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ABSTRACT

In this paper, novel enhanced Cognitive Radio Network (CRN) is considered by using power control
where secondary users (SUs) are allowed to use wireless resources of the primary users (PUs) when PUs
are deactivated, but also allow SUs to coexist with PUs while PUs are activated by managing
interference caused from SUs to PUs. Therefore, a novel finite horizon adaptive optimal distributed
power allocation (FH-AODPA) scheme is proposed by incorporating the effect of channel uncertainties
for enhanced CRN in the presence of wireless channel uncertainties under two cases. In Case 1,
proposed scheme can force the Signal-to-interference (SIR)of the SUs to converge to a higher target
value for increasing network throughput when PU’s are not communicating within finite horizon. Once
PUs are activated as in the Case 2, proposed scheme cannot only force the SIR’s of PUs to converge to a
higher target SIR, but also force the SIR’s of SUs to converge to a lower value for regulating their
interference to Pus during finite time period. In order to mitigate the attenuation of SIR’s due to channel
uncertainties the proposed novel FH-AODPA allows the SIR’s of both PUs’ and SUs’ to converge to a
desired target SIR while minimizing the energy consumption within finite horizon. Simulation results
illustrate that this novel FH-AODPA scheme can converge much faster and cost less energy than others
by adapting to the channel variations optimally.
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1 Introduction

Cognitive Radio Network (CRN) [1] is a promising wireless network since CRN can
improve the wireless resource (e.g. spectrum, power etc.) usage efficiency significantly by
implementing more flexible wireless resource allocation policy [2]. In [3], a novel secondary
spectrum usage scheme (i.e. opportunistic spectrum access) is introduced. The SUs in SRN can
access the spectrum allocated to PUs originally while the spectrum is not used by any PU.

Moreover, the transmission power allocation plays a key role in cognitive radio network
protocol designs. The efficient power allocation cannot only improves the network performance
(e.g. spectrum efficient, network throughput etc.), but also guarantees the Quality-of-Service
(QoS) of PUs. A traditional scheme to protect transmission of PUs is introduced in [4] by
imposing a power constraint less than a prescribed threshold referred to as interference
temperature constraint [5] in order to contain the interference caused by SUs to each PU.
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Motivated by this idea, many researchers have utilized transmission power allocation for
enhanced CRN subject to interference constraint. Authors in [6] proposed a centralized power
allocation (CPA) to improve the enhanced cognitive radio network performance by balancing
the signal-to-interference ratios (SIR) of all PUs and SUs. However, since centralized power
allocation scheme requires the information from every PU and SU which might not be possible,
distributed power allocation (DPA) is preferred for enhanced CRN since information from
other PUs and SUs is not needed. In [7-8], authors developed distributed SIR-balancing
schemes to maintain Quality-of-Service requirement for each PU and SU. However, wireless
channel uncertainties which are critical are not considered in these works [1-8].

For incorporating channel uncertainties into DPA, Jagannathan and Zawodniok [9]
proposed a novel DPA algorithm to maintain a target SIR for each wireless receiver in cellular
network under channel uncertainties. In [9], an adaptive estimator (AE) is derived to estimate
slowly time varying SIR model which can be changed with varying power and channel
uncertainties, and then adaptive DPA is proposed to force actual SIR of each wireless user
converge to target SIR. Motivated from this idea, channel uncertainties have also been included
into the developed novel finite horizon adaptive optimal DPA scheme.

In this paper, a novel finite horizon adaptive optimal distributed power allocation (FH-
AODPA) for PUs and SUs in enhanced CRN with channel uncertainties is proposed. Based on
the special property of enhanced CRN (i.e. introduced SUs can use PU’s wireless resource
when PUs are deactivated, also SUs are allowed to coexist with PUs while PUs are activated by
managing interference caused from SUs to PUs properly), FH-AODPA can be developed under
two cases: Case 1 PUs are deactivated while in Case 2 PUs are activated. In Case 1, since PUs
are deactivated and SUs would dominant CRN, proposed FH-AODPA has to force the SIRs of
SUs to converge to a higher target value in order to increase the CRN utility within finite
horizon. However, in Case 2, since PUs are activated, proposed FH-AODPA has to not only
force the SIRs of the SUs to converge to a low target value to guarantee QoS for PUs, but also
increase network utility by allocating the transmission power properly for both PUs and SUs
during finite time period.

Therefore, according to the target SIRs, the novel SIR error dynamics with channel
uncertainties are derived first for PUs and SUs under two cases. Second, by using idea of
adaptive dynamic programming (ADP), the novel adaptive value function estimator and finite
horizon optimal DPA are proposed without known channel uncertainties for both PUs and SUs
under two cases. It is important to note that proposed FH-AODPA scheme cannot only forces
each PU’s and SU’s SIR converge to target SIRs respectively in two cases, but also optimizes
the power allocation during finite convergence period which is more challenging compared due
to terminal state constraint. The finite horizon optimal DPA case has not been addressed so far
in the literature. Compared with infinite horizon, finite horizon optimal DPA design should
optimize the network utility while satisfying the terminal constraint [14]. Meanwhile, proposed
FH-AODPA algorithm being highly distributive in nature does not require any inter-link
communication, centralized computation, and reciprocity assumption as required in a centrally
control wireless environment.

This paper is organized as follows. Section II introduces the background included cognitive
radio network and wireless channel with uncertainties. Next, a novel adaptive optimal
distributed power allocation (AODPA) scheme is proposed along with convergence proof for
both PUs and SUs in enhanced CRN under two cases in Section III. Section IV illustrates the
effectiveness of proposed adaptive optimal distributed power allocation in enhanced CRN via
numerical simulations, and Section V provides concluding remarks.
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2 Background

2.1 Enhanced Cognitive Radio Network (CRN)

As shown in Figure 1, the general enhanced Cognitive Radio Network (CRN) can be
classified into two types of sub-networks: Primary Radio Network (PRN) and Secondary Radio
Network (SRN) which include all PUs and SUs in enhanced CRN respectively. In order to
improving network utilities (e.g. spectrum efficiency etc.), SUs are introduced in enhanced
CRN to share the wireless resource (e.g. spectrum etc.) with PUs which usually exclusive
network resource in other existing wireless networks (e.g. WLAN, WiMAX, etc.). On the other
hand, similar to traditional wireless networks, QoS of PUs have to be guaranteed in enhanced
CRN even though SUs coexist. Therefore, SUs in enhanced CRN need to learn the wireless
communication environment and decide their communication specifications (e.g. transmission
power, target SIR, etc.) to not only maintain the QoS of PUs, but also increase the network
utility such as spectrum efficiency and so on.

