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ABSTRACT 

Nowadays, the need to techniques, approaches, and 

algorithms to search on data is increased due to improvements 

in computer science and increasing amount of information. 

This ever increasing information volume has led to time and 

computation complexity. Recently, different methods to solve 

such problems are proposed. Among the others, nearest 

neighbor search is one of the best techniques to this end which 

is focused by many researchers. Different techniques are used 

for nearest neighbor search. In addition to put an end to some 

complexities, variety of these techniques has made them 

suitable for different applications such as pattern recognition, 

searching in multimedia data, information retrieval, databases, 

data mining, and computational geometry to name but a few. 

In this paper, by opening a new view to this problem, a 

comprehensive evaluation on structures, techniques and 

different algorithms in this field is done and a new 

categorization of techniques in NNS is presented. This 

categorization is consists of seven groups: Weighted, 

Reductional, Additive, Reverse, Continuous, Principal Axis 

and Other techniques which are studied, evaluated and 

compared in this paper. Complexity of used structures, 

techniques and their algorithms are discussed, as well.  

General Terms 

Data and Information Systems, Artificial Intelligence 

Keywords 

Data Structure, kNN Algorithm, Nearest Neighbor Search, 

Query Processing 

1. INTRODUCTION 
By expanding computer systems, their data and information 

are developed and completed. Many methods with different 

approach are made due to this developing for searching data 

and finding the nearest data points. Searching the nearest 

neighbor in different studies are presented by different names 

such as post office problem, proximity search, closest point 

search, Best match file searching problem, index for similarity 

search, vector quantization encoder, the light-bulb problem 

and etc.[1]. The solutions for the Nearest Neighbor Search 

(NNS) problem usually have two parts: problem framework 

and their algorithms. In the framework, a formal and special 

explanation of the problem is created which contains object 

representation, distance (or similarity) function, dataset 

properties, dataset restrictions, computation cost model, 

dynamic aspects and solution requirements. In most the NNS 

algorithms, the main framework is based on four fundamental 

algorithmic ideas: Branch-and-bound, Walks, Mapping-based 

techniques and Epsilon nets. There are thousands of possible 

framework variations and any practical application can lead to 

its unique problem formalization such as pattern recognition, 

searching in multimedia data, data compression, 

computational statistics, information retrieval, databases and 

data mining, machine learning, algorithmic theory, 

computational geometry, recommendation systems and etc. 

[1-6]. 

A NNS problem can be defined in a metric or in a non-metric 

space. Metric space is defined as follow: 

Definition 1. (Metric space): Given a set S of points and d as 

a function to compute the distance between two points. Pair 

(S, d) distinguished metric space if d has characteristics such 

as reflexivity, non-negativity, symmetry and triangle 

inequality [2, 5, 7]. 

Non-metric space data are indexed by special data structures 

in non-metric spaces and then searching is done on these 

indexes. A few efficient methods exist for searching in non-

metric space that in most of them, non-metric space is 

converted to metric space. In these methods the distance 

formula in non-metric space is converted to a distance in 

metric space as this distance can be an approximate of main 

distance in non-metric space; but in this conversion query 

time is increased and  accuracy is decreased[8-13]. The focus 

of this paper is on the problems defined on a metric space. In 

a more detailed classification, NNS problems can be defined 

in Euclidean space as follow: 

Definition 2. (Exact NNS): Given a set S of points in a d-

dimensional space         , construct a data structure 

which given any querypoint      finds the point in S with 

the smallest distance to q [2, 14]. 

This definition for a small dataset with low dimension has sub 

linear (or even logarithmic) query time, but for massive 

dataset with high dimension is exponential [2]. Fortunately, 

approximation can decrease the exponential complexity into 

polynomial time. Approximate NNS is defined as: 

Definition 3. (Approximate nearest neighbor): Given a set S 

of Points in a d-dimensional space         , construct a 

data structure which given any query point     , reports 

any point within distance at most c times the distance from q 

top, where p is the point in P closest to q[2]. 
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Table 1.  Distance Equations 

Equation Space Distance name No. 

                                              
 

 
 

Vector Minkowski 1 

                                             
Vector Manhattan 

                                              
  

Vector Euclidean 

                                                 Vector Chebychev 

                        
   

      
        

      
 
   

      
  

          
  

   

       

       

Vector Cosine 2 

                                                         Vector Quadratic 3 

                                        Vector Mahalanobis 4 

                 
       

         

 

   

 
Vector Canberra 5 

                                        Vector Energy 6 

                               String Edit 7 

                            

 

 
 
 

 
    

                                                                        

    

                                    

                                     

                       

                          
  

String Levenshtein 8 

                           

  
    

          

                      
                                       

                                                                                                                                                   

  

String Damerau–

Levenshtein 

9 

                       
String Hamming 10 

            
     

     
 

Set Jaccard 11 

                                                         Set Hausdorff 12 

 

The first requirement in order to search in a metric space is 

the existence of a formula (d) to calculate the distance 

between each pair of objects in S. Different metric distance 

functions can be defined depending on the searching space 

(S). Table 1 shows a list of more important formulas along 

with the space that they can be applied. Many researchers 

have presented different categorizing and evaluation of NNS 

[3, 4, 15, 16, 82]. 

