
International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

DOI: 10.5121/ijdms.2013.5108 97

APPROXIMATE K-NEAREST NEIGHBOUR BASED

SPATIAL CLUSTERING USING K-D TREE

Dr. Mohammed Otair

Department of Computer Information Systems, Amman Arab University, Amman, Jordan
Otair@aau.edu.jo

ABSTRACT

Different spatial objects that vary in their characteristics, such as molecular biology and geography, are

presented in spatial areas. Methods to organize, manage, and maintain those objects in a structured

manner are required. Data mining raised different techniques to overcome these requirements. There are

many major tasks of data mining, but the mostly used task is clustering. Data set within the same cluster

share common features that give each cluster its characteristics. In this paper, an implementation of

Approximate kNN-based spatial clustering algorithm using the K-d tree is proposed. The major

contribution achieved by this research is the use of the k-d tree data structure for spatial clustering, and

comparing its performance to the brute-force approach. The results of the work performed in this paper

revealed better performance using the k-d tree, compared to the traditional brute-force approach.

KEYWORDS

Spatial data, Spatial Clustering, Approximate kNN, K-d tree, brute-force.

1. INTRODUCTION

Spatial data are data that have a location (spatial) characteristic [7] [26]. Spatial data are stored in

databases called spatial databases, which contain spatial data type in its data model -side by side-

with the ordinary non-spatial types. Spatial data are mainly required for Geographic Information

Systems (GIS), whose information is related to geographic locations. GIS model support spatial

data types, such as point, line, and polygon [25]. Spatial databases are database systems that

manage spatial data. They are designed to manipulate both spatial information and the non-spatial

attributes of that data. For the purpose of providing efficient and effective way to attain spatial

data it is important to come up with indices (plural of index). When the data are based on

multidimensional trees, these indices will meet success. Spatial database system is a system that

was made to utilize and manipulate the non-spatial data and spatial data skilfully to realize the

data [8]. The size of spatial data that are presented in these systems is also growing dramatically.

The complication of spatial data and its databases mean that it is impossible for human beings to

analyze such huge sizes of database that requires new techniques to be able to analyze and to

discover their trends. Traditional databases need to have an additional space or dimension to store

these data. In addition to its retrieval and analyzing such database would be too expensive or time

consuming [8].

Spatial data mining is the operation of applying different mining methods to a spatial database to

find non-trivial patterns from the spatial data [7]. One of the most important data mining methods

is clustering. Clustering is the task of dividing the objects from spatial database into groups

(clusters) in such a way that objects in one cluster are similar and share common features, while

objects from different clusters are dissimilar [7] [24]. Clustering helps in discovering and

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

98

understanding the natural structure and grouping the data in data set. Spatial clustering algorithms

must be able to determine clusters of different dimensions, sizes, shapes and density [7] [24].

The K-D tree [14] is a structure of data was brought about by Jon Bentley in 1975. K-D tree and

its versions remain the mostly used data structures for searching through multidimensional

spaces; although it is somewhat old in age and had a several number of index structures. Based on

The Digital Library of ACM, the paper [14] which came up with this data structure is one of the

mostly known papers in computational geometry with 626 citations in early of 2013. The K-D

tree has dual or binary search tree structure. It can be utilized effectively with nearest

neighbour/range queries and searches on condition that the dimension is not too much. In

problems of document analysis it has two typical dimensions, so that K-D tree can be a powerful

for laying out problems of analysis. Unfortunately, K-D tree does not work properly with too

much dimensions (because it needs to visit huge number of tree branches). Many algorithms came

about to overcome these restrictions in order to carry out faster search [18] [22] [16]. Various

improvements to k-nearest neighbour methods are possible by using proximity graphs [31].