SU4 Rx

SU4 T

SU3 Rx

SU2 Rx

Figure 1.EnhancedCognitive Radio Network

Due to special property of enhanced CRN, traditional wireless network protocol (e.g.
resource allocation, scheduling etc.) might not be suitable for CRN. Therefore, novel protocol
is extremely needed to be developed for enhanced CRN. Using the enhanced CRN property,
novel protocol has to be separated into two cases: Case 1 PUs are deactivated; Case 2 PUs are
activated. In Case 1, since SUs dominant the enhanced CRN, enhanced CRN network protocol
has to improve the SRN performance as much as possible. However, in Case 2, enhanced CRN
network protocol has to not only guarantee QoS of PUs, but also increase CRN network utility
by allocating resource to both PUs and SUs properly.

2.2 Channel uncertainties

It is important to note that wireless channel imposes limitations on the wireless network
which also includes the cognitive radio network. The wireless link between the transmitter and
the receiver can be simple line-of-sight (LOS) or non LOS, or combining LOS and non LOS. In
contrast to a wired channel, wireless channels are unpredictable, and harder to analyze since
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more uncertain elements (e.g. fading, shadowing etc.) are involved. In this paper, three main
channel uncertainties (i.e. path loss, the shadowing, and Rayleigh fading) are considered. Since
these main wireless channel uncertainties factors can attenuate the power of the received signal
and cause variations in the SIR at the receiver significantly, it is very important to understand
these before proposing novel adaptive optimal DPA scheme for cognitive radio network. The
details are given as follows.

In [10], assuming path loss, received power attenuation can be expressed as the following
inverse n-th power law

ho=

y dun

)

wherehis a constant gain which usually is equal to 1 andd;is the distance between the

transmitter of j” user to the receiver of i” user andnis the path loss exponent. Note that the

value of path loss exponent (i.e. n) is depended on the characteristic of wireless communication
medium. Therefore, path loss exponentnhave different values for different wireless
propagation environments. In this paper, » is set to 4 which is normally used to model path loss
in the urban environment. Moreover, the channel gain 7, is a constant when mobility of multiple
wireless users is not considered.

Further in large urban areas, high buildings, mountains and other objects can block the
wireless signals and blind area can be formed behind a high rise building or between two
buildings. For modeling the attenuation of the shadowing to the received power, the term10*'¢
is used to model as [11-12], where {is defined to be a Gaussian random variable. In next
generation wireless communication system included cognitive radio network, the Rayleigh
distribution is commonly used to describe the statistical time varying nature of the received
envelope of a flat fading signal, or the envelope of an individual multipath component. In [10],
the Rayleigh distribution has a probability density function (pdf), p(x), given as:

X )Cz
—exp| - 0<x<oo

px)=15? e"‘{ 207 ! 2)
0 x<0

where xis a random variable, ando’is known as the fading envelope of the Rayleigh
distribution.

Since all of these factors (i.e. pass loss, shadowing and Rayleigh fading) can impact the
power of received signals and SIR of multiple users, a channel gain factor is used and
multiplied with transmitted power to present the effect from these wireless channel
uncertainties. The channel gain & can be derived d as [10-11]:

h=fld,nX,)=d™" 10" . x? 3)
where d " represents the effect from path loss, 10" corresponds to the effect from shadowing.

For presenting Rayleigh fading, it is usually to model the power attenuation as X, where X is a
random variable with Rayleigh distribution. Obviously, the channel gain % is a function of time.

3 Proposed finite horizon adaptive optimal distributed power
allocation (FH-AODPA) scheme

In this section, a novel finite horizon adaptive optimal distributed power allocation (FH-
AODPA) scheme is proposed to optimize the power consumption by forcing the SIRs of the
PUs and SUs in enhanced CRN to converge to desired target SIRs within finite time under two
cases (i.e. Case 1: PUs are deactivated, Case 2: PUs are activated) even with unknown wireless
channel uncertainties respectively. In Case 1, since PUs are deactivated, proposed FH-AODPA
scheme can force SUs” SIRs converge to a high target SIR in order to increasing the network
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capacity. In Case 2, proposed FH-AODPA scheme cannot only guarantee the PUS’
communication quality by forcing PUs’ SIRs converge to a desired target SIR, but also allow
SUs to coexist with PUs in enhanced CRN by forcing their SIRs converge to a low target SIR
which maintain the interference temperature constraints.

Next, the SIR time-varying model with unknown wireless channel uncertainties is introduced
for PUs and SUs. Subsequently, we setup the value function for PUs and SUs in enhanced CRN
under two cases respectively. Then, a model-free online tuning scheme is proposed to learn the
value function of PUs and SUs adaptively for two cases within finite time, and then based on
different cases we develop the finite horizon adaptive optimal distributed power allocation for
PUs and SUs by minimizing the corresponded value function that is learned. Eventually, the
convergence proof is given. Meanwhile, without loss of generality, /th PU andmth SU are

selected to derive finite horizon adaptive optimal distributed power allocation for convenience
respectively.