Different studies have done in this field until now such as [3, 

4, 82] but in this study a new categorization and aspect to this 

subject is presented. In the new study in present paper, 

different techniques and also used structures are discussed 

such as comparing complexities in implemented algorithms. 

Due to lack of complete and update categorizing, in present 

study a more complete and newer categorizing is shown that 

besides of techniques, contains structures. More over the 

techniques in present paper are categorized by paying 

attention to the type of the function. One of the other positive 

points in this categorizing in present paper is comparableness. 

In this categorizing NNS techniques have divided to seven 

groups Weighted, Reductional, Additive, Reverse, 

Continuous, Principal Axis and Other techniques. 

In next section a (section 2) structure that is used in NNS 

techniques have studied. Because of many varieties of 

applications, different algorithms and structures, NNS 

techniques should be collect and categorize. This new 

categorizing is presented in section 3. Each of these groups 

contains correlate techniques. In section 4, a complete 

assessment and comparison of these techniques are presented. 

Table 2 has shown symbols which used in present paper. 

Table 2. The symbols that is mentioned in the text 

Meaning Symbol 

Data Set S 

Query point Q 

Data Point P 

Distance dist 

Dimension d 

Nearest Neighbor Search NNS 

2. NEAREST NEIGHBOR SEARCH 

DATA STRUCTURES 
One of the main parts in NNS is data structure which used in 

each technique. Now there are different data structures that 

can use for solving this problem. By paying attention to 

different applications and data, each of these techniques has to 

use structure for maintaining, indexing points and searching. 

Some of these structures are techniques for NNS such as LSH, 

Ball-Tree, kd-Tree and etc.[2]; and the other  are 
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infrastructures in some techniques such as R-tree, R* Tree, B-

Tree, X-Tree and etc. A brief overview about some of these 

data structures is presented as follow. 

LSH (Locality Sensitive Hashing) is one of the best 

algorithms that can be used as a technique. The LSH 

algorithm is probably the one that has received most attention 

in practical context. Its main idea is to hash the data points 

using several hash function so as to ensure that, for each 

function the probability of collision is much higher for points 

which are close to each other than for those which are far 

apart. For finding nearest neighbor by hashing query point q 

saved points in the bucket that contains query point q can be 

retrieve. by paying attention to definition points can be closer 

to q with probability more than    and further to q with 

probability less than   [2, 5, 17-19]. 

Definition 4. (Locality-Sensitive Hashing): A family H is 

called (r ,cr,   ,  )-sensitive if for any       : 

 
                                  

                                 
             

In order for a LSH family to be useful, it has to satisfy    
  [2]. 

In LSH algorithm at first preprocessing should have been 

done. In preprocessing all data points hash by all functions 

and determine their buckets. In searching step query point q is 

hashed and after determining buckets all of its data points 

retrieve as the answer [2, 5]. 

One of the other structures that use as a technique is kd-Tree 

that creates for a set with n points in d-dimensional space 

recursive. kd-Tree and its variance remain probably the most 

popular data structure used for searching in multidimensional 

space at least in main memory. In this structure, in each step 

the existence space is divided by paying attention to points 

dimensions. 

This division is continued recursively until that in each zone 

just a point is remained. Finally the data structure that 

produced is a binary tree with n level and      depth. For 

searching nearest neighbor a circle is drawn with query point 

q as center and       as radius that p is in query point q 

zone. With assisting of points that are interfered with the 

circle, the radius and p are updated. This operation is 

continued until up to dating is possible and finally NN is 

reported [2, 20-23]. 

Quad-Tree and Oct-Tree act similar to kd-Tree, as Quad–Tree 

used in two dimensional spaces and for creating tree in it, 

each zone in each repetition is divided to four parts. Oct-Tree 

used in 3D and each zone in each repetition is divided to eight 

parts. Searching operation in these two structures are similar 

to kd-Tree [24-28]. 

