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ABSTRACT 
 

One of the research challenges in cellular networks is the design of an efficient model that can reduce call 

blocking probability and improve the quality of service (QoS) provided to mobile users. Blocking occurs 

when a new call cannot be admitted into the network due to channel unavailability caused by limited 

capacity or when an ongoing call cannot be continued as it moves from one base station to another due to 

mobility of the user.  The proposed model computes the steady state probability and resource occupancy 

distribution, traffic distribution, intra-cell and inter-cell interferences from mobile users. Previously 

proposed models are reviewed through which the present model is built for use in emerging wireless 

networks so as to obtain improved QoS performance. The developed model is validated through simulations 

in MATLAB and its equations implemented using Java Programming Language. The results obtained 

indicate reduced call blocking probability below threshold. 
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1. INTRODUCTION 
 

In cellular mobile networks, call blocking can occur as either new call blocking or handoff call 

blocking. The former refers to blocking of a new call request due to lack of available channel 

while the later refers to blocking of a call in the new cell as the mobile moves from its originating 

base station (BS) to a new BS. Ideally, during handoff or handover, the distributed mobile 

transceivers move from cell to cell during an ongoing continuous communication and switching 

from one cell frequency to a different cell frequency is done electronically without interruption 

and without a BS operator or manual switching. Typically, a new channel is automatically 

selected for the mobile unit on the new BS which will serve it. The mobile unit then automatically 

switches from the current channel to the new channel and communication continues. The two 

kinds of arriving calls to a cell site are shown in figure 1. Call blocking probability is one of the 

quality of service (QoS) parameters for performance evaluation in wireless cellular networks. 

According to [1], for better QoS it is desirable to reduce the call blocking probability. Call 

blocking is perceived negatively by users because it results to degradation in required QoS and 

developing an efficient model to reduce its probability in cellular networks is a growing research 

aimed at improving overall cellular system performance.  
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Figure 1: The two kinds of arriving calls to a cell site 
 

The existing Visafone network suffers more of call blocking causing more calls to be rejected due 

to channel unavailability, as shown in figure 2. It indicates that only a few of its BSs within the 

region under study were able to carry traffic load beyond 400 Erlang per cell. This is definitely 

not a good characteristic of a reliable and efficient network. The key Performance Indicators 

(KPIs) usually measured by the regulatory bodies or  commissions include Call Setup Success 

Rate (CSSR), Call Completion Rate (CCR), Standalone Dedicated Control Channel and 

Handover Success Rate (SDCCH), Call Data Rate (CDR) and Traffic Channel Congestion with or 

without Handover (TCHCon). The network operators could be rated on excellent, good, 

improvement, fluctuation, poor, slight decay and mostly steady below threshold on the KPIs. It is 

important to note that a rating of improvement does not mean the target key performance 

indicator is met. Rather, it means that the trend to reach the threshold is progressing towards the 

set target of the indicator, taking into consideration the challenges the operators are facing daily. 

It is therefore important that the operators continue working towards meeting the set target by 

adopting improved architectures despite challenges faced in infrastructure, upgrade, and service 

delivery. 
 

 

 

Figure 2: Visafone BS’s Carried Traffic Load for 30 days 
 

Several proposed models or techniques for reducing call blocking probability exist in literature 

either for reducing new call blocking [2], or reducing handoff blocking [3,4,5] or reducing both 

[6, 7, 8]. Whatever the case, there is a tradeoff between reducing handoff probability and new call 

blocking probability. A proposed method which attempts to optimally reduce handoff failures in 

mobile networks without significant increase in blocking probability of originating calls within a 

cell is highly desirable. However, call blocking model could either be said to be hard or soft. In 

hard call blocking models, the blocking probability is evaluated with fixed-valued parameters 

regardless of the channel and traffic conditions. In a Code Division Multiple Access (CDMA)-

based network, the interference-limited nature makes it difficult to achieve accurate admission 