3.1 Dynamic SIR Representation for PUs and SUs with Unknown Uncertainties

In previous power allocation schemes [5-8], only path loss uncertainty is considered. In
addition, without considering the mobility of PUs and SUs, the mutual interference /() is held
constant which is actually inaccurate in practical cognitive radio network. Therefore, in this
paper, more uncertainties factors included path loss, shadowing and Rayleigh fading are
considered together and both channel gain 4 and the mutual interference /(¢) are assumed to be
slowly time-varying. According to [9], the SIRs, RV (r) RV (r), at the receiver of irh PU and
mth SUat the time instant can be calculated respectively as:

R () = OB @) _ hy ()P (1)
’ 1) > hOPYO+ Y hOPY @)
1#je{ PUs) ie{SUs}
s s 4)
50 1y = Pun OB ©) _ 0
m ]:;U (1‘) . (%U )hmj(t)PjPU (t) + _Z{:«ggn;i(t)PiSU (t)

where 17V (1), 15V (t)is the mutual interference forithPU andmth SU, B™ (¢), PV are the
transmitter power of IthPU andmh SU, and{PUs},{SUs}are the sets of PUs and SUs

respectively.
Differentiating (4) on both sides, (4) can be expressed as

dR" () _ (PR @)1 1)~ (hy OB @)U )]

RPY (1)) =

(R (1)] 7 " or (5
SU v’ dR,iU @ _(,, (f)PnfU (t)) I'iU (0) — (h,,, (t)P"fU (t))[IiU i

(R ®)] = = SV

where [R" (1)],[R}Y (¢)] are the derivatives of ith PU’s and mth SU’s SIR (i.e. R/ (1), RV (t)) and

[PV O1.11 )] are the derivative of 17V (1), IV (t) . According to Euler’s formula, differential

equation can be transformed to discrete-time domain. Therefore, equation (5) can be expressed
in discrete time by using Euler’s formula as
- (h”'kPl‘};U)’I]}ij _(hll.kPl,}I;U )(11},’15/)’

(RIPICU) PUN2
o (©)
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In other words,
PU PU PU PU PU PU
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PU PU SU SU
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Multiplying T on both sides, (7) can be derived as
hll‘k+1 — hll‘k 1
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Next, by defining the variables{g/’,p/’ . v/ }and{g),. ;% vy} forith PU  andmth SU

respectively as
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Then, equation (8) can be represented for ith PU and mh SU respectively as
th,;kuafl = zt.;ku le.;lf/ + pzf,;lf/ Ul’.’lf/ (11)
Ry = Gas Rk + Pl

Using equation (11), SIR dynamics of each PU (i.e./e {PUs} ) and SU (i.e. me {SUs} ) can be
obtained without loss of generality. Moreover, it is observed that the SIR dynamics for PUs and
SUs is a function of wireless channel variation from time instantk tok +1. However, due to
uncertainties, wireless channel variation cannot be known beforehand which causes the DPA
scheme development for PUs and SUs more different and challenging, especially for finite
horizon optimal designing. For solving this challenging issue, a novel finite horizon adaptive
optimal DPA method is proposed as next.
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3.2 Value function setup for finite horizon adaptive optimal DPA in enhanced
CRN

As introduced above, two cases in enhanced CRN need to be considered in proposed
AODPA scheme (i.e. Case 1: PUs are deactivated; Case 2: PUs are activated). The value
function for PUs and SUs will be setup differently for the two cases. The details are given as
follows.

Case 1: PUs are deactivated

In Case 1, since PUs are deactivated, wireless resource (e.g. spectrum etc.) allocated to PUs
will be free. Therefore, proposed FH-AODPA scheme would force SUs’ SIRs converge to a
high target SIR, 7,/ ,in order to improving the performance of enhanced CRN (e.g. spectrum
efficiency, network capacity, etc.) within finite horizon. Therefore, the SIR error dynamics for
SUs in enhanced CRN can be represented by using equation (11) as:

X =g+ @ 0 ol (120

In the other words,

Cpi _ Goi O — 1] en’ n Pk’ sy (12b)
7Y 0 1 s 0 :

Moreover,
SU,1 _ ASU,1 SU,1 suU.,1,,5U.1
Em,k+l - Am,k Em,k + Bm,k Um,k (120)

where SIR error in Case 1 ase’,' =R, -y, , 7, is the high target SIR for SUs under Case 1,

and augmented state E, ' =[e, ' %, 1" . Then, according to [14] and equation (12c), the cost

mk

function for mth SU in Case 1 can be defined within finite time as
o1 {(Ejz‘l)Tsz"Ejf,’(’l Yk =0,,.,N—1

SUINT pSU,1 »SU 1
(Em,N) Pm,N E

m,N

(13)

mk T

where GY' > 0 is the solution of the Riccati equation [14], and NT, is the final time constraint.

mk =

The optimal action dependent value functionV(e) of m#h SU in Case 1 is defined as:

VLB = O+ =EE Y @ OEE @Y T (4
withr(E)} one D =(Ey D O ES + ) $* o Vk=0,L,...,N-1,0°""and $*V"" are

positive definite matrices.
Using Bellman equation and cost function definition (13), we can formulate the following
equation by substituting value-function into Bellman equation as

T
ES[ZYI SU, 1 ES[ZJ SU, 1 SU, 1 SU, 1
m, s m, _ s s s _
sud | Oni | o [FT(E, 0,0 )+, Ve=01. N-1 (15)
vm.k m.k
T
SU.1 SU.1 SUINT ~SU,1 4,SU.1 SU,INT ~SU.1 pSU.1 SU,1
_ Em,k Q +(Amk ) GmA,k+lAm4,k (Amﬂk ) Gm,k-HBm,k Em,k
- SU,1 SUNT ~SU,1 4 SU.1 SU.1 SUINT —~SU,1 pSU.1 SU,1
‘Um,k (Bm,k ) Gm,k+1 Lk S +(Bm,k ) Gm,kHBm,k ‘Um,k

Next after incorporating the terminal constraint in the value function and (15), slowly time
varying ®3Y"' matrix can be expressed as

m.k
[ @EE.SU,1 Ev,SU,1 SU,1 SUNT ~SU,1 4SU,1 SUINT ~SU,1 pSU,1
®SU,1 _ ®m$k ®m$k _ Q +(Am,k ) Gm,k+1 n,k (Amk ) Gm,kHBm,k
mk T VE,SU,1 vo,SU1 |~ SUINT ~SU,1 4SU,1 SU.1 SU,INT ~SU,1 pSU,1
_®m,k ®m,k (Bm,k ) Gm,k+1 k S + (Brmk ) Gmﬂk+l Bm,k

and Vk =0,1,...,N -1

@SUJ: P;f[{]l O .
mk | O O
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Next, according to [14], the gain of the optimal power allocation for mth SU under Case 1

can be represented in term of value function parameters, ®5"' Vk =01,..,N -1, as

KSUA,I — [SSU,I +(BSU¢1)TGSU,1 BSUJ]_I(B:,%J)TG,‘Zfi;II Si,l — (@DU,SUJ)-I@ZI&SU,I (16)

m,k m,k mk+1""m,k m,k

It is important to note that even Riccati equation solution, G 5", is known, solving the

mk

optimal design gain KJ;"' formth SU under Case 1 still requires its SIR error dynamics (i.e.