Also we can point to Ball-Tree [2, 29, 30].A Ball-Tree is a 

binary tree where each node represents a set of points, called 

Pts(N). Given a data set, the root node of a Ball-Tree 

represents the full set of points in the data set. A node can be 

either a leaf node or a non-leaf node. A leaf node explicitly 

contains a list of the points represented by the node. A non-

leaf node has two children nodes: N.child1and N.child2, 

where 

 
                                        

                                   
        

Points are organized spatially. Each node has a distinguished 

point called a Pivot. Depending on the implementation, the 

Pivot may be one of the data points, or it may be the centroid 

of Pts(N). Each node records the maximum distance of the 

points it owns to its pivot. Call this the radius of the node: 

              
    

                                  

Nodes lower down the tree have a smaller radius. This is 

achieved by insisting, at tree construction time, that 

 
                                                      

                                                      
     

Ball-Trees are constructed top down. There are several ways 

to construct them, and practical algorithms trade off the cost 

of construction against the tightness of the radius of the balls 

[2]. 

For searching in this tree, the algorithms such as KNS1, 

KNS2, KNS3 and KNSV can be used [2, 29]. As these 

algorithms have rules for pruning points. 

One of the other important extant structures is R-Tree that 

also named spatial access method. 

R-trees are a generalized B-tree. R-trees can handle 

multidimensional data. R-Trees can be used in Temporal and 

Spatial Data and also in commercial database management 

systems such as Oracle, MySQL and Postgre SQL. 

Furthermore in spaces which points are moveable, R-Tree is 

one of the most usable structures. This tree one of data 

structures which operate based on local indexing. This local 

indexing is defined as rectangular vicinity named MBR 

(Minimum Bounding Rectangle). MBR is the smallest local 

rectangle that contains its all points and subset nodes. R-Tree 

uses three concept distance for searching: MinDist, MaxDist 

and MinMaxDist. Also this tree is a balance tree and all of its 

leaves are in the same level. For R-Tree there are two 

algorithms for searching nearest neighbor to HS and RKV that 

HS is a breadth search Algorithm and RKV is a branch and 

bound algorithm that use depth search [24, 31-35]. 

Another structure that can be used for NNS is M-Tree that is 

inspirited from R-Tree and B-Tree with the difference that 

pay more attention to memory and I/O. 

M-Tree is defined by paying attention to different situation 

and tries to prune more points. Searching in this is similar to 

R-Tree but with priority queue searching algorithm is 

optimum. For indexing points in metric space M-Tree is used 

such as VP-Trees, Cover-Trees ،MVP-Trees and BK-Trees 

[36, 37]. 

And another structures for NNS that is created by R-Tree idea 

are R*-Tree, R+-Tree, TPR-Tree, X-Tree, SS-Tree, SR-Tree, 

A-Tree and BD-Tree [24, 31, 38-41]. At the end of this 

section the complexity of some of the structures are compared 

in table 3. 

3. NEAREST NEIGHBOR SEARCH 

TECHNIQUE 
One of the most important reasons that have made it pervasive 

is widespread of application and its extent. This wide 

spreading caused heterogeneous data, conditions and system 

environment and made the solution hard. So it is necessary to 

create a technique that has the best result. With this reason for 

solving NNS problem, different technique with different 

approach has been created. Each of these techniques can be 

divided to two parts. The first part consists suitable structure 

for indexing and maintaining data points that is discussed in 

the last section. It is necessary to mention that some of these 

http://wwwis.win.tue.nl/~tcalders/teaching/dbmodels/pdf/lect5-2_spatiotemporal.pdf
http://wwwis.win.tue.nl/~tcalders/teaching/dbmodels/pdf/lect5-2_spatiotemporal.pdf
http://www.youtube.com/watch?v=6AKqv9c8l3o
http://en.wikipedia.org/wiki/Priority_queue
http://en.wikipedia.org/wiki/Cover_tree
http://en.wikipedia.org/wiki/MVP_Tree
http://en.wikipedia.org/wiki/MVP_Tree
http://en.wikipedia.org/wiki/Bk_tree
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structures itself can be used as a technique for NNS, such as KD-Tree, Ball-Tree and LSH. 

Table 3. Computational Complexity of structures  

Search 

complexity

(Space) 

Search 

complexit

y(Query 

Time) 

Construct 

complexit

y(Space) 

Construct 

complexity(

Query Time) 

Idea Structur

e’s name 

No

. 

           

     
    

              Mapping data point by using hash 

function-search based on hash function. 

LSH 1 

     
     

 
     

                Making binary tree recursively based on 

the mean of points- search based on 

nearest query region 

KD-Tree 2 

                    

          

Making Quad-tree recursively based on 

same zones (or based on the place of 

points)-search based on nearest query 

region 

Quad-

Tree 

3 

                    

          

Making Oct-tree recursively based on axis-

search based on nearest query region 

Oct-Tree 4 

     
         

                         Making binary tree recursively based on 

axis-search based on data pruning and the 

distance from the axis. 

