
International Journal of Computer Applications (0975 – 8887)
Volume 7– No.14, October 2010

38

ABSTRACT
Reusability is the likelihood a segment of source code that can
be used again to add new functionalities with slight or no
modification. Reusable modules and classes reduce
implementation time, increase the likelihood that prior testing
and use has eliminated bugs and localizes code modifications

when a change in implementation is required. Subroutines or
functions are the simplest form of reuse. A chunk of code is
regularly organized using modules or namespaces into layers.
Proponents claim that objects and software components offer a
more advanced form of reusability, although it has been tough to
objectively measure and define levels or scores of reusability.
Reusability implies some explicit management of build,
packaging, distribution, installation, configuration, deployment,

maintenance and upgrade issues. If these issues are not
considered, software may appear to be reusable from design
point of view, but will not be reused in practice. This paper
presents an empirical study of the software reuse activity by
expertdesigners in the context of object-oriented design. Our
study focuses on the three following aspects of reuse : (1) the
interaction between some design processes, e.g. constructing a
problem representation, searching for and evaluating solutions,

and reuse processes, i.e. retrieving and using previous solutions,
(2) the mental processes involved in reuse, e.g. example-based
retrieval or bottom-up versus top-down expanding of the
solution, and (3) the mental representations constructed
throughout the reuse activity, e.g. dynamic versus static
representations.

1. INTRODUCTION
Software permeates our daily life. There is probably no other
human-made material which is more omnipresent than software
in our modern society. It has become a crucial part of many
aspects of society: home appliances, telecommunications,
automobiles, airplanes, shopping, auditing, web teaching,

personal entertainment, and so on. In particular, science and
technology demand high-quality software for making
improvements and breakthroughs. Software Reuse is currently
one of the most active and creative research areas in Computer
Science. First, we analyse how some design processes, e.g.
constructing a problem representation, searching for and
evaluating the solution(s), and reuse processes, i.e. retrieving
and using previous solution(s), may interact. For example,
recalling solutions may lead to a revision of the currently-

developed solution[1] and retrieving a past solution may
produce the addition of constraints to the representation of the
current design problem. This combination proves to be effective
because it unites a goal refinement and classification strategy
with a packing strategy provided by aspect-oriented
programming, making use of well-defined relations among
functional and quality fragments, we provide mechanisms for

weaving those fragments together. We define a coherent process
that uses an asset library to find quality characteristics and apply
those to a software functional description.

2. TYPES OF REUSE

 Opportunistic reuse - While getting ready to begin a
project, the team realizes that there are existing
components that they can reuse.

 Planned reuse - A team strategically designs
components so that they'll be reusable in future
projects.

Opportunistic reuse can be categorized further:

 Internal reuse - A team reuses its own components.
This may be a business decision[2], since the team
may want to control a component critical to the

project.

 External reuse - A team may choose to license a third-
party component. Licensing a third-party component
typically costs the team 1 to 20 percent of what it
would cost to develop internally.The team must also
consider the time it takes to find, learn and integrate
THE COMPONENT.

3. RESUE –BASED SOFTWARE
ENGINEERING

3.1 Application system reuse
• The whole of an application system may be reused either by
incorporating it without change into other systems[3] (COTS
reuse) or by developing application families.

3.2 Component reuse
• Components of an application from sub-systems to single
objects may be reused.

3.3 Object and function reuse
• Software components that implement a single welldefined
object or function may be reused.

4. SOFTWARE RESUE BENEFITS

4.1 Increased dependability

Reused software, that has been tried and tested in working
systems, should be m ore dependable than new software. The
initial use of the software reveals any design and

Reusability of the Software

Sarbjeet Singh, Sukhvinder Singh, Gurpreet Singh

M.Tech. CSE(1
st
 Year)

Sri Sai College of Engg. And Technology, Pathankot, India.

http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Function_%28programming%29
http://en.wikipedia.org/wiki/Module_%28programming%29
http://en.wikipedia.org/wiki/Namespace_%28computer_science%29
http://en.wikipedia.org/wiki/Layer_%28HTML_tag%29
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/Software_build
http://en.wikipedia.org/wiki/Packaging
http://en.wikipedia.org/wiki/Distribution_%28business%29
http://en.wikipedia.org/wiki/Installation_%28computer_programs%29
http://en.wikipedia.org/wiki/Computer_configuration
http://en.wikipedia.org/wiki/Software_deployment
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Upgrade
http://en.wikipedia.org/wiki/Software_design

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.14, October 2010

39

implementation faults. These are then fixed, thus reducing the
number of failures when the software is reused.