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

D
a

y
1

D
a

y
3

D
a

y
5

D
a

y
7

D
a

y
9

D
a

y
1

1

D
a

y
1

3

D
a

y
1

5

D
a

y
1

7

D
a

y
1

9

D
a

y
2

1

D
a

y
2

3

D
a

y
2

5

D
a

y
2

7

D
a

y
2

9E
rl

a
n

g
 T

ra
ff

ic
 p

e
r 

ce
ll

Carried traffic Vs Days



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 6, No. 4, August 2014 

87 

control. Because of the co-channel interference, the amount of resources (power, bandwidth) 

required by each user is dependent on the number of users in the system, their geographical 

locations, and physical channel conditions. In soft blocking models, the blocking probability is 

evaluated taking note of interference nature of the CDMA network. This work develops and 

implements a soft blocking probability reducing model for new call request in the uplink of a 

CDMA cellular network. A well established CDMA network named Visafone is studied in the 

South-South Zone of Nigeria’s Niger Delta region.   
 

The rest of this paper is organized as follows: section 2 reviews existing literature on call 

blocking probability estimation for both hard and soft blocking while section 3 presents the 

system design for the proposed model for reducing soft blocking probability with the developed 

algorithm. In section 4, the pseudo code for the developed algorithm is presented, the model’s 

accuracy is validated through computer simulations in MATLAB and the equations implemented 

in Java.  Section 5 presents the simulation results and conclusion giving direction for future 

works. 

 

2. LITERATURE REVIEW 
 

In a wireless network composed of several BSs serving some mobile users, user’s power is 

limited to some given maximal value. The same frequency spectrum is available to all BSs (i.e., 

the frequency reuse factor is unity, 1). For a CDMA network, the interference of single user 

detection is regarded as noise. MSs and BSs are both assumed to be uniformly and randomly 

distributed on an infinite plane, but with different terminal densities (coverage areas). Blocking 

occurs in a network when due to limited capacity at least one link on the route is not able to admit 

a new call. Thus, such a user will not be able to subscribe to a particular channel. The following 

section discusses the two types of call blocking for CDMA BSs.  

 

2.1 Hard Call Blocking 
 

Hard blocking occurs when arriving calls to a network are blocked due to lack of available 

channels irrespective of the traffic characteristic and channel conditions [2, 5].  

 
2.1.1 Erlang-B Model 
 

The Erlang-B formula in equation (1) is used to compute hard blocking as a function of the 

number of available channels and the offered load. The equation is based on analytical probability 

theory and can be used when the following assumptions are satisfied. 

 

i. All call attempts are Poisson distributed with exponential service time 

ii. Blocked calls are cleared (BCC) in the system and that the caller tries again later 

��  �  �� �!	
∑ ��� 
!	 �����                                                                                                                     (1) 

In equation (2.3), �� = probability of blocking,  

 � = offered traffic in Erlang,  

 � = number of channels in the cell, and 

 i = number of busy channels 

Thus, there is no queuing and no retry for unsuccessful calls with the Erlang-B model. 

 
2.1.2 Extended Erlang B Model 
 

The Extended Erlang B Model uses the same formula and assumptions as Erlang-B model except 

that a percentage of callers retry their calls until they are serviced. This model is commonly used 
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for standalone trunk groups with a retry probability such as a MODEM pool. The model is as 

expressed in equation (2). 

 

 �� =  �� �!⁄∑    �� �!	��                                                                                                                      (2) 

 

Where, k is the number of busy channels, N is the number of servers (trunks), A is the traffic 

density in Erlang, and �� is the blocking probability. 
 

The Extended Erlang B traffic model is used by telephone system designers to estimate the 

number of lines required for public switch telephone network connections (trunks) or private wire 

connections and takes into account the additional traffic load caused by blocked callers 

immediately trying to call again if their calls are blocked.  It therefore, allows retry of 

unsuccessful calls and assumes infinite population of callers (sources). This traffic model may be 

used where no overflow facilities are available from the trunk group being designed. 