As mentioned before, one of the earliest data structures proposed for the nearest neighbour

problem that is still the most commonly used is the k-d tree [13] that is essentially a hierarchical

decomposition of space a long different dimensions. In respect of a limited number of

dimensions, its structure can be useful in the answering of some types of important queries such

as the nearest neighbour query in linear space and logarithmic time. However, its performance

would go down when the number of dimensions go more than two [20]. The main trouble for

high dimensions in nearest neighbour search will sustain from the suffering of dimensionality,

because either the processing time or the requirement of capacity expansion grows dramatically in

d dimension. Finding a way to decrease complications of computing K-D tree search is highly

interesting in these areas.

This paper will study the problem of finding the approximate k-nearest neighbour based spatial

clustering using Kd-tree of a query point in a high dimensional (2D and 3D) space: given a

database of n points in a d dimensional space, find approximate k-nearest neighbour of a query

point. The use of k-d trees is a well known optimization to the kNN algorithm [34]. To work on in

parallel of KNN Algorithm in CUDA by Gracia in [10] works as the starting point in KNN

improvements is proved. The CUDA algorithm they brought about is a parallel application of the

standard Brute Force KNN algorithm. They mentioned that the speedup was around 40 times

faster than serial KNN using K-D trees and 100 times faster than executing of the implementation

of serial CPU [10]. It was realized also that the points' dimension had quite little effect on total

computation time [11]. One thing is taken for granted is that if the dimension of data is k, if a K-

D tree has much more than 2k data points; then it can be useful. In respect of high dimensions, it

usually goes to approximate nearest neighbour ANN searches. ANN is a great library for that and

it is written in C++. Brute force, K-D trees search and other approximate approaches were

implemented well by ANN. It aids automatically to mesh the parameters and change them

flexibly.

2. RELATED WORK

Most of the variants of KNN algorithms are very slow in carrying out clustering work (a k-d tree

is an example). The main performance problem of the current k-d tree which based on the nearest

neighbour search algorithm is inflicted with reduction of performance due to curse dimension and

that performance needed to be improved [15]. In this research, this problem is resolved by ANN

algorithm in order to speed up the clustering process as well. A focus of this research is to

improve performance of the KNN approach and to demonstrate its performance in a real-world

problem. Another objective of this paper is to test the improvement performance of the existing

K-d tree approach.

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

99

There are a large number of methods, techniques and algorithms that organize, manage, and

maintain spatial objects in a structured manner. However, the most commonly used are:

2.1. K-Nearest Neighbour

T. M. Cover and P. E. Hart purpose k-nearest neighbour (kNN) in which nearest neighbour is

calculated on the basis of value of k, that specifies how many nearest neighbours are to be

considered to define class of a sample data point [30]. T. Bailey and A. K. Jain improve kNN

which is based on weights [28]. The training set of points was given weights based on their

distance that found in the sample data points. However, the requirements of the memory and

complications of computing were still the most important anxieties [18]. To resolve memory

problem, the size of data must be decreased.

The k-nearest neighbour join combines each point of one point set with its k nearest neighbours

[5]. The general model of a KNN query is that the user gives many query types such a point query

in multidimensional space and a distance metric for measuring distances between points in this

space. The system is then tried to find the K closest or nearest answers in the database from the

submitted query (i.e. query point). Generally distance metrics may include: Euclidean distance,

Manhattan distance, etc. It is possible that a majority of the answers to a KNN query may be very

similar to one or more of the other answers, especially when the data has clusters [1]. The kNN

implementation can be done using box-decomposition trees (ball tree) [23] [29], k-d tree [19],

these algorithms increase the speed of classical kNN algorithm. The k-Nearest Neighbour (kNN)

algorithm has a wide range of applications in modern day computing.

The simplified variation of KNN algorithm is the implementing of Brute Force which consists of

three phases. The first one is to compute the distances from each query point to every reference

point of the training group of point. The second is to order these distances and choose the K

objects that are the nearest from which. In the final phase, the categorizing process can be carried

out. More formally, KNN finds the K closest (or most similar) points to a query point among N

points in a d- dimensional attribute (or feature) space. K is the number of neighbours that are

considered from a training data set and typically ranges from 1 to 20. The advantages of k Nearest

Neighbour (kNN) can be summarized as in [30]: Training is very fast, Simple and easy to learn,

Robust to noisy training data, and Effective if training data is large. However, there many

disadvantages, as well: Biased by value of k, Computation Complexity, Memory limitation, being

a supervised learning lazy algorithm i.e. runs slowly and easily fooled by irrelevant Attributes.