4.2 Reduced process risk
If software exists, there is less uncertainty in the costs of reusing
that software than in the costs of development. This is an
important factor for project management as it reduces the
margin of error in project cost estimation. This is particularly
true when relatively large software components such as sub-
systems are reused.

4.3 Effective use of specialists
Instead of application specialists doing the same work on
different projects[3],[4], these specialists can develop reusable
software that encapsulate their knowledge.

4.4 Standards compliance
Some standards, such as user interface standards, can be

implemented as a set of standard reusable components. For
example, if menus in a user interfaces are implemented using
reusable components, all applications present the same menu
formats to users. The use of standard user interfaces improves
dependability as users are less likely to make mistakes when
presented with a familiar interface.

4.5 Accelerated development
Bringing a system to market as early as possible is often more
important than overall development costs. Reusing software can
speed up system production because both development and
validation time should be reduced.

5. RESUE PROBLEMS
5.1 Increased maintenance costs
If the source code of a reused software system or component is
not available then maintenance costs may be increased as the
reused elements of the system may become increasingly
incompatible with system changes.

5.2 Lack of tool support
CASE toolsets may not support development with reuse. It may
be difficult or impossible to integrate these tools with a

component library system. The software process assumed by
these tools may not take reuse into account.

5.3 Not-invented-here syndrome
Some software engineers sometimes prefer to re-write
components as they believe that they can improve on the
reusable component. This is partly to do with trust and partly to

do with the fact that writing original software is seen as more
challenging than reusing other people‟s software.

5.4 Creating and maintaining a component

library
Populating a reusable component library and ensuring the
software developers can use this library can be expensive. Our
current techniques for classifying, cataloguing and retrieving
software components are immature.

5.5 Finding, understanding and adapting

reusable components
Software components have to be discovered in a library,

understood and, sometimes, adapted to work in a n ew
environment. Engineers must be reasonably confident of finding
a component in the library before they will make routinely

include a component search as part of their normal development
process.

6. THE REUSE LANDSCAPE
 Although reuse is often simply thought of as the reuse

of system components, there are many different
approaches to reuse that may be used[5].

 Reuse is possible at a range of levels from simple

functions to complete application systems.

 The reuse landscape covers the range of possible reuse

techniques.

7. REUSE APPROACHES

Design patterns:- Generic abstractions that occur across
applications are represented as design patterns that show abstract
and concrete objects and interactions.

Component-based development:-

Systems are developed by integrating components (collections
of objects) that conform to component-model standards.

Application frameworks:-Collections of abstract and concrete

classes that can be adapted and extended to create application
systems.

Legacy system wrapping:-Legacy systems that can be

„wrapped‟ by defining a set of interfaces and providing access to
these legacy systems through these interfaces[6].

Service-oriented systems:-Systems are developed by linking
shared services that may be externally provided.

Application product lines:- An application type is generalised

around a common architecture so that it can be adapted in
different ways for different customers.

COTS integration:- Systems are developed by integrating
existing application systems.

Configurable vertical applications:-A generic system is
designed so that it can be configured to the needs of specific
system customers.

Program libraries:-Class and function libraries implementing
commonly-used abstractions are available for reuse.

Program generators:- A generator system embeds knowledge
of a particular types of application and can generate systems or
system fragments in that domain.

Aspect-oriented software development:-Shared components
are woven into an application at different places when the
program is compiled.

8. DESIGN PATTERN
In software engineering, a design pattern is a general reusable
solution to a commonly occurring problem in software design. A

design pattern is not a finished design that can be transformed
directly into code. It is a description or template for how to solve
a problem that can be used in many different situations. Object-
oriented design patterns typically show relationships and
interactions between classes or objects, without specifying the
final application classes or objects that are involved.Design
patterns reside in the domain of modules and interconnections.

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Code_%28computer_programming%29
http://en.wikipedia.org/wiki/Object-oriented
http://en.wikipedia.org/wiki/Object-oriented
http://en.wikipedia.org/wiki/Interaction
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Object_%28computer_science%29

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.14, October 2010

40

At a higher level there are Architectural patterns that are larger
in scope, usually describing an overall pattern followed by an
entire system. Not all software patterns are design patterns[7].

9. SOFTWARE FRAMEWORK
A software framework, in computer programming, is an
abstraction in which common code providing generic

functionality can be selectively overridden or specialized by user
code providing specific functionality. Frameworks are a special
case of software libraries in that they are reusable abstractions of
code wrapped in a well-defined API, yet they contain some key
distinguishing features that separate them from normal libraries.

