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ABSTRACT 

The most fundamental problem in radar is the detection of an 
object or a physical phenomenon. This requires proper 
discrimination between signal and noise content at the 

receiver even after the echo containing target information is 
surrounded by clutter.   Traditionally, a series of signal 
processing operations are carried out to perform this 
discrimination with varying levels of success.  These series of 
signal processing operations can be supplemented by an 
Artificial Neural Network (ANN), which is a non-parametric 
prediction tool with the ability to retain the learning acquired 
from the surroundings. The Recurrent Neural Network (RNN) 

is a dynamic ANN which can track time variations in the 
input patterns. The RNN captures time-varying contextual 
information and use this knowledge subsequently to make 
discrimination between adjacent patterns.  As viewed from 
the time domain, the target waveform can also be regarded as 
a time sequence such that it can be classified using RNN 
which is suitable for time sequence processing. This work 
describes the processing steps of signals from pulse radars so 
that these can be used to train a RNN for use to discriminate 

between target and false echoes. The experimental results 
show that the proposed system works effectively while 
dealing with target echoes surrounded by thermal noise and 
ground clutter at varying distances [1].  
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1. INTRODUCTION 
The basic idea behind radio detection and ranging (RADAR) 

is to send out a signal and listen to an “echo” of this signal 
bouncing off from a target. The object’s distance can be 
determined by the delay between the time that the signal was 
sent out and the time that it is received. Doppler shift can be 
used to determine the velocity of an object.  It is defined as 
the difference between the frequencies of transmitted signal 
and reflected signal from moving objects. For range 
processing, the return signal must first be filtered in order to 

reduce the effects of clutter and noise that get in to the signal 
due to buildings, mountains, machinery and other signals. 
Radars are used in a wide variety of applications including 
defense, air traffic control, meteorology, speed monitoring 
and surveillance and even mapping for which precise 
discrimination between target and cluster is essential.   
Working of the radar involves interpretation of returned signal 
to determine the characteristic of targets. With the 

unavoidable presence of various types of interference, signal 
processing is naturally an important part of any radar system. 
Signals recovered by the radar are composite form of target 

echoes and interference. The basic role of signal processing is 
to enhance the target echoes and suppress all other 
disturbances and extract information about the target’s 
behavior, including its position, velocity, and signature. 
Signal processing exploits differences between the 
components of the composite signal [1], [2]. 
Automatic Target Recognition (ATR) is one of the major 

areas of modern radar signal processing. In this area, 
numerous approaches have been investigated. In recent years, 
considerable attention has been paid to waveform recognition 
techniques because of the simplicity and suitability. However, 
many research efforts are directed towards the development of 
the target recognition technique using high resolution radar 
returns [3].  
Artificial Neural Network (ANN)s are computational tools 

that learn from experience (training), generalize from previous 
examples to new ones, and abstract essential characteristics 
from input containing irrelevant data [4]. Furthermore, due to 
their nonlinear nature, they can perform functional 
approximation and signal filtering operations, which are 
beyond optimal linear techniques [4].  
A Recurrent Neural Network (RNN) is a class of ANN where 
connections between units form a directed cycle. This creates 
an internal state of the network which allows it to exhibit 

dynamic temporal behavior. Unlike feedforward ANNs, 
RNNs can use their internal memory to process arbitrary 
sequences of inputs.  
This work describes a sequence of steps for processing of 
signals from pulse radars. These sequences are used as input 

features to a RNN for four radar target identification test 

cases. The targets are placed at different distances and pulse 
radar signals are continuously received. These returns are 
used to train the RNN which provides target class 
discrimination decision. The data set consists of target returns 
obtained from different distances under varying background 

conditions. The RNN receives inputs for a range of distance 
and data variations and learn them during training. Similar set 
of samples are used for testing its ability of target recognition 
under simulated conditions. Experimental results prove its 
effectiveness as an ATR system for pulse radars. The 
experimental results further show that the proposed system 
works effectively while dealing with radar returns surrounded 
by thermal noise and ground clutter.  

Some relevant literatures are [5]-[12]. Very few attempts have 
been reported regarding the use of ANN for ATR design using 
pulse radars, hence the present work is a novel attempt in this 
regard. 
The rest of the paper is organized as follows: Section 2 
describes briefly about the theoretical aspects of the system 
components while Section 3 furnishes detail about the 
proposed model followed by the experimental results in 

http://en.wikipedia.org/wiki/Neural_network
http://en.wikipedia.org/wiki/Directed_cycle
http://en.wikipedia.org/wiki/Feedforward_neural_networks
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Section 4. Section 5 gives a conclusion of the work described 
as part of the proposed system. 

