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ABSTRACT
The formulation of structured queries in Knowledge Graphs is
a challenging task since it presupposes familiarity with the syn-
tax of the query language and the contents of the knowledge
graph. To alleviate this problem, for enabling plain users to for-
mulate SPARQL queries, and advanced users to formulate queries
with less effort, in this paper we introduce a novel method for
“SPARQL by Example". According to this method the user points
to positive/negative entities, the system computes one query that
describes these entities, and then the user refines the query in-
teractively by providing positive/negative feedback on entities
and suggested constraints. We shall demonstrate SPARQL-QBE, a
tool that implements this approach, and we will briefly refer to
the results of a task-based evaluation with users that provided
positive evidence about the usability of the approach.

1 MOTIVATION AND NOVELTY
To enable plain users to formulate SPARQL queries, and aid
knowledgeable users to formulate SPARQL queries with less ef-
fort, in this paper we present “SPARQL by Example", a novel
interactive method for formulating queries. The approach is in-
spired by the Query-by-Example paradigm [5] that was developed
in the context of Relational Databases, as well as by the relevance
feedback mechanisms in Information Retrieval.

Although there are some works that aim at offering a QBE-
like interaction over Knowledge Graphs in RDF, i.e. [1, 3, 4],
our approach has some distinctive characteristics. In particular,
“Qbees" [4] neither supports negative examples nor produces a
pure SPARQL query, “Query from examples" [3] requires from the
user to answer a number of questions, while “Reverse engineering
SPARQL queries" [1] cannot receive feedback on the generated
constraints.

2 APPROACH
The main idea is the following: The user provides one or more
entities, that (s)he may have discovered while browsing or by key-
word search. We then compute one query whose result contains
the provided plus other entities that have commonalities with
the entities provided by the user. Then the user can refine the
formulated answer (and query) by providing interactively pos-
itive/negative feedback, by selecting/rejecting constraints that
are given to the user, as well as positive/negative examples.

2.1 The tool SPARQL-QBE in Brief
To grasp the idea, Figure 1 shows the start of the interaction loop.
The user selects (through keyword search) as starting examples
the films “The Prestige” and “The Dark Knight”. The system
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Figure 1: Finding movies through examples and feedback
(via SPARQL-QBE)

then generates the list of common constraints and returns all
entities that comply with them. The user then has the option to
either access the results and the generated SPARQL query, or
continue refining the results by giving feedback. In our case the
user by typing the titles of two movies, managed to formulate
the query “movies with Christian Bale and Michael Caine, with
director Christoopher Nolan and producer Emma Thomas, and
can directly see the answer of that query (the movies “Batman
Begins" and The “Dark Knight Rises" as shown in Figure 1(right)),
as well as the SPARQL query, i.e.:
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>

SELECT ?x WHERE {
?x rdf:type dbo:Film .
?x dbo:director dbr:Christopher_Nolan .
?x dbo:producer dbr:Emma_Thomas .
?x dbo:starring dbr:Christian_Bale .
?x dbo:starring dbr:Michael_Caine .

}

If the user is not interested in the involvement of the actor
“Christian Bale” the constraint “dbp:starring = Christian Bale” can
be flagged as unwanted. The system will then generate a new list
of constraints that still describe all the examples but ignore the
actor.

2.2 The Interactive Loop Algorithm
The process starts by selecting (by browsing, keyword search or
any other access method) one ormore positive examples 𝐸𝑃 . Then
it enters into an interaction loop where the system can accept
four kinds of input: the positive 𝐸𝑃 and negative 𝐸𝑁 set of entities,
and the positive𝐶𝑃 and negative𝐶𝑁 set of constraints. Note that
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constraints over path expressions are also supported. Given a
dataset and the 4 inputs, the system will output always the same
query 𝑞 (i.e. the order of feedback does not affect the output),
and the answer of the query 𝐴. The steps of the above process
are shown in Alg. 1. In particular, in each loop of the interaction,
after inspecting the answer 𝐴 of the current query, the user can
either: (i) provide positive or negative feedback to the entities
of the answer received by selecting elements of 𝐴, defining in
this way the new set of positive and negative examples 𝐸 ′