 
2.1.3 Erlang-C Model 
 

In the Erlang C Model, the system is designed around the queuing theory. The caller makes one 

call and is held in a queue until answered, so the formula expresses the waiting probability. Just 

as the Erlang B formula, Erlang C assumes an infinite population of sources, which jointly offer 

traffic of A Erlangs to N servers. However, if all the servers are busy when a request arrives from 

a source, the request is queued. An unlimited number of requests may be held in the queue in this 

way simultaneously. 
 

This formula calculates the probability of queuing offered traffic, assuming that blocked calls stay 

in the system until they can be handled. This formula is used to determine the number of agents or 

customer service representatives needed to staff a call centre a specified desired probability of 

queuing. The blocking probability or the delay probability (waiting probability) is given in 

equation 3. 
 ��  �  � �.  ��� �!⁄  �����∑ �� 
!	������ � ��.  ��� �!����� ⁄                                                                                            (3) 

 

where, 

A is the total traffic offered in units of erlangs 

N is the number of servers; i is the number of busy servers 

PW is the probability that a customer has to wait for service 

 

It is assumed that the call arrivals can be modeled by a Poisson process and that call holding times 

are described by a negative exponential distribution. A common use for Erlang C is modeling and 

dimensioning call center agents in a call center environment. It can also be used to determine 

bandwidth needs on data transmission circuits. 

 
2.1.4 Engset Formula 
 

The Engset formula is used to determine the probability of congestion occurring within a 

telephony circuit group. It deals with a finite population of S sources rather than the infinite 

population of sources that Erlang assumes. The formula requires that the user knows the expected 

peak traffic, the number of sources (callers) and the number of circuits in the network. 
 

Engset's formula given in equation (4) is similar to the Erlang-B formula; however one major 

difference is that the Erlang's equation assumes an infinite source of calls, yielding a Poisson 

arrival process, while Engset specifies a finite number of callers. Thus Engset's equation should 
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be used when the source population is small. But for population sources greater than 200 users, 

extensions or customers, it becomes similar to Erlang-B model [9, 10]. 
 ��  =  �� � �! ∑ �
�"
!�
�#$                                                                                                         (4) 

where, 

A = offered traffic intensity in Erlangs, from all sources 

S = number of sources of traffic 

N = number of circuits in group 

Pb = probability of blocking or congestion 
 

In the traditional flat cellular networks, the Erlang-B model is generally used to describe the 

limitation in physical resources independent of the quality experienced on the radio interface (i.e. 

hard blocking). With the increasing complexity of CDMA cellular networks, the required 

assumptions are no more valid and the Erlang-B formula is found to overestimate the capacity. 

Thus, to properly account for the quality of service experienced at the BS, soft blocking should be 

modeled and evaluated. 

 

2.2 Soft Call Blocking 
 

Soft blocking is related to the amount of interference in a network. There may be plenty of 

channels available at a BS but since there are many users in the same cell already, the interference 

level is such that adding an additional user would increase the interference above a predetermined 

threshold. The call is therefore denied. Modeling soft blocking due to interference is important 

and is considered a major aspect of this paper. 
 

In [11], three explicit analytical models (single random trials (SRT), repeated random trials 

(RRT), and least busy fit (LBF)) were developed for evaluating the request blocking probability 

of movie files in video-on-demand (VoD) systems under three server selection schemes. The 

authors reported that the choice of server selection schemes can significantly affect the blocking 

probability performance of the system, and validated the accuracy of the analytical models 

through simulation.  
 

A rapid and accurate method for evaluating the quality of service (QoS) perceived by the users in 

the uplink of wireless cellular networks was proposed in [2]. In doing so, the author aimed at 

accounting for the dynamics induced by the arrivals and the departures of users. The evaluated 

QoS was in terms of the blocking probability for streaming users and the throughput for elastic 

calls. The blocking probability of streaming users was evaluated using the Kaufman-Roberts 

algorithm as in [12, 13], whereas the throughput of elastic calls was evaluated using a multi-class 

processor sharing model.  The research in [14] modeled soft blocking in multi-cell CDMA 

systems as an independent birth and death process at each cell. The model predicts the 

distribution of the number of calls connected to a base station. 
 