 

2. THEORETICAL BACKGROUND  
Here, we briefly describe some theoretical aspects of the 
system components related to the work. 

2.1 Pulse Radar 
Pulse radar transmits a sequence of short pulses of RF energy. 
By measuring the time for echoes of these pulses scattered off 
a target to return to the radar, the range to the target can be 

estimated by the pulse radar. Here we consider a pulse radar 
transmitting between 10GHz to 12GHz frequency. 

2.2 Clutter 
The term “clutter” refers to any unwanted radar echo. Such 
echoes surrounded the radar signal and make it difficult to 

detect the presence of a target of interest [13]. The clutter is a 
disruptive factor in radar detection. 

2.3 Automatic Target Recognition (ATR) 
Automatic target recognition (ATR), is the ability of an 
algorithm or device to recognize targets or objects based on 

data obtained from radar return signals. The application of 
ATR technology is a critical element of radar signal 
processing.  

2.4 Artificial Neural Network (ANN) 
An ANN is an interconnected group of artificial neurons that 

uses a mathematical or computational model for information 
processing based on a connectionist approach of computation. 
In most cases an ANN is an adaptive system that changes its 
structure based on external or internal information that flows 
through the network. ANNs can identify and learn correlated 
patterns between input data sets and corresponding target 
values. 

2.5 Multilayer Perceptron (MLP) 
An MLP consists of several layers of neurons. The expression 
for output in a MLP with one hidden layer is given as: 

OX= βi g(([w]i.[x]) + bi) 

where βi is the weight value between the ith
 hidden neuron, [w] 

is the vector of weights between the input and the hidden 
layer, [x] is the vector of inputs and [b] is the input bias of the 
hidden neuron layer. Such a set- up is depicted in Figure 1. 
MLPs are commonly used to approximate complex nonlinear 

mappings.

 

 

Figure 2: A simple RNN model 

2.6 Recurrent Neural Network (RNN) 

A RNN is a modification of feed forward architecture to allow 
for temporal classification, as shown in Figure 2. In this case, 
a ``context'' layer is added to the structure, which retains 
information between observations. At each time step, new 
inputs are fed into the RNN. The previous contents of the 

hidden layer are passed into the context layer. These then feed 
back into the hidden layer in the next time step. The context 
layer is formed by certain feedback mechanism which enables 
the RNN to track the variations in input patterns. The 
feedback mechanism further makes the RNN dynamic system 
suitable for ATR. 

3. PROPOSED RNN BASED ATR 

SYSTEM  

The system model of the proposed RNN based ATR is shown 
in Figure 3.   

Figure 1: MLP with one input, one hidden and 
one output layer 

 

http://en.wikipedia.org/wiki/Robotic_warfare
http://www.cse.unsw.edu.au/~waleed/phd/html/node37.html#fig:recurrent_nn.eps
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Figure 3: System model of the proposed RNN based AT R System 

The work is constituted by an RNN which performs target 
recognition using returns received from a pulse radar. The 
training data set is prepared by certain efficient signal 
processing steps. The algorithm involves, first, the generation 
of a fast/slow-time matrix of raw baseband in-phase (I) and 
quadrature-phase (Q) radar data that contains returns from 
exactly four targets (stationary) as well as interference (noise 
and clutter). A few radar signal processing steps allow us to 

prepare the appropriate data to train the RNN to detect each of 
the targets. These are described bellow in Section 3.1. 

3.1 Steps Involved In Signal Processing 

Steps of the Proposed ATR System: 
1. Signal Integration collects and accumulates composite 
signals within the same range bin for several hits. The 
components which are ordered from hit-to-hit produce a larger 
sum than those which are random. 
 
2. Correlation is the process of measuring the similarity 
between two functions. Signal and interference are compared 

to a cost function designed to discriminate between a true and 
false target. The degree of match gives the likelihood that the 
composite signal contains a target echo. Pulse compression is 
the process of correlation in time domain which increases 
signal content in returned waveform. 
 
3. Filtering and spectrum analysis is a frequency domain 
process, which accepts composite forms of target echoes and 

interference with a number of complex sinusoids, separating 
the signals in to their frequency components. The likelihood 
that a signal component represents the desired target depends 
on its spectrum.  
In addition to those given above, two other processes are used 
to assist in performing the basic functions and suppressing 
processing artifacts. 
 

4. Windowing: For processing, signals must be limited in time 
and the process should be finite. The result is processing 
errors that cause signals which occupy one output bin that 
spreads into other bins. This anomaly, called spectral leakage, 
degrades the output and can allow strong interfering signals to 
mask weaker target echoes [14].  