2.2. Spatial Indexing

To handle special data in an efficient way, as it is desired in geo-data implementations that are

interested in spatial search on multidimensional spaces, such database system needs technique of

index which aids in redeeming and getting data items quickly based on their spatial location [2].

The main important needs for these data structures are the ability to supply rapid reach to huge

data volume and hold spatial relations such as settling in and neighbourhood for indexed things.

Several techniques were suggested to access spatial objects [33] like R-tree which considered as

one of the mostly used hierarchical data structure. R-tree is used for indexing spatial objects

efficiently that they have spatial multidimensional extent [2] [33]. There are several tree index

structures like R* tree, R+ tree [17][33] and other similar structures to enhance the classical R-

tree structure.

In this paper, the KD-tree will be used for spatial indexing in a new KNN-based spatial clustering

algorithm.

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

100

2.3. K-d Tree

A k-dimensional tree or a K-D tree is a commonly used data structure to organize several

numbers of points in a multidimensional space called k dimensions. A searching process in K-D

tree is a binary with additional imposed limitations on it. It is very helpful for some types of

search queries such as: nearest neighbour and range. The root-cell of K-D tree illustrates the total

volume of simulation. The rectangular of sub-volumes will be illustrated by the other cells which

involve the moment of regions for: quadrupole, mass center, and mass.

K-D tree is one of the oldest used data structures for indexing in multi-dimensions. In K-D tree,

each level divides the space into two divisions as represented in figure 2.1; the division takes

place along one of the node dimension at the highest tree level and with other nodes' dimension at

the subsequent level and so on, repetition through the entire dimensions. The division goes on in a

way that at each nodes around one half of the points that are kept in the subtree stay on one side

and other half stay on the other. The process of division stops when a node reaches less than a

determined maximum number of points [32].

Figure 2.1: K-d Tree Partitioning (Source: http://www-hpcc.astro.washington.edu)

Despite of there are many different K-D tree variants were introduced; however, their functions is

always to decompose space hierarchically into sort of modicum number of cells, each cell of them

has a limited number of input objects). This will facilitate a speed technique to reach/process an

input object by its position. It should go down and pass through the hierarchy until we access or

reach the cell which includes the object. K-D trees are constructed by dividing point sets

repeatedly along different dimensions. In this tree, each node is represented by a dimension that

division the points into two set either left or right (or it could be up or down), each set of them

will contain half number of points that derived from the root node. Once again these branches are

decomposed into equal two equal parts, using partition through a distinct dimension. The

decomposition process will terminate at log n levels or over, where each point has its own leaf

node. The decomposing repeats via the several dimensions for the several tree levels, for the

portion using the mid-point. K-d trees can work effectively with a limited number of dimensions

but it may be unsuccessful when the number of dimensions become over three [27].

K-d tree nearest neighbour (kdNN) as described in [19] has many characteristics like: simple,

fast, and provide completely balanced tree. At the other hand, it has several significant drawbacks

such as: need extreme search, time consuming, and impulsively divide points into two equal parts

which may miss out on data structure.

2.4. Spatial Clustering

Clustering is one of the most research areas that have been studied. Many clustering techniques

and algorithms have been implemented and developed. The main categories of the clustering

algorithms are:

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

101

2.4.1. Partitioning algorithms

In these algorithms build a portion of a database of several objects into a group of clusters, it

builds the clusters within single step, and only one group of these clusters is built. Despite of

some different clusters' groups may be built locally within the different algorithms. Even only one

clusters group is produced, the user should type the number of targeted clusters. Each cluster

within a group is represented using one of the objects' clusters which are located close to their

cluster's center which is called k-means algorithms or using the center which is called k-medoid

algorithms [12].