𝑃
=

(𝐸𝑃 ∪𝐸𝑃𝑎𝑑𝑑𝑒𝑑 )\𝐸𝑃𝑑𝑒𝑙𝑒𝑡𝑒𝑑 , and 𝐸 ′𝑁 = (𝐸𝑁 ∪𝐸𝑁𝑎𝑑𝑑𝑒𝑑
)\𝐸𝑁𝑑𝑒𝑙𝑒𝑡𝑒𝑑 ),

(ii) delete one of the constraints 𝑐 of the original query 𝑞, and this
changes the set of unwanted constraints, i.e. 𝐶𝑁 ′ = 𝐶𝑁 ∪ {𝑐},
(iii) add a new constraint by clicking on the (𝑝,=, 𝑣) values of
the elements of the answer; he can also add such a constraint in
negated form (𝑝 ≠ 𝑣), and get 𝐶𝑃 ′ = 𝐶𝑃 ∪ {(𝑝, 𝑜𝑝, 𝑣)}.

Line 2 of the algorithm finds the common constraints of the se-
lected entities, defined as CC(𝐸𝑃 ) = { (𝑝, 𝑣) | ∀𝑒 ∈ 𝐸𝑃 , (𝑒, 𝑝, 𝑣) ∈
𝐾𝐺} where 𝐾𝐺 is the underlying knowledge graph. Line 3 com-
putes those queries of the powerset of 𝐶 whose answer does not
contain any of the negative examples. As regards ranking (line
4) the elements of 𝑄 are ranked according to their expected an-
swer size, for providing a query relaxation behaviour. A smaller
answer size is considered as a more constrained query that fits
all the requirements. The size of each query in 𝑄 can be approx-
imated by the frequency of its constraints (method 𝑀 𝑓 𝑟𝑒𝑞) or
evaluated and computed exactly (method 𝑀𝑐𝑜𝑛𝑗 ). The latter is
more expensive and it is suggested if the size of the KG is not
very big.

Algorithm 1 QBE Interactive Loop
1: function QBE-Interactive(𝐸𝑃 , 𝐸𝑁 : sets of entities,𝐶𝑃 ,𝐶𝑁 : sets of

constraints)
2: 𝐶 ← (CC(𝐸𝑃 ) ∪𝐶𝑃 ) \𝐶𝑁

3: 𝑄 ← {𝑞 | 𝑞 ∈ 𝑃 (𝐶), 𝑎𝑛𝑠 (𝑞) ∩ 𝐸𝑁 = ∅}
4: 𝑞 ← 𝑅𝑎𝑛𝑘 (𝑄) [1] ⊲ the first query in the rank
5: while 𝑎𝑛𝑠 (𝑞) = 𝐸𝑃 do ⊲ no extra entities
6: 𝑞 ← next element of 𝑅𝑎𝑛𝑘 (𝑄) ⊲ The next in the rank query
7: end while
8: show 𝐴 = 𝑎𝑛𝑑 (𝑞)
9: Receive any input from the user and get 𝐸′

𝑃
, 𝐸′

𝑁
,𝐶′

𝑃
,𝐶′

𝑁

10: call QBE-Interactive (𝐸′
𝑃
, 𝐸′

𝑁
,𝐶′

𝑃
,𝐶′

𝑁
)

2.3 Demonstration Scenario
The application starts in a keyword search mode for enabling
the user to find the starting examples, an example is shown in
Figure 2. The user can continue in this way for providing more
examples, as shown in Figure 2 (bottom part).