5. Convolution in a domain (time, say) has the same effect as 
the multiplication in the other domain (frequency). In 
spectrum analysis, for example, the window is applied by 
multiplying in the time domain. It can, however, be applied, 
instead, in the frequency domain by using convolution.  

3.2 Interference 
The data contains two forms of interference: 

 Thermal receiver noise, which is modeled as 

independent, but with unity variance, zero-mean white 
Gaussian noise processes in both the in-phase (I) and 
quadrature phase (Q) channels. It is completely 
uncorrelated from one pulse (slow-time sample) to the 
next and from one range bin (fast-time sample) to the next 

[15]. 

 Distributed ground clutter is highly correlated, and is 

usually removed by pre-filtering with a canceller. It is 
often considered independent from one range bin (fast-
time) to the next, or nearly so, on the grounds that each 
range bin represents returns from physically distinct 
clutter. In this work, the ground clutter is created by 
forming a white random process having a log-normal 
amplitude distribution (typical of some types of real 
clutter) and uniform random phase. The desired 

correlation from one pulse to the next in a fixed range bin 
is created by forcing the spectrum of the samples from 
each range bin to have a narrow Gaussian shape. The 
clutter remains uncorrelated, however, from one range bin 
to the next [15]. 
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For a single individual pulse, the signal to noise ratio (SNR), 
and/or signal to clutter ratio (SCR) of the echoes from some 
targets may be less than one. Therefore, the uncompressed 
pulse may be below the interference and can only be 
identified after some signal processing operations. On the 

other hand, clutter filtering, if used, will eliminate stationary 
targets. Such targets, if any, therefore, will not be detected 
unless we look for them before clutter filtering. Returns from 
stationary targets are large enough to stand out above the 
clutter, hence require efficient signal processing. Some of 
these issues are handled effectively by the ANN. Such 
performance becomes even more effective when a dynamic 
ANN like RNN is used. This aspect is covered in detail in 

section 3.3. 

3.3 Rnn Based Recognition 
Our problem is to predict the returns as well as the target 
structure using RNN classifier. To perform this task, we use 
RNN which have two important steps-training and testing. 

Several RNN configurations are used to ascertain the best 
combination for the testing. RNNs use a form of BP called 
real-time recurrent learning (RTRL). For different training 
methods it shows different results. The number of training 
sessions and used data sets determines the outcome of the 

network. During training mean square error (MSE) 
convergence and prediction precision are used to ascertain the 
performance of the network. The trained RNNs are used for 
testing. Samples are used with variance up to 50 percent. 
Variance is essential to make the classifier robust. Prediction 

of radar target/returns primarily consists of two steps 

 Derivation of pattern vector (from the radar data 

primarily for different ranges, frequency and RCS) 
through proper signal processing and 

 Formation of decision logic for above parameters 

using RNN as single level classifier. 
Here, we have taken four targets namely Target1, Target2, 
Target3 and Target4 as shown in Figure 4. These are, 
further, considered to be at different ranges. A pulse radar is 
simulated to transmit signals at these targets at different 
ranges. The return pulses are taken and used for training the 
RNNs for classification with different class-codes. The 
simulated conditions are similar to that shown in Figure 4. 

Radar Cross Section (RCS) values of the four targets are 
calculated for the considered conditions and used for RNN 
training configured to map the information to specific codes. 
The pattern association mapping maybe shown as in Figure 
5. 

Figure 4: Considered Scenario 
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Figure 5: pattern association mapping 

4 EXPERIMENTAL RESULTS 
Table 1 gives the values of the range, SNR and relative RCS 
parameters used to create the data files.  A more useful view 

is to plot the generated data is a range Doppler plot. This is 
obtained by transforming the fast time/slow time matrix in the 
slow time dimension to obtain a range-Doppler matrix. 

  
Table 1 Range, velocity, and relative RCS parameters 

used to create the training data 

 
We have not considered false alarms in this particular data set. 
To detect the range bins for targets, we have non-coherently 
integrated all of the Doppler bins to get a single column of 
total power vs. range. Then we implemented a logical search 
for local peaks above the constant false alarm rate (CFAR) 

threshold in range and recorded their range bins. The result of 
these operations is shown in Figure 6. At this point, our 
algorithm has generated the values of targets, which is given 
in Table 2. Now, the step involved in the work depicted by the 
second part of Figure 3 is carried out. 
 

