
International Journal of Database Management Systems (IJDMS) Vol.6, No.1, February 2014

DOI : 10.5121/ijdms.2014.6102 21

A HYBRID TECHNIQUE FOR SQL INJECTION

ATTACKS DETECTION AND PREVENTION

Jalal Omer Atoum and Amer Jibril Qaralleh

Princess Sumaya University for Technology, Amman, Jordan

ABSTRACT

SQL injection is a type of attacks used to gain, manipulate, or delete information in any data-driven system

whether this system is online or offline and whether this system is a web or non-web-based. It is

distinguished by the multiplicity of its performing methods, so defense techniques could not detect or

prevent such attacks. The main objective of this paper is to create a reliable and accurate hybrid technique

that secure systems from being exploited by SQL injection attacks. This hybrid technique combines static

and runtime SQL queries analysis to create a defense strategy that can detect and prevent various types of

SQL injection attacks. To evaluate this suggested technique, a large set of SQL queries have been executed

through a simulation that had been developed. The results indicate that the suggested technique is reliable

and more effective in capturing more SQL injection types compared to other SQL injection detection

methods.

KEYWORDS

Database SQL Injection Atttacks, Static Analysis, Runtime Analysis, Three Tier Architecture.

1. INTRODUCTION

SQL injection attacks (SQLIAs) are very effective system attacks that can be used to gain or

manipulate data in data-driven systems, which is a common problem for web applications that

are published on the internet. Furthrmore, SQLIAs are simple to be learned and simple to be

executed; so they can be executed by unexperienced hackers [16].

There have been many researches that have developed various methods to detect and prevent

SQLIAs. Each of these methods covers an objective or set of objectives related to this type of

attacks, but there is no method that can cover the whole system from being attacked by SQL

injections [6].

The risk of SQLIAs is that when they are performed through the victim back end system, they

will be runing with the same priviliges that the system have on the database, that means if the

system has a power user or administrator permisions then the injection code could be executed

with a disaster effects on the victim machine [2].

Section two presents the aspects related to the different types of SQLIAs and describes the

vulnerabilities that are used to perform the SQLIAs. Section three prsentes different previous

solutions to deal with the SQLIAs detection and prevention. Section four presents the suggested

hybrid technique. Section five presents a description of the simulation that has been developed to

International Journal of Database Management Systems (IJDMS) Vol.6, No.1, February 2014

22

evaluate the reliability and accuracy of the suggested hybrid technique. Finally, section six

prsents the conclusion and future works.

2. SQL INJECTION ATTACKS

There is no solution that ensures all vulnerabilities in a system will be covered and controlled

completely 100%. There are vulnerabilities in which SQLIAs attackers preferred to use in order

to breach the systems data, those vulnerabilities are either Software or Hardware elements such as

(Servers, Web-Services, Operating Systems, Applications, Database Engines, etc.). If these

elements are not continuasly updated with the latest patches and security updates, then they will

be more vulnerable to be attacked, and then they might not be able to reject such attacks.

Monitoring, logging, validation, intrusion detection, and other operations are very useful in

system architectures to increase the security of the database. If the system is not applying a strong

input validation technique to check every database input to the system it will create a significant

problem, because the input parameters are the first gate to the attacker that could be used to inject

malicious code with this input [3].

The developers should be curious about the error reporting, they should not enable client error

reporting service, because it may lead to an important information of the code or the database of

the system.

The first mechanism to handle the security of a database is to ensure that their access is well

controlled, by assigning the access rights to the appropriate users or objects [8]. Hence, if the

first defense line is not handled as well as required then the database will be vulnerable to

different type of attacks.

It is important to secure the data especially the sensitive data, so even though the database is

secured from being hacked, sensitive data should be encrypted in the database or through the

network [13].

In advanced SQLIAs attackers prefer to use the database core tables that contain sensitive

information about the whole database system. Table 1 shows some of the common useful

database system tables that are preferred to be used in the SQLIAs.