2.4.2. Hierarchical algorithms

Such types of clustering algorithms organize a tree data structure (called a dendrogram) of the

clusters using: hierarchy structure or tree. The root in this tree is considered as a single cluster

which involves all the spatial objects in the spatial area. The other nodes are considered as

clusters with only one object. These algorithms operate repeatedly to achieve merging or splitting

until a stopping condition is satisfied or the clustering process encompassed all objects.

Hierarchical algorithms are classified into: divisive (from the root down to leaves) and

agglomerative (from the leaves up to the root) algorithms, where divisive approach or

agglomerative approach made up the dendrogram.

2.4.3. Density-based algorithms

Density is the concept that based on all of these algorithms; they use a mechanism of density-

connected points. These algorithms have several characteristics, such as its ability to detect noise,

clusters of arbitrary styles, and they need a density variable as a termination criterion [12].

2.4.4. Grid-based algorithms

In the Grid-based algorithms, instead the number of data objects they depend on the grid size.

They use a single regular grid mesh to split the whole domain problem into multiple cells. Each

cell represents the data objects using a series of statistical features from the objects. These

algorithms the grid cells to achieve the clustering, instead to perform the clustering on the

database directly. In compare with categories of other clustering algorithms, Grid-based

algorithms have the shortest run time [12].

The run time is too inactive for most of the clustering algorithms especially with huge databases.

To resolve this problem or drawback, many techniques have been proposed to enhance the

clustering algorithms. For instance, the researchers in [9] discussed the benefits of the use of

clustering in spatial problems using R*-tree. Moreover, based-focusing techniques were proposed

in [4] [9], they proceed in the following phases: (1) constructing a sample of the database that is

came from each R*-tree data page and (2) implementing the clustering algorithm only to that

sample.

This paper introduces a new KNN- based spatial clustering algorithm using the Kd-tree, which

will be described in the following section.

3. APPROXIMATE K-NEAREST NEIGHBOUR BASED SPATIAL CLUSTERING

This paper is concerned with the problem of Approximate KNN based spatial clustering. The

concept is based on clustering spatial points that are the most nearest and have similar properties

into one cluster. In order to compute the nearest neighbours, a simple brute-force search can be

used. However, in order to handle large volumes of spatial data organized in high dimensions,

brute force will be too slow. Therefore, the need arises for other techniques that are based on

indexing spatial data into a data structure that can be used to answer nearest neighbours queries.

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

102

In this paper, the k-d tree is chosen as the data structure to index spatial points. In order to

evaluate the efficiency of the k-d tree for achieving this purpose, several experiments have been

performed to evaluate and compare the efficiency of the proposed method when applied on

various data size, various dimensions, and multiple k values. Implement approximate k-nearest-

neighbour (kNN) search using a brute force approach as well as with the help of the kd-tree will

be used to reach of the main objective of this research (i.e. to speed-up K-nearest neighbour

searches). Then, the obtained results will be presented, discussed, and analyzed in the next

section.

3.1. Brute Force Algorithm

Brute-force search or exhaustive search is a very general problem-solving technique that consists

of systematically enumerating all possible candidates for the solution and checking whether each

candidate satisfies the problem's statement. The simple sequence of operations for the brute force

algorithm is shown below (taken from [10]):

1. Calculate all the distances between the query point and reference points

2. Sort these distances.

3. Select the k reference points with the smallest distances, then categorization vote by k

nearest objects.

4. Iterate all the previous steps from 1 to 3 for all query points.

3.2. K-d Tree Algorithm

The k-d tree is a binary tree in which every node is a k-dimensional point. Every non-leaf node

can be thought of as implicitly generating a splitting hyper-plane that divides the space into two

parts, known as half-spaces. Points to the left of this hyper-plane represent the left subtree of that

node and points right of the hyper-plane are represented by the right subtree. The hyper-plane

direction is chosen in the following way: every node in the tree is associated with one of the k-

dimensions, with the hyper-plane perpendicular to that dimension's axis. So, for example, if for a

particular split the "x" axis is chosen, all points in the subtree with a smaller "x" value than the

node will appear in the left subtree and all points with larger "x" value will be in the right subtree.