Ball-Tree 5 

        
          

                      Making R-tree into down to up based on 

MBR-search based on data pruning and 

MBR 

R-Tree 6 

                                     Making M-tree into down to up based on 

the radius of adjacent data. Search based 

on data pruning and the radius of nodes. 

M-Tree 7 

The second part consists a suitable algorithm for finding the 

nearest points to query point q. linear searching and kNN can 

be mentioned as simple and first techniques [2]. In linear 

searching for each query point q, its distance from all points in 

S is calculated and each point that has the lowest distance is 

chosen as a result. The main problem in this technique is 

unsalable that in high dimensional or by increasing the points 

in space, the speed of searching is really decreased. 

kNN technique for the first time in [42] has been presented for 

classification and used simple algorithm. A naive solution for 

the NNS problem is using linear search method that computes 

distance from the query to every single point in the dataset 

and returns the k closest points. This approach is guaranteed 

to find the exact nearest neighbors. However, this solution can 

be expensive for massive datasets. By paying attention to this 

initial algorithm, different techniques have been presented that 

each of them tries to improve kNN’s performance. In present 

study, a new, suitable and comparable categorizing from these 

techniques is presented. By paying attention to this, these 

techniques have been categorized to seven different groups 

that are discussed as follow. 

3.1 Weighted techniques 
In such these groups of techniques, by give weight to points 

the effect of each of them on final result is denoted that one of 

the main applications of this group is its usage in information 

classification. Some of these techniques are mentioned as 

follow: Weighted k-Nearest Neighbor (Weighted-kNN), 

Modified k-Nearest Neighbor (Modified-kNN) and Pseudo k-

Nearest Neighbor (Pseudo-kNN) [43-48]. 

Surveying the position of each point compare to other points 

for query point q is one of the most application methods 

which Weighted-kNN use it. In this technique if distance is 

defined as weight, it names distance Weighted-kNN.  Usually 

each of the points has different distance from query point q, so 

nearer points have more effects. In this technique calculating 

weight based on distance of points will be done with equation 

5 [43, 44]. 

    

     
     

                    

                             

                        

If space has imbalance data, it is better to use Neighbor 

Weighted-kNN instance of Weighted-kNN. If in a set of data 

same of the classes have many members in compare to others, 

its score very high and so more query belong to this class. For 

solving this problem it is necessary that the classes with more 

members gain low weight and the classes with less members 

gain high weight. The weight for each class calculated from 

equation 6 [45, 46]. 

   
 

       
            

              
                

For example in point classification for presenting better 

answer instead of distance, product of distance and weight 

must be used. Here by paying attention to space weight is 

calculated by one of these techniques. 

In more problems choosing neighbors based on distance have 

some problems such as low Accuracy and incorrect answers. 

Modified-kNN method which use for classification, tries to 

solve these problems. At first a preprocessing is done on all of 

the points and gives a validity value to each point. This value 

defines based on each point H nearest neighbor which is 

calculated with equation 7. 

            
 

 
                     

 

   

             

And then it is continued similar to weighted-kNN with this 

difference that calculated weight for each point has been 

product in validity value and new weight is calculated. 

Equation 8 shows this operation [47]. 

                                               
Pseudo-kNN technique tries to present suitable answers by 

increasing calculations and omitting the effects of outlier data 

and use Local Mean Learning for this. In this method it is 

http://blog.computationalcomplexity.org/
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assumed that M classes have    member in each. Also 

  
         

    show k nearest neighbor query point q in      

class with      
            

   
 distances that is sorted 

ascending. For finding Pseudo-kNN, k nearest neighbor to q 

in each class calculated that to     near neighbor in each class 

weight    
 

 
              is given. This weight shows 

the high effect of near point compare to further point. By 

paying attention to Local Mean Learning,    can define as 

follow: 

           
   

         
   

           
   
  

                                         
Now the class that minimize    is q class [48]. 

3.2 Reductional techniques  
One of the necessary needs in data processing is extra data 

and its suitable summarize. This is introduced in spaces which 

has massive data or data that need high memory. These 

techniques caused improving performance of systems by 

decreasing data. Condensed k-Nearest Neighbor (Condensed-

kNN), Reduced k-Nearest Neighbor (Reduced-kNN), Model 

Based k-Nearest Neighbor (ModelBased-kNN) and Clustered 

k-Nearest Neighbor (Clustered-kNN) are discussed in this 

section [49-55]. 

Data that are considered as unnecessary information, identical 

with other data, are deleted in Condensed-kNN. There are two 

approaches, A) It is assumed that the data are labeled. Then 

instead of saving the data along with their classes, sample data 

is saved so that there will be no duplicate data in the dataset. 