Table 1. Database system's tables for different Database environment

MS SQL Server MS Access Server Oracle

sysobjects syscolumns MSysACEs MsysObjects

MsysQueries

MSysRelationships

SYS.USER_OBJECTS SYS.TAB

SYS.USER_TABLES

SYS.USER_VIEWS

SYS.ALL_TABLES

SYS.USER_TAB_COLUMNS

SYS.USER_CONSTRAINTS

SYS.USER_TRIGGERS

SYS.USER_CATALOG

SQLIAs target database engines that are connected with data-driven systems. Hence, once users

are connected to database to get answers for their requests, the system submits these answers as

SQL queries to the database management system (DBMS) in the database server. After that, the

database server returns the related information (answers) to the system. Finally, the system

renders the resulted data as visual information to the requester (user).

International Journal of Database Management Systems (IJDMS) Vol.6, No.1, February 2014

23

The attacker can exploit the flow of data between the user, the system, and the database to gain or

manipulate the data by sending queries loaded (injected) by malicious scripts, inline SQL queries,

or commands that will be executed by the database engine and applied to the system database [7].

The intents of the SQL injection attacks could be categorized as; Determining database

information, Data Gathering, Database Manipulation, Code Injection, Function Call Injection, or

Buffer Overflows. For more information on these SQL injection attacks please refere to [4].

The most effective gateways that are used to perform different types of SQLIAs are: browser

variables, user inputs, and injection HTTP header [4].

3. BACKGROUND

This section presents the litrature review that is relevant to SQLIAs and describes the common

researches and techniques that have been done in order to detect and prevent SQLIAs.

SQLIAs detection and prevention techniques have followed various aspects in order to come up

with an appropriate solution so as to prevent SQLIAs from being applied to different types of

databases. Some of these aspects are:

• Static Analysis: Static analysis is a principle that depends on finding the weaknesses and

malicious codes in the system source code prior to reaching the execution stage [10, 12].

Generally, this principle has been one of the most widely used to detect or prevent SQLIAs.

• Runtime Analysis: It is a technique which has been used to detect a specific type of attacks

that should be identefied in advance without the need of modifing the development lifecycle nor

the need of the source code of the system. Such a technique depends on tracking the events of

the system through its execution process and detects if there is any of attack that is happing while

execution [7] .

• Static and Runtime Analysis: In this type of analysis, different researches had choosen to

combine the two aforementioned techniques to create a more effective and reliable solution to

obtain a higher quality with a faster development and testing processes [1].

4. SUGGESTED HYBRID TECHNIQUE

This section focuses on the main idea of the suggested hybrid technique for detecting and

preventing SQLIAs.

4.1 Normal Data Exchanging Strategy

There are many architectures to manage and to organize any data-driven systems, but the most

common architecture that has been used is the three-tier architecture that depends on dividing the

system into three tiers [15] as follows:

1. Presentation Tier (a Web browser or rendering engine).

2. Logic Tier (a server code, such as C#, ASP, .NET, PHP, JSP, etc …).

3. Storage Tier (a database such as Microsoft SQL Server, MySQL, Oracle, etc.).

Figure 1 summerizes the steps of exchanging data among the three-tier system architecture.

International Journal of Database Management Systems (IJDMS) Vol.6, No.1, February 2014

24

Figure 1. Three-Tier Architecture Data Exchanging

Figure 2 describes the normal mode to link the logged on users to systems that have the database

instances and to determine the accessible instances.

Figure 2. Accessing Database in Normal Mode

4.2 Suggested Approach Strategy

The suggested approach is a runtime detection and prevention methodology that follows the same

steps as the normal approach to exchange the queries between the architecture parties

(Presentation-Logic-Storage), however, it provides an extra defense line on the Data-Tier to

ensure that this side will not execute any abnormal codes that incase affect the system partially or

completely or it affects the hosted operating system and devices.

This approach is based on providing security controlling methodology on the database server side

to ensures that all requested SQL queries from an inside or an outside the system are executed

International Journal of Database Management Systems (IJDMS) Vol.6, No.1, February 2014

25

securely without any database fabrication or hacking. Figure 3 illustrates the process flow

diagram of the suggested approach stages from getting user or application access to the execution

of the queries that have been delivered to the database.

Figure 3. Process Flow Diagram for Suggested Approach

4.3 Suggested Approach Stages

The suggested approach is based on different stages to reject any malicious query from being

passed through the database engine before its execution process, and those stages could be listed

as follows:

• Replicate system databases: For each database to be secured from SQLIAs, there should be a

new replication database and it should contain a small amount of sample data.