A BYYT) which cannot be known due to channel uncertainties. However, if the parameter

mk
vector®3%',k=0,1,..,N—1can be estimated online, thenmsh SU’s SIR error dynamic is not

needed to calculate finite horizon optimal DPA gain. Meanwhile, SIR of PUs in enhanced CRN
will not be considered since they are deactivated in Case 1.

Case 2: PUs are activated
In Case 2, proposed FH-AODPA scheme should not only force PUs’ SIRs converge to a
desired target SIR (i.e. ¥*¥) for maintaining their QoS, but also force SU” SIRs converge to a

low target SIR (i.e. 7'V ) in order to coexist with PUs. Therefore, the SIR error dynamics for ith
PU and mth SU can be expressed as

- {e},ﬁ%}z} :{ 11,352 II,JkU’: - 1}|:€11,31§;:| " {pz{gm}vlpkuz
¥ ,

SU,2 SU,2 SU,2 _1 SU,2 SU,2 (173)
mth SU . em,k+1 — ¢m,k ¢m,k em,k + pm,k vSli.Z
7 0 1 7Y o | ™
In the other words,
lt}’l PU . EPli.Q :APU,ZEPU.Q +BPU,2,UPU,2
1,k+1 1,k 1.k 1.,k 1.k (17b)

. SU,2 _ ASU,2 -SU,2 SU.,2,,8U.2
mth SU . Em.k-H - Am,k Em.k + Bm,k vm.k

where SIR error in Case 2 for PU and SU ase/* =R/ =y , el > =R =70, ™, y," is the

m.k

desired target SIR for PUs and high target SIR for SUs under Case 2, and augmented state
ESD?=lel? "1 EN . =[e)y? 7,"1". Then, according to the same theory and derivation

'm,k m,k

as Case 1, slowly time varying ®;/*,®;’;* matrices for PU and SU in Case 2 can be expressed

respectively as:
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and Vk=0]1,.,N-1
@PU,Z — Ef[’VU,Z 0 @SU,Z - R’lil/\/l,z 0

I,N | 0 0 m,N i 0 0
the optimal power allocation fori/sh PU and mh SU under Case 2 can be represented in term of
value function parameters, ;) %, ©3%*,Vk=0,1,...,N -1, respectively as

PU,2 _gPU,2 PU2\T ~PU,2 pPU,29-1 PU2NT ~PU,2 4PU,2 __ vv,PU,2\~1 ~VE,PU,2
Kl,k _[S +(Bl,k )Gl,k+1 Bl,k ] (Bl,k )Gl,k+1 Al,k _(®l,k ) ®l,k

KSU,Z _ [SSU,Z + (BSU,Z)T GSU,ZBSU,Z]—I(BSU,Z)T GSU,Z SU,2 _ (@UU,SU,Z)—I @UE,SU,Z
- m,k m,k+1 kT

mk mk+1"mk m,k mk mk

(18)

Similar to Case 1, once value function parameters ®;; >, ©3".* for/th PU and mth SU under Case

2 have been tuned, the finite horizon optimal power allocation can be obtained for PU and SU
in Case 2 by using (18).
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3.3 Model-free online tuning adaptive estimator for value function

In this section, proposed finite horizon adaptive optimal approach derives a novel estimator
which is used to estimate the value function for PUs and SUs in CRN under two cases
respectively. After that, finite horizon optimal power allocation design will be derived by using
learned value function parameters for PUs and SUs under two cases. The details are given as
follows.

3.3.1 Adaptive estimator of value function and ® matrix under two cases

Case 1: PUs are deactivated
Before deriving the adaptive estimator (AE), the following assumption is asserted.
Assumption 1 [15]: The value function, V(E, ", v,,"), can be represented as the linear in the

unknown parameter (LIP).
Then, using adaptive control theory [19] and (14), the value-function for mth SU in enhanced
CRN under Case 1can be represented in vector form as

VB, U = () O, 20 =G0 2o =W o(N=k)Z,," Yk =0,...N (19)
where 83" =vec(®3 ) =W 'Y o(N—k), 20 =[(ESLH" vl (EX DT and 220! =
(o) s zoizod J(z35)? 1is the Kronecker product quadratic polynomial basis vector [20]

formth SU in enhanced CRN under Case 1, vec(e)function is constructed by stacking the
columns of matrix into one column vector with off-diagonal elements [16]. Moreover, o () is
the time-dependent regression function for the value function parameter estimationé,,". It is
important to note that 0;“ ! —vec(G)S )is considered as the known terminal constraint in finite
horizon optimal DPA problem. Therefore, it is obvious that target parameter WV for mth SU
and regression function o (e) should satisty 8%;' = (W,)"")" &(0) .

Based on relationship between value function and cost function [16], cost function of mth SU
under Case 1can also be represented in term of ®'," as

JSUI(E):V(ESUI SU.1 _( SUI) @SUI SUI_(QS )T =SU.1

m.k mk mk mk mk mk mk

(20)
=W o(N-k)z)" Vk=0,.,N
Next, the value function of meh SU in Case 1,V(E,}",v,"), can be approximated by using

adaptive estimator in terms of estimated parameter %Y as

m.k
V(Ej,il, v = (05 NZS = (WU o(N — Kz Vk=0,..,N 2D
whereWme,{”l is the estimated value of mth SU’s target parameter vector 85" at time k7, under

m.k
Case 1.
It is observed thatmsh SU’s Bellman equation in Case 1 can be rewritten as