After the user selects any number of examples and exits the
keyword search mode, i.e. it presses “Query Formulation" at the
top bar, the application provides the first list of constraints and the
corresponding results. The user can delete unwanted constraints,
can provide more positive/negative examples, as shown in Figure
3.

Moreover the tool makes evident the constraints that each
entity satisfies (marked green), and enables positive/negative
constraints through the entities, as shown in Figure 4.

For the support of property paths, every property value can be
extended to display all of its property-value pairs in an indented
second list as shown in Figure 5. The user can then create a prop-
erty path constraint by selecting one of the second list property
value pairs. This behaviour is supported recursively, i.e. the user

Figure 2: SPARQL-QBE: Step 1: Keyword Search and marking
positive and negative examples

Figure 3: SPARQL-QBE: Step 2: Negative feedback on common
constraints, and more positive/negative examples

Figure 4: SPARQL-QBE: Making evident constraint satisfaction,
and constraint feedback through entities

can extend a property value from the second list into a indented
third list.

2.4 Expressive Power
By interacting with the system the system eventually formulates
one conjunctive query. Given that the process starts by giving
one or more positive examples, these examples should belong to
the same class, or have a superclass in common. If the examples
belong to different classes then it is not clear how such input
should be interpreted.
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Figure 5: Feedback with path expressions

Except from class-based restriction, the rest constraints of the
generated query are positive or negative property-value matches.
Since the system allows path expressions, the query can contain
various path-based restrictions, consequently, even if all the ex-
amples are of the same (direct or indirect) class, the property
paths indirectly allow for constraints that relate to multiple other
classes.

3 COMPARISON WITH RELATED
APPROACHES AND SYSTEMS

There are several tools, “example"-based or not, that can generate
queries like those that can be formulated by SPARQL-QBE. However
the process that the user has to follow is fundamentally different.

Comparison with systems that do not support the notion
of "Example". Without examples, the first step a user has to
make is to provide/select a property, a value of that property, or
in general some constraint on that property. Even if a system
provides a list of all available properties and values of the KG, the
user still has to know the commonalities of the desired entities
and how they are represented in the context of the tool used.
Instead, with the notion of example, the only requirement for the
user is to provide a single example (two examples are suggested
but not required), and then the feedback loop will assist him/her
to generate the desired query.

Consequently, we could say that in general we have two
possible starting points: (a) single property constraints (for not
example-based systems), and (b) single examples (for example-
based systems). The expressive power (or restriction capability)
of the two options are not equal. For instance, from two examples
a system may infer several (common) constraints, but from two
property constraints a system cannot infer anything more. There-
fore, in cases where the desired number of constraints is large,
even if these constraints are known, an example-based approach
may be faster than non example-based systems (like Faceted
Search). We should also note that in SPARQL-QBE, apart from the
support of examples, if the user cannot provide any example,
(s)he can alternatively start by providing a wanted constraint and
then continue with the feedback loop; this is a distinctive feature
of SPARQL-QBE in comparison to other example-based systems.

Comparison with systems that support the notion of "Ex-
ample". Compared to example-based systems like “Query from
examples" [3], instead of explicitly asking for more information
from the user before a query is provided to the user, SPARQL-QBE
provides the best query and then through the feedback loop the
user can provide more information of his own choosing. In com-
parison to “Reverse engineering SPARQL queries" [1], that work
cannot receive feedback on the generated constraints, therefore
has lower interactivity.

4 IMPLEMENTATION AND EVALUATION.
The implementation of SPARQL-QBE is a JavaScript application,
with no need for a server for the time being. All the triples are
contained in a JSON file packaged with the application that the
user loads once with the first load of the application.

4.1 Datasets
We have tested various datasets. For the needs of the task-based
evaluation with users we selected a dataset containing most
well documented films and actors from DBpedia whose size is
1,083,029 triples (112,668 films, 43,157 actors). A deployment of
SPARQL-QBE with this dataset is accessible through https://demos.
isl.ics.forth.gr/SPARQL-QBE/.