In [15], the authors presented an analytical model for the estimation of the blocking probability as 

a function of the offered traffic per user in a cellular environment, where capacity is determined 

by hard blocking and the average number of users per cell is small. Using statistical model, they 

concluded that the number of mobiles audible to a base station with the strongest signal has a 

Poisson distribution, which mean is given in terms of the mean densities of mobile and base 

stations and the parameters of the attenuation law. The model does not represent a tool for 

detailed network planning. 
 

In [16], the outage probability is considered a performance measure for real-time traffic in 

wireless networks. They observed that the blocking and outage probabilities do not have closed-

form expressions as they strongly depend on the traffic characteristics (call duration, bit rate 

requirement, etc.), the radio conditions (fading, shadowing, noise, interference, etc.), the 
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considered admission and outage policies. They assumed that the admission and outage policies 

satisfy a certain monotonicity property. Their results are applied to the uplink and the downlink of 

CDMA networks. In [17], a wireless network with beam-forming capabilities at the receiver is 

considered. They derived the blocking probabilities for calls in the system, under different traffic 

policies. For a set of co-channel transmitters, their success probabilities for being captured by 

separate antenna beams are computed. These success probabilities are taken into account in the 

queuing model of the system. Their analytical and numerical results show that adaptive beam-

forming at the receiver reduces the blocking probability of calls and increases the total carried 

traffic of the system. 
 

In [18], a new resource-dimensioning concept based on both the allowable noise-rise and traffic 

statistics is presented. The soft blocking probability based on outage probability and the 

assumption of the Poisson arrival and exponential services time are first derived, with a consistent 

view on traffic dimensioning. The relationship between outage probability, soft blocking 

probability and hard blocking probability is discussed. The authors in [19] focused on the call 

blocking probabilities calculation in a WCDMA cell with fixed number of channels and finite 

number of traffic sources. They proposed the use of the Engset Multi-rate Loss Model (EnMLM) 

in the uplink direction, which incorporates local blockings. The call admission depends on the 

availability of the required channels. To analyze the system, they formulated an aggregate one-

dimensional Markov chain. 
 

The work in [4] studied the QoS in terms of blocking and dropping probabilities, but the 

interference between the users was not taken into account explicitly. The work in [20] studied the 

QoS in wireless local area and sensor networks whereas this work focuses on wireless cellular 

networks. Certain models for soft blocking evaluation assumes that there is a constant number of 

users � in the cell, power control is perfect, and each user requires the same  signal bit energy to 

noise spectral density %� �&⁄ . From the above review, it appears studies on soft blocking have not 

considered interference under imperfect power control which this work considers by extending 

the Kaufman-Roberts algorithm under the assumption that in reality, none of these assumptions 

holds. The reason is that the number of active users in a cell is Poisson distributed with mean 

arrival and exponential service time ' (	 . Furthermore, due to voice activity, each user is ON with 

probability, ) and OFF with probability �1 + )� and each user requires a different %� �&⁄  to 

achieve a desired bit error rate or communication signal quality. 

 

3. PROPOSED MODEL FOR REDUCING CALL BLOCKING 

    PROBABILITY 
 

In CDMA systems, signals of each MS can be modeled as interfering noise for the others, leading 

to degradation in service. Adopting imperfect power control in CDMA wireless networks is to 

regulate the transmission power levels of MS such that each user obtains a satisfactory QoS. This 

goal is more precisely stated as to achieve a certain SINR regardless of channel conditions while 

minimizing the interference and battery usage, and hence improving the overall performance. 