Join(E) =I5 (B)+r(Ey) ! sy ) =0 . However, this relationship does not hold when we apply

m k+1 mk

the estimated matrix ©°Y'. Hence, using delayed values for convenience; the residual error

m.k

associate with (21) can be expressed as J 34" (E) = J SV (E)+ r(ESYY, 030! ) =€l e,

m.k m.k

ent = DN E) =B+ B 0 220
=r(E)S, ;’fk',)+(W5 NAZX k=01,...,N

where AZ! = o(N-k)Z2' —o(N -k +1)Z2%",, ande, s/ is Bellman equation residual error for

the finite horizon scenario of mth SU under Case 1. Next, the dynamics of (22a) can be
represented as
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elME = p(ESY S + WEUHTAZSY Yk =0,l,.., N (22b)

m.k

Besides consideringe!">" , the estimation errore., due to the terminal constraint needs to be

considered and therefore given
FC SU 1 (7 SUINT
em.Wk :em,N _(W/m_k ) O-(O) (23)
Next, we define the auxiliary residual error vector and terminal constraint estimation error
vector can be defined as
=~ FTBE,SU,1 _ 1~ SU.1 {7 SU,INT SU,1
:'m.k - Iﬁm,kfl + (Wm,k ) AZm.kfl (24)
= FC,SU,1 SU.1 7 SUINT
:‘m.k = em.N A - (ka ) O-(O)A
3 : : : : SU,l _ SU,1 SU,1 SU,1 SU,1
where Ais a known dimension matching matrixT, " =[r(E, ", U, ). "(E, 5 Uh )] and

AZY =[AZ3 . AZ3Y 1,0<i< k—1landVme (SUs}. Then the dynamics of auxiliary

mk=1-i
residual error vector (24) are generated similar as (23) and revealed to be

=~ FTBE,SU,1 _ ySU.1 ASU L \T SU,l =mFC,SU,l _ nSU,1 _ (7 SUINT
‘:'m,k+l - 1—‘m,k + (em.k+l) AZm.k ":’m.k+l - em.N A (WVI./(+1) O.(O)A .

To force both the Bellman equation and terminal constraint estimation error converge to

zero, the update law of the mth SU’s time varying matrix @ifi’l in Case 1 can be derived as
vf/rsiall :\P:lllfl[(lyil;l TlPrilk/l]—l[(Z;Aﬁ/Ul E;?I;BESU.I)T +(%)SVU1 EII;(;(.SUI)T _(r;il]:l)T _HIiLI/VIA] (25)
where 5" = AZSY' — 6(0)A and 0 < &' < 1. Substituting (25) into (24) results

Efzfﬁ,SU,l + E,Fanf]Ul — a‘f/U,l E,I'ZfE.SU,l + E;C'}(.SU,I) (26)

Then defining the parameter estimation error of mrh SU under Case 1 as W/ =WV w3V

dynamics of estimation errors of mrh SU’s adaptive estimator parameter in Case 1 can be

expressed as
W) AZ,) = o(O)] = o (W, ") TAZ,, ) —o(0)] (27)

Next, the estimation of mth SU’s optimal design under Case 1 will be derived based on tuned
parameter ©°" as

ﬁj:i,l — _k’ii,lz’i%l — _(ésﬁsu,l )—1 @rufl,{sui,lziii,l (28a)
Then, using (10), the mrh SU’s adaptive optimal DPA design under Case 1 can be expressed as
B = B =@y O 2sb)

Case 2: PUs are activated

Similar to Case 1, the value-function for msh PU and mth SU in CRN under Case 2 can be
estimated in vector form respectively as
Ith PU: V(EV? 0V = 01V 7102 = WiV o(N —k)zV 2

mth SU: V(ESS2,0802) = (8542) 2502 = WV (N - k)Z5,?

mk *“mk m,k

(29)

where 2%,z * are Kronecker product quadratic polynomial basis vector for/zh PU and mth SU

in enhanced CRN under Case 2.

Next,the update law of itzh PU’s and meh SU’s time varying matrices, ©]72,@%%?, in Case 2
can be derived respectively as
lth PU: ‘i]lililz :\IIII;U,Z[(\PIS{U,Z)T\P:;(U,Z]—I[ PU,2 EII':ZBE,PU,Z)T +avf"/U,2 E[I':EA,PU,Z)T
-~ -6,5°A 0
mth SU:WIiZ_;_T — \Pii,z[(lyiz,z)TlPii,z]fl [a‘i‘/[/,z E:'T];BE,SU,z)T +a‘_§/U,2(E:i,SU,2)T
(ISR g

10
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772 <land0<a;”* <1. Then, dynamics of estimation errors for Ith

where tuning parameter 0 < &,
PU’s and mrh SU’s adaptive estimator parameter in Case 2 can be represented respectively as
lth PU: NII;'(ZIZ) AZPU 2 — a‘;’U Z(WI;U 2) AZPU 2
mthSU: (WU AZSS? = o2 (WEU2)T AZSY?

Then, we can derive the finite horizon adaptive optimal DPA design for izh PU and msh SU in
enhanced CRN under Case 2 based on tuned parameter @Y% @52, Vk =0,l,..,N -1,

mk

(3D

respectively as:

lth PU: 1)11;'(5{12 PU ZIPU 2 — (@DD PU, 2) @DE PU, 2 PU ZIPU 2 (32)
. SU,2 _ ASU, 2 SU2 _ v,SU.2 UE SU2 SU,2ySU,2
mth SU . Pm,k+l - vrmk mk T (G)m k ) @ m k Im,k

Eventually, the stability of value function estlmatlon, adaptive DPA estimation, and adaptive
estimation error dynamics for PUs and SUs in two cases are considered in next section.

3.3.2 Closed-loop finite horizon adaptive optimal DPA system stability for PUs and SUs
in enhanced CRN

Since proposed finite horizon adaptive optimal DPA is designed for enhanced CRN PUs and
SUs in two cases, the closed-loop stability will be analyzed under two cases respectively.
Case 1: PUs are deactivated

In this case, it will be shown thatms SU’s time-varying matrix, ®, ,,Vk=0,1,.., N -1, and
related value function estimation errors dynamic are Uniformly Ultimately Boundednes (UUB)
when PUs in enhanced CRN are deactivated. Further, the estimated finite horizon adaptive
optimal distributed power allocation will approach the optimal power allocation within a small
ultimate bound. Next the initial system states (i.e. SIR errors of SUs) are considered to reside in

the compact set which in turn is stabilized by using the initial stabilizing inputo,. . Further

Lk >

sufficient condition for the adaptive estimator tuning gain ¢ "' is derived to ensure the all future

SUs’ SIR errors will converge close to zero. Then it can be shown that the actual finite horizon
adaptive DPA approaches the optimal power allocation for SUs in Case 1 within ultimate
bound during finite time period.