In such a case, the hyper-plane would be set by the x-value of the point, and its normal would be

the unit x-axis [14].

The nearest neighbor search (NN) algorithm aims to find the point in the tree that is nearest to a

given input point. This search can be done efficiently by using the tree properties to quickly

eliminate large portions of the search space. Searching for a nearest neighbor in a k-d tree

proceeds as in Appendix-A.

3.3. Approximate Nearest Neighbour (ANN)

An approximation may be agreeable to access the nearest neighbour in some implementations

which needs to return spatial objects. In other words, this type of algorithms doesn't ensure to

access the exact nearest neighbour every time, in order to enhance the savings in the memory and

speed. To find the exact nearest neighbour in these algorithms in most cases, but this mainly

based on the training or test dataset. The searching process of the algorithms that use the

approximate nearest neighbour technique could involve: best bin first, locality-sensitive hashing

and neutral box-decomposition [21].

The k-d tree is searched for an approximate nearest neighbour. The point is returned through one

of the arguments, and the distance returned is the squared distance to this point. The method used

for searching the k-d tree is an approximate adaptation of the search algorithm described by

Friedman, Bentley, and Finkel as in [13].

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

103

The algorithm operates recursively. When first encountering a node of the k-d tree we first visit

the child which is closest to the query point. On return, we decide whether we want to visit the

other child. If the box containing the other child exceeds 1/(1+eps) times the current best

distance, then we skip it (since any point found in this child cannot be closer to the query point by

more than this factor.) Otherwise, we visit it recursively. The distance between the queried point

and a box is calculated actually (not approximated as is overwhelmingly calculated in the

classical k-d tree), by additional distance updates, according to the methodology that proposed by

Mount and Arya [3].

The main entry points to the ANN search sets things up and then call the recursive routine another

search routine. This is a recursive routine which performs the processing for one node in the k-d

tree. There are two versions of this virtual procedure, one for splitting nodes and one for leaves.

When a splitting node is visited, we determine which child to visit first (the closer one), and visit

the other child on return. When a leaf is visited, we compute the distances to the points in the

buckets, and update information on the closest points. Some trickery is used to incrementally

update the distance from a k-d tree rectangle to the query point. This comes about from the fact

that which each successive split, only one component along the dimension that is split) of the

squared distance to the child rectangle is different from the squared distance to the parent

rectangle.

ANN is a library written in the C++ programming language to support both exact and

approximate nearest neighbour searching in spaces of various dimensions. It was implemented by

David M. Mount of the University of Maryland and Sunil Arya of the Hong Kong University of

Science and Technology. ANN (pronounced like the name \Ann") stands for the Approximate

Nearest Neighbour library. ANN is also a testbed containing programs and procedures for

generating data sets, collecting and analyzing statistics on the performance of nearest neighbour

algorithms and data structures, and visualizing the geometric structure of these data structures.

Retrieving the nearest neighbour object to a submitted query accurately (when there are too much

dimensions) seems to be is not an easy task. It is most probably to response a query by a classical

brute-force steps of calculating the distances between each one of the dataset points and the point

being queried; however, this will make calculating process is very slow for some applications that

need a too many number of queries be tested on the same circumstances and the data set at the

same time. To resolve this problem, a set of data-points should be pre-processed into data

structures that help in answering the queries of nearest neighbour. Several numbers of data

structures have been introduced for this endeavour [6].

One of the drawbacks with searching in actual nearest neighbour is that for all methods (exclude

the classical brute-force search) are space or the processing time grows dramatically as a function

of dimension. Therefore, most these methods are not considerably result better search than

classical brute-force, except when the number of dimensions are very limited. However, Mount,

Arya et al. shown that if the user have the capacity to afford a small percentage of searching

errors(i.e. it could return a point that is considerably far away from the point being queried

instead the actual nearest); after that a considerable enhancements could be achieved at the

running time. ANN is considered as a tool for answering two cases: approximate or exact for the

nearest neighbour queries [6].