Modeling the uplink system interference involves taking into consideration the cell model, path 

loss model, power control, and simulation parameters. The proposed system design is shown in 

figure 3 and implemented in six algorithmic stages. The stages are: 

 

(i) modeling the state of a cell 

(ii) Computation of total uplink interference 

(iii) Computation and comparison of maximum effective cell load with threshold 

(iv) Computation of soft blocking probability when cell load threshold is exceeded 

(v) Blocking or accepting new call based on computed probability 

(vi) Storage of generated results and updated system parameters 
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Figure 3: Proposed System Design for Soft Blocking Probability Evaluation 
 

Stage1: Modeling the State of a Cell 

 

Cell Model: In our model, each cell blocks newly arriving calls with a state dependent probability 

illustrated using Markov Chain in figure 3. The state of a cell is the number of users currently in 

that cell. Other cells simply contribute interference which causes blocking with some probability, ���
� which is assumed to depend on the state , of the current cell. We model the state of a cell as 

a birth and death process and showed that the arrival rate is thinned by the blocking probability, '�1 + ���
�!, while the departure rate is ,-. 
 

Stage 2: Computation of Total Uplink Interference 

 

CDMA systems consider soft blocking taking note of interference from mobiles in own cell and 

other cells. Therefore in the uplink, the interference experienced by a certain mobile is related to 

the load distribution within the network. The total interference is computed considering own-cell 
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interference, other-cell interference, and interference due to an empty system referred to as 

thermal noise i.e ./&/01 2  .&�3 4 .&/567 4�&. This is represented in figure 3 in the hexagonal 3-

cell structure. The more users are active at the BS, the larger is the multi-access interference at the 

BS and the higher are the transmit powers required by mobiles to fulfill their %� �&⁄  

requirements. 

 

SINR Calculation: The signal-to-interference-noise ratio 8.�9 of each and every connection in 

the uplink depends on the power emitted by mobile users, own-cell interference  .&�3, other-cell 

interference .&/567, thermal noise �#, and multi user detection factor, : as given in equation 5. 

  8.�9;< 2 "�=�>�?@AB�?@CDEF���                                                                                        (5) 

 

where the received signal, 8=�� +max�J + K/L + K7L�, and �� is the transmit signal power, K/L 

is the transmitting antenna gain, K7L is the receiving antenna gain and J is the path loss 

propagation (attenuation) model from MS-BS. 

 

Path Loss Model: Considering a BS antenna height ∆N� of 15metres and log-normally 

distributed shadowing (logF) with standard deviation of 10dB, the path loss is calculated based on 

equation (6) as in [21] as follows:  

 J 2 40�1 + 4 Q 10�R∆N�� log�V� + 18log �∆N��+21Q log�X� 4 80                             (6) J  = 127.8 4 37.6 log�V� 4 log�]� 2 137.8 4 37.6 log�V�                                            (7) 

 

where V is the MS-BS separation in kilometers. 
 

Users connect to the BS per cell and each mobile connecting to one BS only at any given time. 

The ,/5 mobile transmits with a nonnegative uplink power level of 0 ^ �
 ^ �_0L `
, where �_0Lis a sufficiently large upper-bound imposed for technical reasons. The received power at the a/5 BS, b
1 , is the attenuated version of the transmitted power level, b
1 2 N
1�
 , where the 

quantity N
1 �0 c N
1 c 1� represents the slow-varying channel gain (excluding any fading). 
 

Stage 3: Computation and Comparison of Maximum Effective Cell load with Threshold 
Power Model: When a call arrives to the cell, the noise rise is estimated and if it exceeds a 

maximum predefined threshold, the call is blocked and lost. Noise rise is the ratio of total 

received power at the BS, ./&/01, to the thermal noise power, �& given in equation (8) as: 

 �9 = ?C@Cde�@  =  ?@AB�?@CDEF��@�@                                                                                                 (8) 

 

The cell load f, is defined as the ratio of the received power from all active users to the total 

received power as given in equation (9). The cell load threshold must not be exceeded for call 

admission at any given state of the cell. 

 f =  ?@AB�?@CDEF?@AB�?@CDEF��@                                                                                                               (9)   

     

The noise rise is related to the cell load given in equation (10) as follows: 

 �9=
?C@Cde�@ =

?@AB�?@CDEF��@�@ =
=�@g@ABhg@CDEFh�@

 = 
==� g@CDEFh�@g@ABhg@CDEFh�@

 = 
==�3                                    (10) 

 