Before introducing the convergence proof, the algorithm represented the proposed finite
horizon adaptive optimal distributed power allocation is given as follows.

Algorithm 1:Finite Horizon Adaptive Optimal Distributed Power Allocation for mih
SU in enhanced CRN under Case 1 (i.e. PUs are deactivated)

1: Initialize:W}V" = 0 and implementing admissible policy v*%" .
2: while { kT, <t < (k+1)T, }do

3: Calculate the value function estimation errors £/"**“' and 217"

4: Update the parameters of the value function estimator

5: W:Z'-ll lI{il[il[(\}{iUl) lPS ] [%Ul :Z?;(BESUI) +@U1 :ziSUI (FS ) el.:l'ljlv.lA]

6: Update finite horizon adaptive optimal DPA based on estimated ©;;' matrix.
7, ,D:;l;,l — KSU] SUI — (@UUSU l) @1;1Ek5U1 51[21

8 Pr:lk/+ll _ A.SU II_SU 1 (@UT?];_SU.I)—I@IZ;E:I;SU,IZI_:’i,II;i.I

9: end whlle

10:If {r < NT,} do
11:Go to next time interval [(k +1)T,,(k+2)T,) (i.e.k=k+1), and then go back

11
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12:to line 2.
13: else do
14:  Stop the algorithm.

Theorem 1.(Convergence of the Adaptive Optimal Distributed Power Allocation for SUs in
enhanced CRN under Case 1). Letv’";' be any initial admissible policy for the mth SU’s finite

m,0
horizon adaptive optimal DPA scheme in Case 1 with0</ <1/2. Within the time horizon (i.e.
te[0,NT.]), let the mth SU’s parameters be tuned and estimation finite horizon optimal power

allocation be provided by (25) and (28b) respectively. Then, there exists positive constant &z "

SU .1

given asO<e, "' <lsuch that thems SU’s SIR errore)'and value function parameter

estimation errors Wlflk“ are all uniformly ultimately bounded (UUB) in Case 1 (i.e. PUs are

deactivated) within the finite time horizon. Moreover, the ultimate bounds are depend on final

time (i.e. N7, ), bounded initial value function estimation error B! ;"' and bounded initial SIR

error state B, ;"' .

Proof: Consider the following positive definite Lyapunov function candidate
L=, (3 1, (7) (33)

SSU,][I_(a‘;[S‘/U.l)Z]

Iis positive
2B’

m,k

where L, (£54" )is defined as L, (ES”" )= (EXSHTIES, withIT =

definite matrix and I is identity matrix, "B,ffi‘" < B! and L, W:V")is defined as
Ly OV = (W, (N =K%, =W o (N =k +1Z3)"] )
=W, D AZy T
The first difference of (34) can be expressed as AL =AL, (ESU'1 )+ AL, (WY, and considering

m.k

that AL, (vf/nfj'l ): (WD AZ, 1P~ WYY AZ,, ., I* with value function estimator, we have

mk+1
AL W) = (W50 AZ, T =W, AZ,,
== (e "V NW, D AZ0 (35)
2|~ 2
<—1- (e Az W
Next considering the first part of Lyapunov candidate function
AL, (EXSY = (ESI)TIES, —(EXHTTIES " and applying the proposed FH-AODPA scheme and

Cauchy-Schwartz inequality reveals
2
SU,1 SU,1 zSU.1 SU1ASU.L SU,1~SU.1 SUINT SU,1
ALD(E'm,k )SHHHHAm,k E +B Z)m,k _Bm,k Um,k H _(Enk ) HEm,k

‘m.k mk m,

<ofr|asy £yt + B o | +2jm]

sUL~su.t|[? SUINT 7y SU.L
B | - (B TE, (36)

<~(-2,)Ess + 2]
At final step, combining the equation (34) and (36), we have

SU,1~SU.1
Bm,k

2
Um,k H

12
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~ 2
suU.L
\/4

AL, <=2l e[ + 2 e+ oty azs s

m.k m.k

2~ 2
Ul Ul
oz ]

2

<=2l + S fazii [ (37)
+(a |z [ ~az |
2

= SUL
w

m,k

<=2 | - S azst

Since0<k” <1/2and0< ey’ <1,AL, is negative definite and L, is positive definite. Using

standard Lyapunov theory [15], during finite horizon, all the signals can be proven UUB with
ultimate bounds are dependent on initial conditions and final time N7,. The details are

demonstrated as following.
Assume SIR error state and value function estimation error are initiated as a bound B”;""',

B! respectively (i.e. ||E,ilg1||2 =Brf;(f”’l,||AZ,if’kf1||2||Vl7nff,f'l||2 =B, 3Y"). Using standard Lyapunov

Theory [15], "E,fff)‘" and"AZ,ififluz *fork =12,..,N can be represented as

T7SULL
Wm,k

2 2~ 2 2 2~ 2
Ul sUl su||® _ Ul Ul sU.l
i | oz [ =l +laza ) |

2 2 2| ~ 2 2| ~ 2
sU.L sU.L sULL sU.L sULL sULL 38
(e | -Jes | )+ (e -zl ] e O
ALp (ESG1 ALy (W30
2 2 2 ~ 2 2| ~ 2
SU,1 SU,1 SU,1 SU,1 SU,1 SU,1
ez -Jesse o lozz s | Juze ey
ALp(ES) ALy (SY)
E.SU.1\2 V.SU.1\2 SU .1 78U 1 SU.1 T78U.1
<||BLY) + By + AL, (ESG) + AL, (W o)+ -+ AL, (ES ) + AL, (W)
ALy ALy
k-1
E,SU,1\2 V.,SU,1\2
<O + Bl + D AL Vk=12,..,N
i=0

Using (37) and property of geometric sequence [17], equation (38) can be represented as

o ey

|=
(Bj:gu,l )2 + (Bx:gu,l )2 + ZALi
i=0

< ||H WSU,I"Z

mk

(BE B - a2 | —%iu— @ azss |
i=0 i=0

k-1
<|rBLs"H? + By - - ZIO)HHH(B,fﬁU")ZZ(Zk*)i
i=0

B [1_(ag/u,1)2](31\;jgu,1)2 S (a‘f/u,l)z]i
2 2!