Software frameworks have these distinguishing features that
separate them from libraries or normal user applications:

1. inversion of control - In a framework, unlike in

libraries or normal user applications, the overall
program's flow of control is not dictated by the caller,
but by the framework.[1]

2. default behavior - A framework has a default
behavior. This default behavior must actually be some
useful behavior and not a series of no-ops.

3. extensibility - A framework can be extended by the
user usually by selective overriding or specialized by
user code providing specific functionality

4. non-modifiable framework code - The framework
code, in general, is not allowed to be modified. Users
can extend the framework, but not modify its code.

10. SYSTEMATIC SOFTWARE REUSE
Systematic software reuse is still the most promising strategy for
increasing productivity and improving quality in the software
industry. Although it is simple in concept, successful software
reuse implementation is difficult in practice. A reason put
forward for this is the dependence of software reuse on the
context in which it is implemented[8]. Some problematic issues

that needs to be addressed related to systematic software reuse
are :-

 A clear and well-defined product vision is an essential

foundation to an SPL.

 An evolutionary implementation strategy would be a
more pragmatic strategy for the company.

 There exist a need for continuous management support
and leadership to ensure success.

 An appropriate organizational structure is needed to
support SPL engineering.

 The change of mindset from a project-centric
company to a product-oriented company is essential.

11. SOFTWARE REUSE IN INDUSTRY
Many organizations have been successful with software reuse.
Hewlett-Packard (HP), for example, has along history with
different levels of software reuse started in 1989. It began with
the development and networked distribution of family
instrument modules and evolved in 1991 to a corporate reuse
program that guided several divisional reuse pilot projects for
embedded instrument and printer firmware[9].

AT&T‟s BaseWorkX reuse program started in 1990 as an
internal, large-grain component-reuse and software bus
technology to support telephone-billing systems. By1995,
AT&T was reusing 80 to 95% of its components. A more recent
example was implemented by ISWRIC (Israel Software Reuse

Industrial Consortium), a joint project of seven leading Israeli
industrial companies .It was a two-phase, three-year project
started in 2000. During the first phase, a common software reuse
methodology was developed to enable software developers to
systematically evaluate and compare all possible alternative
reuse scenarios. During the second phase, all seven participating
companies implemented the methodology in real projects. Each
company modified the model to better fit the specific needs of

its pilot projects and evaluated the methodological aspects
relevant to the pilot projects and the company. Another
industrial application for software reuse that is becoming more
popular is global software distribution system development
(GDSD). Skandia, one of the world‟s top life insurance
companies, collaborated with Tata Consultancy Services (TCS)
to create several Itenabled financial services in different
countries by integrating components developed independently

by TCS and other third-party vendors at their own sites . The
appearance of some promising software reuse tools may lead to
more successful industrial software reuse stories. One example
is Code Smith, the software generating tool that can produce
code for any text-based language including C#, VB.NET, Java
and FORTRAN. The tool has had a huge success in industry due
to its advanced integrated development environment and its
extensible, template-driven architecture that givedevelopers full
control over the generated code.

12. SOFTWARE REUSE AND SEMANTIC

WIKIS
Before describing the proposed system components, we
introduce some of the important concepts and terminologies that
will be used later in the discussion.

A. Wikis
In general, a Wiki is a web application designed to support
collaborative authoring by allowing multiple authors to add,
remove, and edit content. The word “Wiki” is a shorter form of
“Wiki Wiki Web” derived from the Hawaiian expression “Wiki
Wiki” which means “quick”[10]. Wiki systems have been very

successful in enabling non-technical users to create Web content
allowing them to freely share information and evolve the content
without rigid workflows, access restrictions, or predefined
structures. Throughout the last decade, Wikis have been adopted
as collaborative software for a wide verity of uses including
software development, bug tracking systems, collaborative
writing, project communication and encyclopedia systems2.
Regardless of their purpose, Wikis usually share the following
characteristics:

Easy Editing: Traditionally, Wikis are edited using asimple

browser interface which makes editing simple and allows to
modify pages from anywhere with only minimal technical
requirements.

Version Control: Every time the content of Wikis is

updated, the previous versions are kept which allows rolling
back to earlier version when needed.

http://en.wikipedia.org/wiki/Architectural_pattern_%28computer_science%29
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Software_library
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Inversion_of_control
http://en.wikipedia.org/wiki/Control_flow
http://en.wikipedia.org/wiki/Software_framework#cite_note-0
http://en.wikipedia.org/wiki/NOP
http://en.wikipedia.org/wiki/Extensibility

International Journal of Computer Applications (0975 – 8887)
Volume 7– No.14, October 2010

41

Searching: Most Wikis support at least title search and some

times a full-text search over the content of all pages.