B) Data might be without label; thus the desired cluster can be 

found by clustering and sample data is obtained from the 

center of the cluster. kNN operation then, is carried out on the 

remainder of the data [49-51]. 

Another approach, which uses the nearest neighbor to reduce 

information volume, is Reduced-kNN (a developed version of 

condensed-kNN). In addition to removing identical data, null 

data is also deleted. This even shrinks more the data volume 

and facilitates the system response to queries. Moreover, 

smaller memory space is required for processing. One of the 

drawbacks is increase in complexity of computations and 

costs of execution of the algorithm consequently. In general, 

these two approaches are time consuming [49, 52]. 

The next technique to reduce information volume is 

ModelBased-kNN. As the technique dictates, a data model is 

first extracted from the information and replaces the data. This 

removes a great portion of the information volume. It is 

noticeable, however, that the data model needs to resemble 

well the whole data. In place of the whole data, for instance, 

one may use the data that show the points (usually the central 

point), number of the member, distance of the farthest data 

from the resemblance and the class label in some cases. 

Modelbased-kNN employs “largest local neighborhood” and 

“largest global neighborhood” to create a simpler structure 

and definition of the model so that the data are modeled step 

by step [53, 54]. 

Another technique to reduce information volume and heighten 

the accuracy is clustered-kNN. To reduce the data volume, 

clusters are utilized and the initial data are replaced by the 

clusters. One reason to use the technique is its higher accuracy 

when the clustered data and classes have outlier data. This, for 

a query point q, ensures that there is a point in another class 

closer than a point in the same class. The procedure includes 

removing outlier data according to a definite process known 

as “austerity” and standards (e.g. 20% of the outlier points). 

Then, the data are clustered by different methods such as “k-

means” and center of the cluster are taken instead of the data. 

Now, class q is deterred as follows.  

           

     

   
       

        

                        

                             

       

         

According to these equations,    class with highest value for 

        is adopted as the answer [55]. 

3.3 Additive Techniques 
In this group of techniques it is tried to increase system 

operation accuracy by increasing data volume. Another aim of 

these techniques is paying attention to all of points together 

that can affect each other. Nearest Feature Line (NFL), Local 

Nearest Neighbor (Local-kNN), Center Based Nearest 

Neighbor (CenterBased-kNN) and Tunable Nearest Neighbor 

(Tunable-kNN) are discussed in this section [56-61]. 

When the number of points for classification is not enough, 

accuracy of the final result is unacceptable. It is necessary to 

have another technique for increasing data volume and the 

accuracy consequently. One answer, Euclidean and 2D 

spaces, is NFL technique. By converting each two points in a 

class (future points) into a line, not only NFL increases the 

data volume but it adds to effect of the points in each class. 

Future points (FP) symbolize features of a class and there are 

two FPs at least in each class. The lines drawn between the 

two FPs are called future lines (FL). Instead of calculating 

distance between q and other data points, perpendicular 

distance between q and each FL is measured (Figure 1). With 

high efficiency of the technique in small dataset, by increasing 

size of dataset the computation complexities is increased. 

There is a risk of wrong determination of nearest FL in NFL 

for distant q and FPs (Figure 2).  Figure 2 shows that            is 
wrongly adopted [56, 57]. 

 

Fig 1: Mapping Query Point on Future Line [56] 

 

Fig 2: Nearest Future Line Drawback in Classification 

[58] 

To deal with the drawback, Local-kNN was introduced, so 

that FPs are chosen among k nearest neighbors of q in each 

class. This ensures accurate determination of nearest FL, 

though great deal of computation is required. For 

classification, first kNN for each class        is computed. 
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If k=2, distance between q and the FL is created from 2NN of 

each class and if k = 3, distance between q to future plane 

created from 3NN of each class are obtained. Finally, the class 

with shortest distance to q is taken as the result [58]. 

Another technique, Centerbased-kNN, tries to improve NFL. 

The central point of each class is computed and, then, a line is 

drawn from the point to the other points in the class (center 

line – CL). Afterward, nearest neighbor is computed likewise 

NFL so that distance between q and CL is calculated and the 

minimum distance is adopted [59]. 

When the points are distributed as figured below, there is a 

possibility that line between the q and the FL crosses another 

class – happens when neighbor data are not taken into 

account. Figure 3 illustrates a case when lines of two classes 

cross each other. This results in wrong classification and 

Tunable-kNN was introduced to solve the problem (also 

known as extended-NFL). Performance of the new method is 

improved by computing new distance based on the status of 

the data [60, 61]. 

 

3.4 Reverse Techniques 
Reverse techniques are the most important and most 

application techniques in NNS. This group is variety that in 

present paper some of them are discussed. In this group of 

techniques the approach of problem is changed and data 

points are taken more attention than query points. Reverse 

Nearest Neighbor (Reverse-kNN) and Mutual Nearest 

Neighbor (Mutual-kNN) are described in this section [62-68]. 