ANN was established as a testbed for a type of searching algorithms that adopt the nearest

neighbour, or those partially based on perpendicular space decompositions. These algorithms

include: box-decomposition trees and k-d trees. The ANN library provides different techniques to

construct such search structures. This library also offers two methods to search into these

structures [6], they are: priority search and standard tree-ordered search.

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

104

4. EXPERIMENTAL EVALUATION AND RESULTS ANALYSIS

The Approximate KNN–based spatial clustering method has been tested through several

experiments using the k-d tree. The nearest neighbour spatial distance was computed using the

ANN library, which was modified to perform spatial clustering. The experiments have been

performed on a 2.8 GHz PC, with Intel Pentium 4 processor and 256 MB memory. The ANN

library has been compiled under visual C++ .Net 2003.

The experiments were conducted for computing 1, 2, 3, 4 and 5 nearest neighbours, with data sets

of sizes 0.5 and 1 MB assuming the spatial points are organized in 2 and 3 dimensions.

The first set of experiments has been performed to compare the performance of both, K-d tree and

brute-force, for a 0.5 MB data set in a 2-dimentional space. The execution time required by both

approaches was approximately the same. Better performance was achieved when the k-d tree was

used for larger number of K nearest neighbours. Figure 4.1 shows the execution time required by

K-d tree when 1, 2, 3 and 4 nearest neighbours are computed. However, for 5 nearest neighbours,

better performance was observed using the K-d tree.

0

2

4

6

8

10

12

1 2 3 4 5

Nearest Neighbors

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
.)

kd-Tree

brute

Figure 4.1: K-d Tree vs. brute-force Performance (0.5 MB data set, 2-D)

The next set of experiments has been conducted for the same data set size (0.5 MB), however; in

a 3-dimensional space. It is obvious from figure 4.2 that as the number of nearest neighbours

increases; the K-d tree shows better performance.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

Nearest Neighbors

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
.)

kd-Tree

brute

Figure 4.2: K-d Tree vs. brute-force Performance (0.5 MB data set, 3-D)

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

105

With larger volumes of data, an enhanced performance was achieved by K-d tree. The

enhancement becomes clearer for data organized in 3 dimensions. These results are clear from

figures 4.3 and 4.4.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5

Nearest neighbors

E
x

e
c

u
ti

o
n

 T
im

e
 (

S
e

c
.)

kd-Tree brute

Figure 4.3: K-d Tree vs. brute-force Performance (1 MB data set, 2-D)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5

Nearest Neighbors

E
x

e
c

u
ti

o
n

 T
im

e
 (

S
e

c
.)

kd-Tree brute

Figure 4.4: K-d Tree vs. brute-force Performance (1 MB data set, 3-D)

As seen in the previous figures (4.3 and 4.4), the K-d Tree algorithm needs less number of

seconds in comparing with brute-force especially when using a large volumes of data regardless

the number of dimensions (i.e. if it is in 2D or 3D).

5. CONCLUSIONS

The major contribution achieved by this research is the use of the approximate k-nearest

neighbour with k-d Tree data structure for spatial clustering, and comparing its performance to

the brute-force approach. The results of the work performed in this paper revealed better

performance using the k-d Tree, compared to the traditional brute-force approach. The efficiency

of the data structure primarily depends on a particular implementation and data set. A poorly

balanced tree will mean we have to search way more data than we need to.

FUTURE WORK

As a future work, other data structures can be used to achieve spatial clustering. The results

obtained can be compared to this paper's results.

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

106

ACKNOWLEDGMENT

The Author would like to thank Sama Al-Momani and Zeinab Jaradat (My Students) for their

help in the experiments that done in this research.

REFERENCES

[1] Anoop Jain , Parag Sarda , & Jayant R. Haritsa, (2003) "Providing Diversity in K-Nearest

Neighbour Query", Tech. Report TR-2003-04.