4.2 Efficiency
Overall, for the datasets described earlier, we have real time inter-
action. At the initialization of the system the more time consum-
ing task is the downloading of the dataset from the server to the
browser of the client (for the compressed movie dataset: 6.4MB
∼ 2.5s). Below we report execution times assuming a dataset
with one 1 million of RDF triplets. The two main operations are
the “Keyword search" with average time 126ms and the “Query
execution" with average time 103ms. For the two ranking meth-
ods𝑀𝑐𝑜𝑛𝑗 and𝑀 𝑓 𝑟𝑒𝑞 with caching we achieve executions under
10ms, however for the first time their execution is equivalent to
a “Query execution" for each of the constraint that they evaluate.
Overall, a single feedback loop of the system, which mainly con-
sists of the twomethods initially last from one up to an average of
8 “Query executions" (∼ 103-824 ms), then after a couple of feed-
back loops (with the utilization of the caches) the time decreases
down the same time as a single “Query execution" (∼ 103ms).
Time measurements performed with Intel Core i5-8250U/8GB
RAM using Chromium v96.0.4664.45.

4.3 Evaluation with Users
We conducted a preliminary and small scale task-based evaluation
with users to see if users can use and/or like this interaction
paradigm and for collecting feedback for improving the GUI, as
well as the process. We used the 10 tasks shown in Table 1. Notice
that the tasks are not trivial (like “find the x property of y"), but
correspond to more complex information needs.
Task Selection. The first two tasks T1-2 require a simple query
generation based from two examples. T3 requires the user to
provide feedback to the system. T4-5 require the user to access
more generated information than query results. T6 requires the
use of the constrain examples instead of entity examples. T7-10
are more general and simulate tasks where the user have some
preexisting knowledge and uses the system to retrieve related
information.
Participants, Questionnaire and Results.We invited by email
various persons to participate in the evaluation voluntarily. The
users were asked to carry out the tasks and to fill (anonymously)
the prepared questionnaire. No training material was given to
them, just a paragraph with basic instructions and the participa-
tion to this evaluation was optional (invitation by email). Eventu-
ally, 22 persons participated (fromApril 14, 2022 to April 30, 2022).
The number was sufficient for our purposes since, according to
[2], 20 evaluators are enough for getting more than 95% of the us-
ability problems of a user interface. In numbers, the participants
were 22.7% female and 77.3% male, with ages ranging from 19 to
52 years; with 70% almost uniform distributed from 19 to 30. As
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Table 1: Evaluation Tasks

ID Task
T1 1. From the series of Batman movies, like “Batman Begins" and “The

Dark Knight", try to find the names of other such movies
T2 2a. You know about “Before Sunset" and its sequel “Before Midnight",

try to find the name of the third film of the series. (continues)
T3 2b. Try to find movies that have some properties in common with

“Before" movies (you can utilize the NOTE 1 above).
T4 3a. What the movies “The Prestige" and “The Dark Knight" have in

common other than actors. (continues)
T5 3b. Count howmany movies the director and producer of “The Prestige"

and “The Dark Knight" have made.
T6 4. Find the last Harry Potter movie “Harry Potter and the Deathly

Hallows" and instead of selecting the movies, select only the actors
“Daniel Radcliffe" and “Emma Watson". Count in how many movies
both actors participate.

T7 5. In the movies “Agent Carter" and “Captain America: The First
Avenger" we know that “Hayley Atwell" plays the character Agent
Carter, try to find the name of other movies possibly containing the
character. (note that the movie “The Duchess" has no relation to the
character “Agent Carter")

T8 6a. Count how many movies are in the “Wolverine" series with the actor
“Hugh Jackman". (continues)

T9 6b. What all the movies with “Wolverine" have in common.
T10 7. Find a movie with “Michael Caine" and “Leonardo DiCaprio"

regards occupation and skills, all have studied Computer Science
(CS): 55% undergraduate and 45% postgraduate CS students.