 

Figure 6: Detection of range peaks 

 

Table 2: Calculated parameters for four targets 

Target Normalized 
Power 

Range 
(km) 

DFT Index 

1 0.4329x103 2 26.91 

2 0.6094 x103 3.8 193.4 

3 1.00 x103 4.4 51.8 

4 0.4471 x103 4.4 168.2 

 
The high performance RTRL with variable learning rate is 
employed for training the RNN. The specifications of the 
ANN used for training phase are as tabulated in Table 3. The 
input layer consists of raw data, mixed up with thermal noise 
of unit power and mixed up with ground clutter and false 

echo.  
We have carried out the training using tan sigmoidal for input, 
log sigmoidal for hidden and tan sigmoidal for output layer, 
activation functions in the network. The convergence of MSE 
for different number of iterations is shown in the following 
Figures 7 to 12.  
 

Table 3: Specifications of the ANN 

Type: RNN with RTRL 

Parameters Specifications 

Number of Layers 3 (Input layer, Hidden 
Layer, Output Layer) 

Number of Input Unit Data Matrix consisting of  
vectors of  four targets at 
four different distances. 

Number of Output Unit 1 binary encoded matrix 

consisting of four target 
vectors for four targets at 
four different ranges. 

Number of Neurons in the 
Input Layer 

337(size of the data matrix) 

Number of Neurons in the 
Hidden Layer 

337 * 1.5 = 506 

Number of Neurons in the 
Output Layer 

4 

Number of Iterations   20000 

Number of Validation 
Checks 

6 

Learning Rate  Adaptive 

Momentum 0.9 

Activation Functions Log-Sigmoid and Tan-
Sigmoid 

 

Target Range SNR Real_RCS 

1 2km -3dB -26.7dB 

2 3.8km 5dB -7.55dB 

3 4.4km 10dB 0dB 

4 4.4km 7dB -3dB 
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Figure 7: MSE curve for the RNN trained with raw data 

mixed with thermal noise and ground clutter 

 

Figure 8: Gradient v/s iteration for the RNN trained with 
raw data mixed with thermal noise and ground clutter 

 

Figure 9: Learning rate v/s iteration for the RNN trained 

with raw data mixed with thermal noise and ground 

clutter 

 

Figure 10: MSE curve for RNN trained raw data mixed 

with thermal noise and ground clutter along with separate 
ground clutter 

 

Figure 11: Gradient v/s iteration for RNN trained 

raw data mixed with thermal noise and ground 
clutter along with separate ground clutter 

 

Figure 12: Learning rate v/s iteration for RNN 

trained raw data mixed with thermal noise and 
ground clutter along with separate ground clutter 

The RTRL based training of the RNN generates the best 
classification performance. The number of training sessions 
has been restricted between 500 to 2000 sessions. This is 

because with training epochs below 500 the RNNs don't 
develop the ability to make discrimination between classes 
with success rates above 50%. Again with training sessions 
over 2000, there is always a chance of the RNNs losing the 
ability to generalize classes.  
The following two tables (Table 4 and Table 5) includes the 
performance parameters with variation in the number of 
pulses while training the RNN. 

 
Table 4: Received signal without noise 

No. of pulses CRR (%) FAR (%) 

5 68 32 

10 77 23 

20 82 18 

 
Table 5: Received signal with noise 

No. of pulses CRR (%) FAR (%) 

5 57 43 

10 66 34 

20 73 27 

 
Here, we study the response in the performance of the system 

with changes in the number of the training targets. We notice 
an increase in the CRR of the system with the increase in the 
number of the training targets employed in training phase. The 
system provides 73% to 82% CRR with range and 
background variation with pulse radars. This performance can 
be further with better organization of the model mostly with 
stress on distributed and modular designs. 



International Journal of Computer Applications (0975 – 8887)  
Volume 50– No.23, July 2012 

39 

5. CONCLUSION 
The work offers an insight into the development of a RNN 

based system for prediction of target from radar return signal. 
The work improves the performance of ATR with signal 
processing. The system tackles well clutter mixed signals with 
range variations. The most striking feature of the work is the 
use of RNN which enables the system to capture time 
variation in the inputs which generates a CRR of above 82%. 
It makes the system suitable for ATR applications using pulse 
radar returns. The difficulties associated with RNNs includes 

dimensionality and generalization problem. For learning many 
dimensional data such as radar return, either a huge number of 
samples is required, or the data must first be reduced by the 
extraction of a relatively small numbers of features for the 
RNN to learn. If the number of data samples available is too 
small, then the network will over fit the training data, 
resulting in poor generalization on test data. Hence, designing 
a RNN requires experimentation to determine the best 

architecture for a given problem and associated data set. The 
time required to train the system with the acquired data is 
found to be very high. This can be further reduced with high 
performance computational framework, although the system 
is required to be trained only once. The system in modular or 
distributed design shall provide improve results that the 
present ones. 
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