= (39)
1+ aSU.l 29k
<[josziy +<B;;3U~1>2—[1—<2a,>"ln<B:3;5"~1>2—[1—[ e )
‘ 1+ @'y k
< Q)N m|BLY? {ZW} (B2 Vk=12,..N

Therefore, the ultimate bounds for SIR error value and value function estimation error can be
represented as

13
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suiz2 K pv.sULIy2

"E,ifi‘l"SJ(Zlo)k(B,f_‘SU’l)2+{l+(aW ) } (B, ) EB’i‘.,kCL (40)
2 1|

and

AZSU 2 s ’ < 27 VIl BESU 2 1+ (")’ ' BVSUIY2 — gYcL

oz [ | < @i Il +| =S| 813"y = By @)

Vk=12,..,N
where B, "“and B)" are the values of upper bounds fork=12,.,N. According to the

SU.1

representation of (40), (41) and values of/ ,q, , it is important to note that since tuning

SU.1

sUL 1+ (o

parameter 0</, < % and0<¢, " <lgiven in Theorem 1, then0<2/ <1,0< <land

SU .1
aW

1+ - . N .
terms (21,)", {(T} will decrease when k increase. Moreover, since initial value function
estimation errors B!’ and initial SIR error value B” ;"' are bounded values, the closed-loop

E.CL
Bm.k

ultimate bounds (40) and B/'™* (41) decrease while k increase. Further, when final time
NT, increases, the SIR error values and value function estimation errors will not only be UUB,
but also these ultimate bounds will decrease with time.

1+ (V12 o .
M<land initial value function

k
. . 1+ aSU,l 2
estimation error B) ;"' and SIR error B.;"" are bounded values, both term(ZZO)"[(—W

Remark 1: It is important to note since0< 2/, <1,0<

and the closed-loop ultimate bounds B (40) and B! " (41) will converge to zeros when time

m.k

goes to infinite (i.e.B. " —0,B) " —>0ask —>) and proposed FH-AODPA will achieve

m.k

infinite optimal DPA solution.
Case 2: PUs are activated

Compared with Case 1, closed-loop stability analysis need to be done for SUs and for PUs
since the PUs are activated. Similar to Case 1, before introducing the convergence proof, the
proposed finite horizon adaptive optimal distributed power allocation algorithm for both PUs
and SUs in Case 2 is given as follows.

Algorithm 2:Finite Horizon Adaptive Optimal Distributed Power Allocation for Ith
PU and mrh SU in enhanced CRN under Case 2 (i.e. PUs are activated)

1: Initialize: W/’ =0,W Y = 0 and implementing admissible policies v 2,0 2:
forith PU and mth SU.

3: while { kT, <t < (k+1T, } do

4: Calculate the value function estimation errors ;"2 &/T%:3V-2 and
5: B[0P BV for ith PU and mth SU.

6: Update the parameters of the value function estimator for /th PUand
7 mth SU as

8: lth PU Vf/]},’cljll — \P]I;CU,Z[(\P]iU,Z)T\P]iU,Z]fl[ PU,2 E]I‘:ZBE,PU,Z)T

9 i 0{5”'2 (EII‘:E.PUJ ) — (F]{Jkua ) — 0:%2[\]

10: mth SU W2V = @SU2[(pSU2 )T @sSU2 |1 f8U-2 (i FTBESU.2)T

11: a2 ESU (T -0 A]

14
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12: Update finite horizon adaptive optimal DPA based on estimated ©;,
13: ©3* matrices for ith PU and mth SU.

14:1th PU : Pl,[l’clila — 0]{’]{[},2llf”ku.2 — _(ézz.PU.Z)—l ézi.PU,2zf£/,2I]f’ku.2

ISomih SU: B3V = U275 o _(@uusvyt guisua suagsua

16: end while

17: If {t< NT,} do

18: Go to next time interval [(k+1T,,(k+2)T,) (i.e.k =k+1), and then go back

19: to line 2.
20: else do
21:  Stop algorithm.

Theorem 2.(Convergence of the Finite Horizon Adaptive Optimal Distributed Power
Allocation for PUs and SUs in enhanced CRN under Case 2). Letv/; *,v)%* be any initial
admissible policy forirh PU’s and mrh SU’s finite horizon adaptive optimal DPA scheme in
Case 2 withO<k"<1/2. Let theirh PU’s and mth SU’s parameters be tuned and estimation
optimal power allocation be provided by (30) and (32) respectively. Then, there exists positive

constant o, o’ given as0<ap’? <1,0<ay’? <1such that thelrh PU’s and meh SU’s SIR

errore/ 2, e and value function parameter estimation errors W\, W/ are all UUB in Case

2 (i.e. PUs are activated) within the finite time horizon. Moreover, the ultimate bounds are

depend on finite time (i.e. NT,), bounded initial value function estimation error B/, B 5"
and bounded initial SIR error B/;"*, BXV2.

m,0

Proof: Similar to the proofs in Theorem 1.

