DOI QR코드

DOI QR Code

Reaction Monitoring of Imine Synthesis Using Raman Spectroscopy

  • Published : 2003.02.20

Abstract

Laser-induced Raman spectroscopy has been utilized to demonstrate its feasibility for studying the kinetics of imine formation in chloroform solvent. The imine formation, by the nucleophilic addition of primary amine to the carbonyl group of ketone, has been monitored at ten minute intervals for eight hours. The intensity of the C=O stretching mode at 1684 $cm^{-1}$ was measured to determine the rate constant of the reaction. In order to correct the sample-to-sample fluctuations in Raman peak area, this peak was normalized to the C-Cl bending peak at 666 $cm^{-1}$. By the peak area change during the course of reaction, the second order rates at three different temperatures have been determined. The substituent effects on the π conjugations of imine product have also been investigated. On the basis of Raman frequency shifts, the delocalization properties of the aromatic system modified by substitution of a hydrogen atom with -Cl and $-CH_3O$ groups could be clearly understood.

Keywords

References

  1. Vdovenko, S. I.; Gerus, I. I.; Wojcik, J. J. Phys. Org. Chem. 2001, 14, 533. https://doi.org/10.1002/poc.390
  2. Kohler, M. A.; Richarz, W. Chem. Engng. Sci. 1985, 10, 1983.
  3. Smith, M. B.; March, J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structures, 5th Ed.; John Wileys & Sons, Ltd.: Chichester, UK, 2001; pp 1177-78
  4. Bruneel, J. L.; Lassegues, J. C.; Sourisseau, C. J. Raman Spectrosc. 2002, 33, 815. https://doi.org/10.1002/jrs.915
  5. Jeon, S.; Woo, J.; Kyong, J. B.; Choo, J. Bull. Korean Chem. Soc. 2001, 22, 1264.
  6. Jeon, S.; Choo, J.; Kim, S.; Kwon, Y.; Kim, J.; Lee, Y.; Chung, H. J. Mol. Struct. 2002, 609, 159. https://doi.org/10.1016/S0022-2860(01)00968-1
  7. Korovenicheva, I. K.; Furin, G. G.; Yakobson, G. G. J. Mol. Struct. 1984, 114, 395. https://doi.org/10.1016/0022-2860(84)87171-9
  8. Schmid, E. D.; Schlenker, P.; Brand, R. R. M. J. Raman Spectrosc. 1977, 6, 314. https://doi.org/10.1002/jrs.1250060610
  9. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502. https://doi.org/10.1021/jp960976r
  10. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
  11. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  12. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clliford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowsski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7; Gaussian Inc.: Pittsburg PA, 1998.

Cited by

  1. Dielectric Relaxation of New Aniline Methyl Methacrylate Copolymer Synthesized by Gamma Irradiation Initiated Polymerization vol.22, pp.5, 2010, https://doi.org/10.1177/0954008309345551
  2. On the interpretation of the Raman spectra of Maya Blue: a review on the literature data vol.42, pp.1, 2011, https://doi.org/10.1002/jrs.2642
  3. Catalytic Methods for Imine Synthesis vol.2, pp.9, 2013, https://doi.org/10.1002/ajoc.201300012
  4. Development of an Online Raman Analysis Technique for Monitoring the Production of Biofuels vol.30, pp.5, 2016, https://doi.org/10.1021/acs.energyfuels.6b00313
  5. Enhancement of Solubility and Bioavailability of Quercetin by Inclusion Complexation with the Cavity of Mono-6-deoxy-6-aminoethylamino-β-cyclodextrin vol.38, pp.8, 2017, https://doi.org/10.1002/bkcs.11192
  6. Ultrasensitive Surface-Enhanced Raman Scattering Sensor of Gaseous Aldehydes as Biomarkers of Lung Cancer on Dendritic Ag Nanocrystals vol.89, pp.3, 2017, https://doi.org/10.1021/acs.analchem.6b05117
  7. Spectroscopic studies of a ring opening process between epoxy- and aminosilanes and imine formation reactions in aqueous solutions vol.87, pp.3, 2018, https://doi.org/10.1007/s10971-018-4758-z
  8. Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR vol.5, pp.3, 2003, https://doi.org/10.1039/b414832k
  9. Solid‐state thermal stability and degradation of a family of poly(N‐isopropylacrylamide‐co‐hydroxymethylacrylamide) copolymers vol.48, pp.24, 2010, https://doi.org/10.1002/pola.24394
  10. Rapid Determination of the Reaction Kinetics of an n-Butylbenzaldimine Synthesis Using a Novel Mesoscale Oscillatory Baffled Reactor vol.42, pp.None, 2003, https://doi.org/10.1016/j.proeng.2012.07.546
  11. The influence of substituent effects on spectroscopic properties examined on benzylidene aniline-type imines vol.95, pp.None, 2012, https://doi.org/10.1016/j.saa.2012.04.047
  12. Surface enhanced Raman scattering based reaction monitoring of in vitro decyclization of creatinine → creatine vol.6, pp.64, 2016, https://doi.org/10.1039/c6ra03674k
  13. Quantitation of a Ketone Enolization and a Vinyl Sulfonate Stereoisomer Formation Using Inline IR Spectroscopy and Modeling vol.23, pp.5, 2003, https://doi.org/10.1021/acs.oprd.9b00042
  14. A Synthetic Approach to PW2‐Like Compounds vol.5, pp.5, 2003, https://doi.org/10.1002/slct.201903654
  15. Efficient Kinetic Data Acquisition and Model Prediction: Continuous Flow Microreactors, Inline Fourier Transform Infrared Spectroscopy, and Self-Modeling Curve Resolution vol.24, pp.10, 2003, https://doi.org/10.1021/acs.oprd.0c00037
  16. Ultrasensitive SERS detection of exhaled biomarkers of lung cancer using a multifunctional solid phase extraction membrane vol.13, pp.31, 2021, https://doi.org/10.1039/d1nr02418c