•••• Creating “database_Behaviors” database: The suggested approach should have a separate

database called “database_Behaviors” that contains all system database queries and their

expected behaviors that have resulted from SQL queries execution in normal cases. This database

is placed in the replicated instances.

• Redirect SQL queries: Any SQL query assigned to be executed in the target database will be

initally delayed and replicated by the database engine then this replicated query is sent to the

International Journal of Database Management Systems (IJDMS) Vol.6, No.1, February 2014

26

virtual database (Schema Replicated database). Hence, the original SQL query will be not

executed yet in this stage and it will be delayed to a later stage.

•••• Simple SQL syntax checking: All SQL queries that are passing through the replicated

database should also pass through multiple check processes before they move to the next step

namely, “The execution process”. The following list presents the checks processes that the SQL

queries should pass through:

- Encoding analysis: Before continuing to any next step the received SQL queries should be

analyzed to determine the character encoding that has been used to write these queries. There

are many techniques that can be used to do this analysis process such as “Automatic

Identification of Language and Encoding” [11].

- Simple White-Box validation: The query should go through simple syntax validation and

filtering for specific SQL reserved words especially those that use (EXECUTE, SHELL

commands).

- Parameters replacement: Any parameter that has been found in the SQL query should be

replaced by an indexing parameter names. Such as (@par_1, @par_2 … @par_n).

• Virtual execution: After the SQL syntax checking process, the SQL query will be executed on

the replicated database “Virtual Database” in which it is a process that is running simultaneously

with the execution process, it monitors and traces the behaviors of the SQL query.

•••• SQLIA Detection: This stage is the most important stage in the suggested technique, its

purpose is to detect whether the received SQL query is valid and expected query or not. The idea

here is to catch the objects that have been affected by the current SQL query whatever the type of

such objects and create a list of these objects to use them in the next step of this stage.

The resulted list of affected objects will be compared with the “database_Behaviors”. If there is

a query that handles all of the listed objects with the same type of behavior that is detected from

the previous step then this behavior query will be added to a new list (Expected Queries). Any

resulted behavior that is detected as a suspicious should be rejected and deleted from the actual

database instance execution queue, otherwise the query will be transferred to the actual database

instance for being executed.

5. EVALUATION AND DISCUSSION

As described before, the proposed hybrid technique combines static and runtime analysis

approaches to create a new solution to detect and prevent the SQLIAs. This suggested hybrid

technique will be installed and integrated with the database engines in the database server.

An application using VB .Net has been developed to simulate the work of the suggested

approach. The simulation application has been used to evaluate the performance and accuracy of

the detection and prevention processes in this approach. Using this application, two hundred and

fifty (250) SQL queries that cover all different types of SQLIA have been tested.

The results that had been obtained from simulating this hybrid technique of those 250 queries

prove that this hybrid technique could cover all known SQLIA gateways, and prevents any type

of SQLIAs.

Table 2 gives a comparison of well-known set of SQLIA detection and prevention techniques

along with our suggested hybrid technique in terms of their capability of detection and

International Journal of Database Management Systems (IJDMS) Vol.6, No.1, February 2014

27

preventions, namely: Tautology, Built-In Functions, Logically Incorrect Queries, Union Query,

Stored Procedure, Piggy-Backed Queries, Inference, Alternate Encoding, and the Direct Attack.

Table 1: Various Schemes and SQL Injection Attacks

This table has been originally presented by [5] except for the first row of our suggested hybrid

technique, the third column of Built-In Functions, and the last column of direct attacks. From this

table, it can be concluded that our hybrid technique covers all types of SQLIA and it is the only

technique that prevents the direct attack type; that means it can detect and prevent any type of

SQLIA even if this attack is applied into the database directly. In other words, this hybrid

technique can detect and prevent SQLIAs that are performed through the system or through a

direct SQL query to the database. Finally, the suggested hybrid technique is the only one that can

detect and prevent SQLIAs that are using Built-In functions to perform such attacks.

6. CONCLUSION AND FUTURE WORK

This paper has presented a novel hybrid technique that detects and prevents all types of SQLIAs

in different system categories regardless of the system development language or the database

engine.

The suggested hybrid technique is done in two main phases: runtime analysis, and static analysis.