[2] Antonin Guttman, (1984), "R-Trees: A Dynamic Index Structure for Spatial Searching". SIGMOD

Conference, 47-57.

[3] Arya & Mount, (1993) "Algorithms for fast vector quantization", Proc. of DCC '93: Data

Compression Conference, eds. J. A. Storer and M. Cohn, IEEE Press, 381-390.

[4] Beckmann N., Kriegel H.-P., Schneider R., Seeger B., (1990) "The R*-tree: An Efficient and

Robust Access Method for Points and Rectangles" , Proc. ACM SIGMOD Int. Conf. on

Management of Data, Atlantic City, NJ, pp. 322-331.

[5] Christian Böhm, (2002) "Powerful Database Primitives to Support High Performance Data

Mining", Tutorial, IEEE Int. Conf. on Data Mining.

[6] David M. Mount , (2010) "ANN Programming Manual", University of Maryland.

[7] Dunham M., (2002) "Data Mining: Introductory and Advanced Topics", New Jersey, Prentice

Hall.

[8] Erica Kolatch, (2001) "Clustering Algorithms for Spatial Databases: A Survey",

citeseerx.ist.psu.edu.

[9] Ester M., Kriegel H.-P., Xu X, (1998) "Incremental Clustering for Mining in a Data Warehousing

Environment", Proceedings of the 24th VLDB Conference.

[10] Garcia, V., Debreuve, E., and Barlaud, M., (2008) "Fast k nearest neighbor search using GPU",

IEEE Computer Society Conference, 1-6.

[11] Graham Nolan, (2009) "Improving the k-Nearest Neighbour Algorithm with CUDA", Honours

Programme, The University of Western Australia.

[12] J. Sander, M. Ester, H. Kriegel, and X. Xu, (1998) "Density-Based Clustering in Spatial

Databases: The Algorithm GDBSCAN and its Applications". Journal of Data Mining and

Knowledge Discovery, Vol. (2), Issue (2), 169-194.

[13] J.L. Bentley, Friedman, J.H., Finkel, R.A., (1977) "An algorithm for finding best matches in

logarithmic expected time", ACM Transactions on Mathematical Software 3(3), 209–226.

[14] J.L. Bentley, (1975) "Multidimensional binary search trees used for associative searching", Comm.

ACM, 18(9):509 517.

[15] Jaim Ahmed, (2009) "Efficient K-Nearest Neighbor Queries Using Clustering With Caching",

Master Thesis, The University of Georgia.

[16] Marius Muja and David G. Lowe, (2009) "Fast Approximate Nearest Neighbors with Automatic

Algorithm Configuration", in International Conference on Computer Vision Theory and

Applications (VISAPP'09).

[17] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. (1990) "The R*-tree: an efficient and

robust access method for points and rectangles". ACM SIGMOD, pages 322-331.

[18] Nitin Bhatia, Vandana, (2010) "Survey of Nearest Neighbor Techniques", International Journal of

Computer Science and Information Security, Vol. 8, No. 2.

[19] R. F. Sproull, (1991) “Refinements to Nearest Neighbor Searching”, Technical Report,

International Computer Science, ACM (18) 9, pp 507-517.

[20] Rina Panigrahy, (2006) "Nearest Neighbor Search using Kd-trees", citeseerx.ist.psu.edu.

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

107

[21] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and A. Wu, (1998) "An optimal algorithm

for approximate nearest neighbor searching", Journal of the ACM, 45(6):891-923.

[22] S. Dhanabal, S. Chandramathi, (2011) "A Review of various k-Nearest Neighbor Query

Processing Techniques", International Journal of Computer Applications, Volume 31– No.7.

[23] S. N. Omohundro, (1989) “Five Ball Tree Construction Algorithms”, Technical Report.

[24] Shekhar S, Zhang P, Huang Y, Vatsavai R., (2003) "Trends in Spatial Data Mining". Department

of Computer Science and Engineering, University of Minnesota, Minneapolis.

