · d)2 with f = 11 · 31, d = 5, f2 · d = 581 405, when p = 5,

2. if dL = (f2 · d)3 with f = 29 · 43, d = 13, f2 · d = 20 215 117, when p = 7.
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Table 33: Heterogeneous tridecuplets of S3-fields with conductor f .

unramified components ramified components
f condition d dL = f2 · d α1 δ1 α1 β1 δ1 ε

2 4562765 18251060 3 1 5 1 3 0

3 d ≡ 3 (9) 9 964 821 89 683 389 3 1 4 0 4 1

5 1 049 512 26 237 800 3 1 4 0 5 0

7 966 053 47 336 597 3 1 4 0 4 1

32 d ≡ 1 (3) 1 482 568 120 088 008 3 1 5 1 2 1

32 d ≡ 2 (3) 2 515 388 203 746 428 3 1 6 1 2 0

32 d ≡ 6 (9) 621 429 50 335 749 3 1 6 0 3 0

11 476 152 57 614 392 3 1 7 0 2 0

13 1 122 573 189 714 837 3 1 7 0 2 0

17 665 832 192 425 848 3 1 7 0 2 0

19 635 909 229 563 149 3 1 5 3 1 0

23 390 876 206 773 404 3 1 7 1 1 0

2 · 3 d ≡ 3 (9) 5 963 493 214 685 748 3 1 7 2 0 0

2 · 3 d ≡ 6 (9) 4 305 957 155 014 452 0 4 6 3 0 0

2 · 5 363 397 36 339 700 3 1 6 3 0 0

2 · 7 358 285 70 223 860 4 0 7 2 0 0

3 · 5 d ≡ 3 (9) 4 845 432 1 090 222 200 3 1 6 3 0 0

3 · 5 d ≡ 6 (9) 1 646 817 370 533 825 3 1 6 3 0 0

2 · 32 d ≡ 1 (3) 2 142 445 694 152 180 3 1 6 3 0 0

2 · 32 d ≡ 2 (3) 635 909 206 034 516 3 1 6 3 0 0

2 · 32 d ≡ 6 (9) 2 538 285 822 404 340 3 1 6 3 0 0

3 · 7 d ≡ 3 (9) 3 597 960 1 586 700 360 3 1 6 3 0 0

3 · 7 d ≡ 6 (9) 3 122 232 1 376 904 312 0 4 6 3 0 0

2 · 11 2 706 373 1 309 884 532 3 1 6 3 0 0

In both cases, the conductor is of the form f = `1 · `2 with prime numbers `i ≡ +1 (mod p) which split in K, and L is a singlet
with differential principal factorization type τ(L) = α3.

Proof. By immediate inspection of real quadratic fieldsK with p-class rank %p = 0 and p-admissible conductors f , divisible
by two primes which split in K, with the aid of Magma.

10. Conclusion

In this paper, we have given the complete classification of all multiplets of totally real cubic fieldsL in the range 0 < dL < 107

of Llorente and Quer [24] according to their differential principal factorizations (Tables 13 and 14). Inspired by discussions
after our two presentations at the West Coast Number Theory Conference in Asilomar, December 1990, we had attempted
this classification in August 1991 already, but we were forced to restrict the range to the upper bound 2 · 105 in [27]. In
spite of the required correction of 14 errors (Tables 8 and 9), the table [27] and the associated theory [26], thirty years ago,
were a progressive innovation concerning DPF types of multiplets of dihedral fields, and a prototype for the present paper
and its predecessor [35].

We have also given the complete verification of the Conjecture of Arnold Scholz (Conjecture 9.1). It was necessary to
develop the new concept of relative principal factorizations in order to illuminate the full reach of this conjecture, which
we have reformulated more ostensively in Conjecture 9.2. Due to the computational challenges, the proof of each of the
different perspectives of the conjecture was established many years after Scholz’s paper in 1933 [39]: Corollary 9.1 on f = 1

was proved 49 years later in 1982 [17], Theorem 9.2 concerning the type α3 singulet 58 years later in 1991 [27], Theorem
9.3 on the triplet containing type α2 even 84 years later on 19 November 2017, and Theorem 9.4 on the nonet containing
type α1 with f > 1 also 84 years later on 23 November 2017.

In our ultimate Table 34, we emphasize the apparent asymptotic tendencies of DPF types, based on five ranges of
discriminants 0 < dL < B with increasing upper bounds B. Relative frequencies are rounded to integer percentages. It is
striking that the normal closures N of an overwhelming proportion with 93% of all totally real cubic fields L have a unit
group UN which is a non-split extension of UK = 〈−1, η〉 if considered as a module over the integral group algebra Z[S3],
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since it contains a unit H such that NN/K(H) = H ·Hσ ·Hσ2

= η, according to Remark 3.3.
This phenomenon is due to extremely dominating unramified extensions N/K with conductor f = 1, % = 1, and mandatory
type δ1 (72%), and ramified extensions N/K with regular prime(power) conductor f , % = 0, and mandatory type ε (21%).
In contrast, the contributions by the rare types α2 and α3 and by the cyclic cubic fields ζ are in fact negligible. In spite
of its distinctive dominance for conductors with two or more prime divisors, type γ remains marginal with 2%. Other
marginal (but not negligible) contributions arise from type α1, due to increasing occurrences of % = 2, from type β1, due
to capitulation in ramified extensions with % = 1, and from the types β2 and δ2, due to conductors f with a prime divisor
which splits in the quadratic subfield K < N .

Table 34: Tendencies of the statistical distribution of DPF types.

B 1500 105 2 · 105 5 · 105 107

Type # % # % # % # % # %

α1 0 0 16 0 50 1 175 1 7951 1

α2 0 0 0 0 0 0 0 0 142 0

α3 0 0 0 0 1 0 3 0 122 0

β1 0 0 10 0 21 0 89 0 3924 1

β2 0 0 76 2 155 2 380 1 7639 1

γ 2 4 106 2 201 2 493 2 9420 2

δ1 26 59 3349 70 7028 70 18714 71 426972 72

δ2 0 0 79 2 188 2 490 2 11128 2

ε 10 23 1117 23 2301 23 5986 23 125123 21

ζ 6 14 51 1 70 1 110 0 501 0
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