The questionnaire is shown below, enriched with the results
of the survey in the form of percentages written in bold:

Q1 How would you rate the “Keyword Search" tab?: Very user friendly
(50%), User friendly (45.5%), Not user friendly (4.5%), Very diffi-
cult to use (0%)

Q2 Rate the usability of the “Query Formulation" tab: Very user friendly
(4.5%), User friendly (81.8%), Not user friendly (13.6%), Very
difficult to use (0%)

Q3 How would you describe the workflow?: Very Intuitive (9.1%), Intu-
itive (77.3%), Unintuitive (13.6%), Very Unintuitive (0%)

Q4 How would you describe the constraint representation?: Very Intu-
itive (22.7%), Intuitive (59.1%), Unintuitive (18.2%), Very Unintu-
itive (0%)

Q5 Would you prefer instead of the two tabs a single page with all the
functionality?: Yes (40.9%), Indifferent (18.2%), No (40.9%)

Q6 Would you use the app to formulate queries?: Yes (40.9%), Maybe
(59.1%), No (0%)

Q7 Would you use the app to find a movie? Yes (77.3%), Maybe (22.7%),
No (0%)

Q8 Have you ever formulated a SPARQL query? Never (22.7%), Only a
few times (without using SPARQL) (13.6%), Quite a lot (63.6%).

Q9 How would you rate the entire system? Very Useful (27.3%), Useful
(72.7%), Little Useful (0%), Not Useful (0%)

Q10 You can report here errors, problems, or recommendations. (free text
of unlimited length)

The results were very positive: By summing the two positive
options (Very user-friendly/intuitive, user-friendly/intuitive), we
can see that most users find it user-friendly (86.3% in Q2), find
the workflow intuitive (86.4% in Q3), they liked the constraint
representation (81.8% in Q3), they rated the system useful (100%
in Q9), and it is interesting that many would use the system to
find movies (Q7).
Task Performance. From the 220 collected responses (10 tasks
x 22 participants), 65 (30%) reported failure to find the requested
information. Inmost cases of the failed responses, the participants
were able to find some answer which was either incomplete or
wrong. Only in a few cases (6 responses, i.e.∼ 2%) the participants
were unable to translate the task into actions for the system
and were unable to find any answer. As shown in Figure 6, the
participants faced problems mainly at task T8. The task did not

imply a clear course of actions and so 8 participants (36%) ended
up with correct answer, 10 (45%) with different answers and 4
(18%) failed to answer. From the 4 participants that had never
used SPARQL, we have only 6 (15%) wrong responses however
half of them reported that system is somewhat unintuitive to
work with but still useful and they would maybe use it again in
the future.

Figure 6: Success Rate by Task

5 CLOSING REMARKS.
We proposed a novel interactive method for SPARQL query for-
mulation, for enabling users to formulate queries by providing
examples and various kinds of feedback. The method can aid plain
users and save effort from advanced users. The method can lever-
age other access methods (keyword search, browsing), it supports
gradual formulation, and various kinds of interactive feedback.
We described the algorithmic aspect and presented an interactive
user interface that implements the approach. We have applied
it in real datasets from DBpedia, and showcased the feasibility
and the effectiveness of the approach. A running prototype is
accessible through https://demos.isl.ics.forth.gr/SPARQL-QBE/.
A task-based evaluation with users, that included users that are
not familiar with SPARQL, provided evidence that the interaction
is easy-to-grasp, intuitive and user-friendly and enabled the users
to formulate the desired queries. The method could be applied not
only to RDF, but on any graph database, and could be extended to
various directions. There are several issues that are worth further
research. For instance, at system level, one could easily extend
the interactive system for specifying also the desired columns of
the answer, as well as manual editing of the SPARQL query (e.g.
for turning a URI of a triple pattern to a variable).
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