The first phase is a dynamic/runtime analysis method that depends on applying tracking methods

to trace and monitor the execution processes of all received queries. The result of affected objects

of this monitoring will be compared with a prepared set of expected changes that the developer

had created before, and the result of this comparison process will decide if there is an existence of

any type of SQLIA and if so they will be forwarded to the next phase. The next phase is a static

analysis phase that is performing a string comparison between the received SQL queries and

previous expected SQL queries to prevent any query that is described as a suspicious query.

International Journal of Database Management Systems (IJDMS) Vol.6, No.1, February 2014

28

Furthermore, the simulation showed that the suggested hybrid technique can detect and prevent

all types of SQLIAs.

The future plan is to enhance this technique by decreasing the time delay that the database

recovery takes after the SQLIA is detected.

REFERENCES

[1] Graham, B., Leroux, P. N., and Landry, T. "Using Static and Runtime Analysis to Improve Developer

Productivity and Product Quality," white paper, QNX Software Systems, April 2008.

[2] Guimarães, B. D., "Advanced SQL Injection to Operating System Full Control," Black Hat Europe,

white paper, April 2009.

[3] Halde, J., "SQL Injection Analysis, Detection and Prevention," MSc Thesis, Department of Computer

Science, San Jose State University, San Jose, CA, USA, 2008.

[4] Halfond, W. G., Viegas, J. and Orso, A., "A Classification of SQL Injection Attacks and

Countermeasures”, In Proceedings of the IEEE International Symposium on Secure Software

Engineering, Arlington, VA, USA, 2006..

[5] Kindy, D. A., and Pathan, A. S., "A Detailed Survey on Various Aspects of SQL Injection:

Vulnerabilities, Innovative Attacks, and Remedies," International Journal of Communication Networks

& Information Security, Aug. 2013, Vol. 5 Issue 2, pp 80-92.

[6] Majumder, J., and Saha, G., "Analysis of SQL Injection Attack," Special Issue of International

Journal of Computer Science & Informatics (IJCSI), ISSN (PRINT) : 2231–5292, Vol.- II, Issue-1.

[7] Mishra, R. and Bhattacharjya, A., "A Study on Deterrence Methods from SQLIA," VSRD

International Journal of CS & IT, vol. I, no. 8, pp. 608-617, 2011.

[8] Murray, M., "Database Security: What Students Need to Know," Journal of Information Technology

Education, Innovations in Practice (9), pp. 61-77.

[9] Rani, D. R., Kumar, B. S., Rao, L. R., Jagadish, V. T., and Pradeep, M., "Web Security by

Preventing SQL Injection Using Encryption in Stored Procedures," (IJCSIT) International Journal of

Computer Science and Information Technologies, vol. 3, no. 2, 0975-9646, pp. 3689-3692, 2012.

[10] Roy, S., A. K. Singh and Sairam, A. S., "Analyzing SQL Meta Characters and Preventing SQL

Injection Attacks Using Meta Filter," 2011 International Conference on Information and Electronics

Engineering, IPCSIT vol.6 (2011) © (2011) IACSIT Press, Singapore, pp 167-170.

[11] Russell, G., Lapalme, G., Plamondon, P, ”Automatic Identification of Language and Encoding”.

Rapport Scientifique. Laboratoire de Recherche Appliquée en Linguistique In-formatique (RALI),

Université de Montréal, Canada, 7-2003 (2003).

[12] Shanmughaneethi, V., and Swamynathan, S., "Detection of SQL Injection Attack in Web Applications

using Web Services," IOSR Journal of Computer Engineering (IOSRJCE), vol. 1, no. 5, pp. 13-20,

2012.

[13] Shaul, J., and Ingram, A., Practical Oracle Security, Rockland: Syngress Publishing, Rockland, MA:

Syngress Pub., c2007.

[14] Spett, K., "SQL Injection: Are your web applications vulnerable," Technical report, SPI Dynamics,

Inc., 2005. available at URL http:// www.spidynamics.com/papers/sql injectionwhitepaper.pdf.

[15] Srivastava, S., and Tripathi, R., “Attacks Due to SQL Injection & Their Prevention Method for Web-

Application” (IJCSIT) International Journal of Computer Science and Information Technologies, Vol.

3 (2) , 2012,pp. 3615-3618.

[16] Williams, J., "OWASP Top 10 Project," OWASP Community, The Open Web Application Security

Project , 2013. http://www.owasp.org.