 Access: Most Wikis allow unrestricted access to their

contents while others apply access restrictions by assigning
different levels of permissions to visitors to view, edit, create or
delete pages.

Easy Linking: Pages within a Wiki can be linked by their title

using hyperlinks.

Description on Demand: Links can be defined to pages that

are not created yet, but might be filled with content in the future.
From the software reuse point of view, Wikis can be seen as a
“lightweight platform for exchanging reusable artifacts between
and within software projects” that has a low technical usage
barrier. However, using Wiki systems as a knowledge repository
for software reuse has a major drawback. The growing

knowledge in Wikis is not accessible for machines; only humans
are able to read and understand the knowledge in the Wiki pages
while machines can only see a large number of pages that link to
each other. This problem may negatively affect the Wiki‟s
searching and navigation performance.

B. Semantic Wikis3
A semantic Wiki is a Wiki that has an underlying model of the
knowledge described in its pages. While regular Wikis have
only pages and hyperlinks, semantic Wikis allow identifying
additional information about the pages (metadata) and their
relations and making that information available in a formal

language (annotations) such as Resource Description
Framework (RDF) and Web Ontology Language (OWL)
accessible to machines beyond mere navigation. Adding
semantics (structure) to Wikis enhances their performance by
adding the following features.

Contextual Presentation: Examples include displaying

semantically related pages separately, displaying information
derived from the underlying model of knowledge, and rendering
the contents of a page in a different manner based on the
context.

Improved Navigation: The semantic framework allows

relating concepts to each other. These relations enhance
navigation by giving easy access to relevant related information.

Semantic Search: Semantic Wikis support context sensitive

search on the underlying knowledge base which allows more
advanced queries.

Reasoning Support: Reasoning means deriving additional

implied knowledge from the available facts using existing or
user-defined rules in the underlying knowledge base. With these
enhanced features, semantic Wikis can be valuable for software
reuse. In addition to supporting general collaboration among
users, semantic Wikis provide means of adding metadata about
the concepts (artifacts) and relations that are contained within

the Wiki. This system has the advantage of being easy to use for
non-expert users while being powerful in the way in which new
artifacts can be created and stored .

13. CONCLUSIONS
Software reuse is a longtime practiced method. Programmers

have copied and pasted snippets of code since early days of
programming. Even though it might speed up the development
process, this “code snippet reuse” is very limited does not work
for larger projects. The full benefit of software reuse can only be
achieved by systematic reuse that is conducted formally as an
integral part of the software development cycle. This paper gives
a summary of some important aspects of software reuse research
and presents a rough proposal for a software reuse repository

system that is based on semantic wikis. The next step will be to
further research the concept and implement a prototype to
ensure its validity. In this paper, we have reviewed the history of
software reliability engineering, the current trends and existing
problems, and specific difficulties. Possible future directions and
promising research problems in software reliability engineering
have also been addressed. We have laid out the current and
possible future trends for software reliability engineering in
terms of meeting industry and customer needs.

14. REFERENCES

1. Curritt, P.A., Dyer,M, Mills, H.D, ACertifying the
Reliability of Software,@ IEEE Transactions,

2. Software Engineering, vol SE- 12 no. 1 1994. Gert B
(1988) Morality, Oxford University Press.

3. Green R M (1994) The Ethical Manager, Macmillan
Publishing.

4. Gotterbam and Rogerson 1998, “The Ethics of Software
Project Management”, in Ethics and Information
Technology, ed. G&an Collste, New Academic Publisher,
1998.

5. Humphrey, W. A Discipline of Software Engineering
Addison Wesely Longman, Reading Mass, 1995.

6. Linger, R. ACleanroom Process Model,@ IEEE Software
March 1994. pp 50-58.

7. Smith 1 9 9 C0. U] . Smith, Performance Engineering of
Software Systems, Reading, MA, Addison-Wesley, 1990.

8. Smith and Williams 2002] C. U. Smith and L. G. Williams,
Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software, Boston, MA, Addison-
Wesley, 2002.

9. Williams and Smith 2002a L. G. Williams and C. U. Smith,
“PASASM: A Method for the Performance Assessment of
Software Architectures,” 2002 (submitted for publication).

10. Williams and Smith 2002Lb. G. Williams and C. U. Smith,
“The Business Case for Software Performance
Engineering,” www.perfeng.com.