[25] Shekhar S, Zhang P., (2004) "Spatial Data Mining: Accomplishments and Research Needs".

University of Minnesota. GIS Science.

[26] Shekhar S., Chawla S., (2003) "Spatial Databases: A tour". Pearson education Inc, Upper Saddle

River, New Jersey.

[27] Steven S. Skiena, (2010) "The Algorithm Design Manual" , 2nd Edition, Stony Brook, NY 11794-

4400.

[28] T. Bailey and A. K. Jain, (1978) “A note on Distance weighted k-nearest neighbor rules”, IEEE

Trans. Systems, Man Cybernatics, Vol.8, pp 311-313.

[29] T. Liu, A. W. Moore, A. Gray, (2006) “New Algorithms for Efficient High Dimensional Non-

Parametric Classification”, Journal of Machine Learning Research, pp 1135-1158.

[30] T. M. Cover and P. E. Hart, (1967) “Nearest Neighbor Pattern Classification”, IEEE Trans.

Inform. Theory, Vol. IT-13, pp 21-27.

[31] Toussaint GT (2005). "Geometric proximity graphs for improving nearest neighbor methods in

instance-based learning and data mining". International Journal of Computational Geometry and

Applications 15 (2): 101–150.

[32] William R. Mark, Gordon Stoll, (2006) "Fast kd-tree Construction with an Adaptive Error-

Bounded Heuristic", Warren Hunt, IEEE Symposium on Interactive Ray Tracing.

[33] Yu-Chen Fu, Zhi-Yong Hu, We1 Guo, Dong-Ru Zhou, (2003) "QR-tree: a hybrid spatial index

structure", Proceedings of the Second International Conference on Machine Learning and

Cybernetics.

[34] Zhou, K., Hou, Q., Wang, R., and Guo, B. (2008) "Real-time kd-tree construction on graphics

hardware". ACM Trans. Graph. 27, 5, 1-11.

Author

Mohammed A. Otair is an Associate Professor in Computer Information Systems,

at Amman Arab University-Jordan. He received his B.Sc. in Computer Science from

IU-Jordan and his M.Sc. and Ph.D in 2000, 2004, respectively, from the Department

of Computer Information Systems-Arab Academy. His major interests are Mobile

Computing, Data Mining and Databases Neural Network Learning Paradigms, Web-

computing, E-Learning. He has more than 29 publications.

Appendix-A

Searching for a nearest neighbor in a k-d tree [Source: Wikipedia]

1. Starting with the root node, the algorithm moves down the tree recursively, in the same

way that it would if the search point were being inserted (i.e. it goes left or right

depending on whether the point is less than or greater than the current node in the split

dimension).

2. Once the algorithm reaches a leaf node, it saves that node point as the "current best"

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

108

3. The algorithm unwinds the recursion of the tree, performing the following steps at each

node:

A. If the current node is closer than the current best, then it becomes the current

best.

B. The algorithm checks whether there could be any points on the other side of the

splitting plane that are closer to the search point than the current best. In concept,

this is done by intersecting the splitting hyper-plane with a hyper-sphere around

the search point that has a radius equal to the current nearest distance. Since the

hyper-planes are all axis-aligned this is implemented as a simple comparison to

see whether the difference between the splitting coordinate of the search point

and current node is less than the distance (overall coordinates) from the search

point to the current best.

I. If the hyper-sphere crosses the plane, there could be nearer points on the

other side of the plane, so the algorithm must move down the other

branch of the tree from the current node looking for closer points,

following the same recursive process as the entire search.

II. If the hyper-sphere doesn't intersect the splitting plane, then the

algorithm continues walking up the tree, and the entire branch on the

other side of that node is eliminated.

4. When the algorithm finishes this process for the root node, then the search is complete.

Generally the algorithm uses squared distances for comparison to avoid computing square roots.

Additionally, it can save computation by holding the squared current best distance in a variable

for comparison.