The aim of the techniques is to find data points nearest to q. 

Reverse-kNN uses the idea and functions according to the two 

definitions pointed out in equation 12. 

                                    

                                                
          

The straightest way to find reserve-kNN of query point q is to 

calculated the nearest point in the dataset based on the 

distance equation of each p; this creates regions centered by p 

with radius of      . Then, when point q is located in one of 

the regions, the point p in the regions is the answer. 

Noticeably, the for L2-norm and L∞-norm are circle and 

rectangular respectively. In spite of kNN, Reserve-kNN 

technique may have empty set as answer and given the 

distance function and dimension of the data, number of points 

in the set is limited. If L2-norm is the case, for instance, we 

have 6 and 12 points at most under 3D and 2D spaces 

respectively. For L∞-norm there are      equal points. A 

comparison between kNN and Reserve-kNN is carried out in 

follow [62-67]. 

 
                                 

                                  
          

There is a need in some applications that q is the nearest 

neighbor of data point in the answer set and the data point in 

the answer set is the nearest neighbors to query point q. In 

such cases, we deal with new concern known as Mutual-kNN 

that illustrated by the two definitions as follow: 

                                             

                                               
      

Where k1, k2 are number of mutual nearest neighbors. The 

technique adopts points that are optimum for both kNN and 

Reverse-kNN. In other words, following equation must be 

met. There are different methods to obtained Mutual-kNN 

including simple processing, two-step, reuse two-heap, using 

NN search with pruning, and using RNN search with pruning 

[68]. 

 
                     

                      
                                           

3.5 Continuous Techniques 
Techniques that are presented in this section are suitable for 

points that are introduced in continuous space instead of 

discrete space. In this section continuous Nearest Neighbor 

(Continuous -kNN) and Range Nearest Neighbor (Range-

kNN) are evaluated [69, 70]. 

The best choice to find kNN query point q on different points 

on a line is Continuous-kNN. For instance, for   
                  and line    continuous nearest neighbor of 

q on different points of the line are marked in figure 4.  The 

continuous nearest neighbor of q is marked on different point 

of line. If query point q is at interval (s, s1), then point 'a' is 

taken as Continuous-kNN. This for intervals (s1, s2), (s2, s3), 

and (s3, e) is 'c', 'f', and 'h' respectively.  

Time can be easily added as another dimension and adopt a 

dynamic viewpoint. That is, query point q is moving along the 

line. An example is the query to find “nearest gas station on 

the path of point s to point e”. There are many methods to find 

the nearest point to q, and simplest cases employ an algorithm 

to determined points on the line called split point (a set of split 

points and start/end points for split list). Each point creates a 

region and nearest point to q is obtained when it is positioned 

in the regions. Another method uses R-Tree and creates a 

pruning algorithm to remove data point using MinMaxDist 

and MinDist [69]. 

Increase of space dimensions of q means that the point is 

located in multi-dimension continuous regions which raise the 

problem of Range-kNN. For sake of simpler NNS, the 

following theorem is introduced.   

Theorem 1. point p is located is Range-kNN of region Ω, if 

and only if p is the nearest neighbor for at least one of the 

margins of region Ω. 

It is noticeable that p is assumed to be outside of the region. 

For the 2D space it is assumed that the region is covered by 

four lines. Therefore, the problem is reduced to linear NNS 

problem. In general, for d dimension regions, the nearest 

neighbor for     regions has     dimensions. Linear 

solution is adopted to deal with computation complexities 

[70]. 

Fig 3: Lines of Two Classes Cross each other [60] 
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Fig 4: Continuous Nearest Neighbor Sample [69] 

3.6 Principal Axis Techniques 
In this group of techniques data environment is divided in 

several subset. Each these sets have an Axis which data are 

mapped on them. In this section Principal Axis Nearest 

Neighbor (Principal Axis-kNN) and Orthogonal Nearest 

Neighbor (Orthogonal-kNN) are introduced [71-74]. 

One of the techniques to find kNN is Principal Axis-kNN. As 

the method implies, the dataset is divided into several subsets. 

The dividing is continued until every subset is smaller than a 

specific threshold (e.g. 'nc'). Along with dividing, a principle 

axis tree (PAT) is developed so that the leaf’s nodes have 'nc' 

data points at most (Figure 5).  Each node in PAT has a 

principle axis which is used for mapping data and calculating 

distance as well as pruning. For search operation, first the 

node where the q is located is searched through a binary 

query. Then, the node and/or sibling nodes are searched to 

find kNN of query point q (Figure 6). To have faster process, 

some regions are pruned using the principle axis [71, 72]. 