4 Numerical Simulations
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Figure 2.Placement of PUs and SUs in enhanced CRN
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Figure 3. Activity performance of PUs in enhanced CRN
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In this simulation, the enhanced Cognitive Radio Network (CRN) is considered to be
divided into 2 sub-networks: Primary Radio Network (PRN) and Secondary Radio Network
(SRN) which included 8 PUs and 20 SUs. These PUs and SUs are placed randomly within an
area of 9km x 9km by using a Gaussian distribution which is shown as Figure 2. Moreover,
power of each PU and SU in enhanced CRN is assumed to be updated asynchronously.
Therefore, while irh PU or mth SU updates its power, the powers of all other PUs and SUs do not

change. Wireless channel bandwidthW,is considered to be 100 kHz. Furthermore, it is well

known that PUs in enhanced CRN will not always be activated. In this simulation, the activity
performance of PUs is shown in Figure 3. According to Figure 3, there exists two cases (i.e.
Case 1: PUs are deactivated during[500sec,800sec),[1200sec,1800sec) ; Case 2: PUs are

activated during[0sec,500sec),[800sec,1200sec),[1800sec,2000sec) ) in enhanced CRN. In Case 1,
since PUs are deactivated, a high threshold SIR, ;" , which each SU tries to achieve is 0.1 (-
10dB). In Case 2, to guarantee the QoS of activated PUs, a threshold, * ,which each PU can

achieve is selected as 0.1995 (-7dB) and another lower threshold SIR, »¥ , which each SU tries

to achieve is set at 0.01 (-20dB).

Next, proposed finite horizon adaptive optimal distributed power allocation (FH-AODPA) is
implemented for PUs and SUs in enhanced Cognitive Radio Network with channel uncertainties.
Since wireless channel attenuations of users in enhanced CRN are different, initial PUs’ and
SUs’ SIRs are different values (i.e. PUs: [-18.6788dB, -7.8337dB,..., -21.1189dB], SUs: [-
8.8116dB, -35.0345dB, -12.4717dB , ..., -29.5028dB]).Moreover, the augment SIR error system

state is generated asz, =[E, v,]" € R3*1and the regression function for value function is

generated as {zl2 ,zlzz,...,zg,...,@2 }as per (19). The design parameter for the value function
estimation is selected as a,, = 0.0001while initial parameters for the adaptive estimator are set to
zeros at the beginning of simulation.

0
0,

— PUs average SIR
.5 —==-8Us average SIR

g - f

-15¢
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Figure 4.Average SIRs of PUs and SUs in enhanced CRN
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Figure 5. Average power allocation of PUs and SUs in enhanced CRN
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In Figures 4 through 9, the performance of proposed finite horizon adaptive optimal
distributed power allocation scheme is evaluated. In Figure 4, the averages of all PUs’ SIRs and
SUs’ SIRs are shown. It is important to note that proposed FH-AODPA cannot only force SUs

converge to low target SIR (i.e.y;’ =-10dB) when PUs are deactivated (i.e. Case I:
7/ =—c0dB Vie {PUs} during [500sec.800sec),[1200sec,1800sec)), but also force PUs and SUs
converge to target SIRs (i.e. ¥ =-7dB,y;Y =-20dB) respectively while CRN is at Case 2 (i.e.
PUs are activated during[Osec,500sec),[800sec,1200sec),[1800sec,2000sec)). Also, the power

consumptions averages of PUs and SUs are shown in Figure 5. Obviously, in Case 1, since PUs
are deactivated, SUs increase transmission powers to improve network utility (e.g. spectrum
efficiency). For Case 2, due to activated PUs, SUs decrease transmission power to reduce the
inference to PUs for guarantying their QoS.
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Figure 6.Average of Bellman equation error.

Moreover, the average of Bellman equation errors and terminal constraint errors for both PUs
and SUs are considered. As shown in Figure 6 and 7, both average of Bellman equation errors
and terminal constraint errors converge close to zeros during the finite horizon (i.e.z€ [0, NT,]
with NT, =2000sec) which indicates that proposed scheme converges close to optimal power
allocation while satisfying the terminal constraint for both PUs and SUs. It is important to note
that the convergence performances are dependent upon tuning rate based on Theorem 1 and 2.
Further, according to Theorem land 2, when final time NT, increases, the upper bound of average

of Bellman equation errors and terminal constraint errors will decrease.
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Figure 7. Average of terminal constraint error
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Then, in Figure 8, compared with traditional CRN power allocation schemes [5-6] which
prohibit SUs to transmit when PUs are activated, proposed FH-AODPA scheme can increase
CRN Throughput (bits)

Bandwidth (Hz)

SUs coexist with PUs and allocating power to each user properly. Eventually, for the sake of
comparison, adaptive DPA developed in [9] is extended to the enhanced CRN. As shown in
Figure 9, proposed FH-AODPA scheme can minimize the cost function (13) more than
adaptive DPA in [9]. Therefore, the performance developed FH-AODPA method is better than
adaptive DPA [9]. It is important to note that the overshoots always happen at the time two
cases switched since target SIRs and SIR errors of PUs and SUs are changed suddenly.

Based on the results presented in Figure 4 through 9, it is important to note the proposed finite
horizon adaptive optimal distributed power allocation scheme cannot only improve the efficient
of enhanced Cognitive Radio Network (e.g. power, spectrum) within finite time horizon, but
also does not require the information of channel uncertainties compared with other existing
DPA schemes [7-8] in CRN under two cases.

the spectrum efficiency (i.e. spectrum efficiency (bits/Hz) = ) by allowing

5 Conclusion

In this work, the novel SIR error dynamics are developed for both PUs and SUs in enhanced
cognitive radio network under two cases (i.e. Case 1: PUs are deactivated, Case 2: PUs are
activated) with channel uncertainties. Then, using the SIR error dynamics, a novel finite
horizon adaptive dynamic programming scheme is proposed which combines the adaptive
estimator (AE) and idea of ADP to solve the Bellman Equation in the real time while satisfying
the terminal state constraint and optimize distributed power allocation (DPA) for both PUs and
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SUs in enhanced CRN under two cases within finite time horizon. The availability of past state
values ensured that SIR error dynamics are not needed for proposed FH-AODPA design while
an adaptive estimator (AE) generates an estimated value function and a novel finite horizon
optimal power allocation law based on the estimation of value function. An initial admissible
policy ensures that SIR error systems for PUs and SUs in enhanced CRN are stable for two
cases while the adaptive estimator learns the value function and the matrix ®, and optimal
power allocation scheme within finite time horizon. All adaptive estimator (AE) parameters
were tuned online using proposed update law and Lyapunov theory demonstrated the UUB of
the overall closed-loop enhanced CRN system with ultimate bounds which are dependent on
final time NT, and initial system conditions. When the final time is increased, ultimate bounds

will be decreased and ultimately converging to zero as time goes to infinite.
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