The pruning algorithm in the technique only takes distance 

between q and the region axis into account (Figure 6) as 

position of the data point is left. Given this, a new method for 

pruning the data points can define. To this end, Orthogonal-

kNN (also known as Modified Principal Axis Nearest 

Neighbor) is utilized. The main difference of between this and 

Principle Axis-kNN lies with data search and pruning 

algorithm. For pruning, first the chosen regions are removed 

and then the remaining data regions are examined for further 

pruning. Therefore, more points are pruned with the new 

function and faster is the algorithm [73, 74]. 

3.7 Other Techniques 
In this section the techniques have been discussed that 

couldn’t be categorized in previous groups, such as 

Constrained Nearest Neighbor (Constrained-kNN), Rank 

Nearest Neighbor (Rank-kNN), Group Nearest Neighbor 

(Group-kNN) and techniques that used in problems such as 

Road network have been introduced [75-81]. 

By definition NNS and majority of the available techniques 

are set to minimize distance between q and other points in the 

dataset. In some applications, there is a need to define other 

measures and limitations, where constrained-kNN comes 

handy. Two mostly used techniques to define constrained-

kNN are Range Constrained Nearest Neighbor (Range 

Constrained-kNN) and Reverse Constrained Nearest Neighbor 

(Reverse Constrained-kNN) [75, 76]. 

 

 
Fig 5: Partition of a 2D Data Set using a Principal Axis 

Tree [71] 

 

 

Fig 6: Pruning Data Set using a Principal Axis Tree [71] 

Range Constrained-kNN: the technique is based on Euclidean 

space and defines conditions of location bounds. In fact, 

search spaces divided into specific regions. Response to query 

“nearest southern point of q”, for instance, is obtained by 

implementing the condition of being south. Instead of a, 

figure 7 shows point r1 as the response to the query and the 

query is defined as equation 16. Other queries such “nearest 

restaurant in the next town” and “nearest restaurant at 2km 

off the road” are also possible. For the former, query of “next 

town”, regions are limited to a specific region located far 

away from q. For the latter, query of “road”, the regions are 

limited to a polygon area expanded 2km. off the road [75]. 
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Reverse Constrained-kNN: the technique is based on Reverse 

technique and the condition is employed on the number of 

results. According to equation 17, when number of the results 

exceeds threshold of m, the same results are reported. 

Otherwise, the answer set is null. For the most defined spaces, 

number and dimension of the data points are the same. Now, 

Rand-kNN is a good choice, if the condition is not defined in 

a space (e.g. weight and length are not comparable for 

humans) or no data points are exist and only general 

information is given [76]. 

          
                       

                                                        
         

In sum, every point in the technique (data and query) is 

mapped with a number according to a function      and after 

sorting the results, kNN is obtained for the query point q. It is 

critical in Rank-kNN to find proper function      for the data 

so that the output of the function must be unique for all data 

[77, 78]. 

Some of the available techniques are used for spaces where a 

set of query point and a set of points as answer are under 

consideration – nearest to all query points. This new problem 

is known as Group-kNN or Aggregate Nearest Neighbor 

(aggregate-kNN). "Meet point" problem is an example for the 

technique. The measure of GNN distance is defined in two 

ways: 

1. Sum of Distance: where the sum of distance of data 

point p is obtained from the whole queries and the 

data with minimum sum of distance is the answer 

follow. 

                

 

   

                                 

2. Maximum distance: where distance for each data 

point p is calculated with each query and maximum 

distance is under consideration. Then the data point 

with minimum distance from the maximum 

distances is the answer follow. 

             
     

                                

There is more than one method to obtain Group-kNN such as 

MultipleQuery Method, Single Point Method, Minimum 

Bounding Method for small number of queries, and Group 

Closest Pair Method, File Multiple Query Method and File 

Minimum Bounding Method for large number of queries [79, 

80]. 

kNN technique can use in problems with graph structures, 

where the graph needs to meet metric space conditions. For 

instance, a graph of urban streets can draw (Figure 8). In such 

graphs, only lines (resemblance of streets) are allowed to pass. 

Some of the algorithms for under Aggregate-kNN for graph 

spaces are Incremental Euclidean Restriction (IER), The 

Threshold Algorithm (TA), and Concurrent Expansion (CE) 

[81]. 

 
4. ASSESSMENT AND COMPARISON 

OF TECHNIQUES 
Each of the presented techniques in this paper is suitable for 

using in spaces with special data but it can't be used generally. 

So in this section, these techniques are compared and 

evaluated. These comparison and evaluation are presented in 

to section. The first part that is shown in table 4 presented 

each technique's idea and applications. The second part that is 

shown in table 5 presented more details. In this table the 

different categorizes for each techniques are presented and 

evaluated. These categorizes cane be divided to two parts: 

quality and quantity categorizes. In quality categorizes it is 

presented that which techniques have structure and which of 

them don't. Also it is denoted that which techniques use all of 

data and which is not. In quantity categories' part the number 

of "*" show the size of each category. These categories 

contain different aspects such as Structure Based, Whole 

Data, Simplicity Understanding, Difficultness 

Implementation, Accuracy, Volume of Data, Volume of Data, 

Data Dimensions, Preprocessing Cost, Search cost and Space 

Cost. "-" means there is n't preprocessing in a technique and 

"↔" show the diversity of categories by paying attention to 

terms. For example in constrained-kNN search cost is depend 

on specify condition for NNS. 

Table 4. Nearest Neighbor Techniques 

Application Idea Technique No. 

All Comparing query with all data points. Simple 1 

1) Massive Data 

2) Classification 
Searching based on almost votes. kNN 2 

1) Massive Data 

2) Unbalanced Data 
3) Classification 

1) Making weight to the neighbors based on 

distance. 

2) Making weight to the classes based on the 

Weighted-kNN 3 

Fig 8: Graph of Urban Streets [81] 

Fig 7: Constrained Nearest Neighbor 

Sample [75] 
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number of members. 

1) Classification Making weight to the points based on the neighbors. Modified-kNN 4 

1) Classification 
Making weight to the points based on their effect of 

dispersal. 
Pseudo-kNN 5 

1) Environment with Limited 

Memory 

2) Duplicate Data & Pattern 
Omitting the repetitive and redundant data. Condensed-kNN 6 

1) Large & Null Data set Omitting the data which are ineffective on results. Reduced-kNN 7 

1) Dynamic Web Mining for 

Large Repository 

Creating model from data and replacing it instead of 

data. 

ModelBased-

kNN 
8 

1) Text Classification Clustering data in classes and omitting far data. Clustered-kNN 9 

1) Pattern Recognition 

2) Face Recognition 
3) Classification 

Mapping points to lines for increasing data and 

accuracy. 
NFL 10 

1) Pattern Recognition 

2) Classification 
Mapping points of each group to lines distinct Local-kNN 11 

1) Pattern Recognition 

2) Classification 
Creating lines from data points and data center. 

CenterBased-

kNN 
12 

1) Bias Problem 

2) Classification 
Adjusting distance and level that are in the same 

level based on data condition. 
Tunable-kNN 13 

1) Spatial Data Set 

2) Business Location 

Planning 
3) Profile Based Marketing 

4) Maintaining Document 

Repositories 

Discussing data that are the closest to query pints. Reverse-kNN 14 

1) Dynamic Databases 
Discussing data that are the closest to query pints 

and on the vice versa. 
Mutual-kNN 15 

1) Nearest Data on Route 

2) Mobile Data 
Consuming query point in a straight line 

continuesly. 
Continues-kNN 16 

1) Nearest Hotel to the City 

Park 

2) Nearest Printer Unit to 

College 

Consuming query point in a d-dimensional zone 

continusely. 
Range-kNN 17 

1) Pattern Recognition 

2) Spatial Data Set 
Using the main axis to prune data. 

PrincipalAxis-

kNN 
18 

1) Pattern Recognition 

2) Spatial Data Set 
Mapping data on the main axis and prune them. Orthogonal-kNN 19 

1) Nearest South Data 

2) Nearest Restaurant in Next 

City 
3) Client & Server Link in 

Busy Network 

1) The nearest neighbor in a specific zone. 

2) The number of result is more than m threshold. 
Constrained-

kNN 
20 

1) Multidimensional Data 

Points 

2) Data Points with General 

Information 

Ranking data and query and sorting them based on 

its calculated rank. 
Rank-kNN 21 

1) Spatial Data Set 

2) Meeting Point Problem 
The nearest neighbor to a group of query points. Group-kNN 22 
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Table 5. Comparison of nearest neighbor techniques  
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5. CONCLUSION 
In this paper, the metric and non-metric spaces are defined. 

The first one is used in NNS problem. Diverse distance 

formulas which are used in this problem to find the nearest 

data point are described and then different structures are 

introduced. These structures are used for indexing points and 

making the searching operation faster. Some of these 

structures such as: Ball-Tree, LSH and KD-Tree are 

considered as technique for NNS problem. Finally, a new 

categorization based on the functionality of different 

techniques for NNS problem is introduced. Techniques with 

similar functionality are grouped together in this 

categorization. This categorization consists of seven groups; 

Weighted, Reductional, Additive, Reverse, Continuous, 

Principal Axis and Other techniques. In each group, the main 

features of the group are described and each technique is 

introduced briefly. Finally, a complete comparison of these 

techniques is done. 
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