Thus, instead of using noise rise, the cell load can be used to determine call admission.  
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Stage 4: Computation of Soft Blocking Probability when Cell load Threshold is Exceeded 

 

Simulation Model: In CDMA network, the cell load, f is interpreted as shared resource and the 

load per cell (loading factor), J� as resource requirement. The application of the Kaufman-

Roberts algorithm postulates a discrete shared resource and discrete service requirements. Thus, 

in order to calculate the new call blocking probabilities of different service classes, we make 

discrete the loading factor and the cell load by introducing a cell load unit i of which f_0L is an 

integer multiple. This will help us determine the system state probabilities. Thus, the resulting 

capacity and resource requirements are: 

 j = 
3kdlm      and     n� = round �<�m � 

 

Since a state corresponds to the resources occupied when all users are active. We denote by o 2  f&�3 i⁄  as the number of occupied resources by the active users and introduce a random 

variable Λ for the number of occupied resources. Still assuming no local blocking occurs, the 

probability Λ� c|i� that c resources are occupied in state i (bandwidth occupancy) is computed 

from equation (11): 

 

Λ� c|,� = ∑ ���,�s��= tu�Λ�c + rw|, + rw� 4 �1 + u��Λ�c|, + rw�x                                      (11) 

 

for , 2 1,… , ,_0L and o ^ ,, where ,_0L is the highest reachable system state.  

 

The resource occupancy distribution is computed according to equation (11). So, using the 

theorem of total probability we derive the local blocking probability (blocking factor) as in [8] as: 

 ��,��,� = ∑ Λ� c|,�
{�# ��,��o�                                                                                               (12)                     
 

Again, we denote by ���,�, the probability that the system is in state , or the probability that state , is reached by a new call of service | or the probability that state , is reached from state , + n� as 

follows: 

 

���,� =  }�
�7���=�~�,��
�7�����F��∑ }�
�����                                                                                           (13) 

 

where, 

}�,� = �          1,                                                            X�n , 2 0∑ }�, + n�� �1 + ��,��, + n���s��= �� 7�
        X�n , 2 1,… , j     0,                                                    �a��
�                               (14) 

 

This probability depends on }�, + n�� and ��,��, + n�� which are known for all states o with o c ,. ��, n�, }�,�, ��,��,� are the parameters of the model with infinite number of sources. Still 

observing the steady state probabilities given in equation (14), we obtain the total (soft) blocking 

probability for a service-class | as the sum of all state probabilities ���,� multiplied with the 

blocking probabilities ��,��,�, for all reachable states as shown in equation (15): 

 �"���� = ∑ ��,��,�
kdl
�# �  ���,�                                                                                              (15)        
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Stage 5: Blocking or Accepting New Call based on Computed Probability 

 

The developed model is aimed at enhancing the acceptance of more user calls into the system to 

improve overall utilization of scare network resources. Thus, a call is blocked when the blocking 

probability value is greater than the predefined threshold of 0.01given in [15] or at worst 0.02, 

otherwise, it is accepted, assigned a channel with needed QoS requirement and the channel 

released on call completion. 
 

In [22], an intelligent CAC scheme was developed where fuzzy logic technique was adopted in 

the admission decision. Calls admissions were termed strongly accepted, weakly accepted, 

weakly rejected and strongly rejected depending on the output value of the multi-criteria 

parameters in the input to the call admission controller. Their results show the capability of fuzzy 

logic to improve system performance by accepting more user calls. 
 

Stage 6: Storage of Generated Results and Updated System Parameters 

 

At this stage, the result obtained from the computed soft blocking probability which is used to 

determine the acceptance or blocking of the new call is stored. Similarly, system parameters 

generated are also stored in the database so that the next state of a cell can be determined from 

parameters from the previous state. The objective is to improve battery live, reduce inter-cell 

interference, maintain desired service quality, and maximize utilization of network resource for 

improved system performance. 

 

4. MODEL IMPLEMENTATION 
 

Figure 4 shows the pseudo code for the developed algorithm. The model was validated through 

simulations in MATLAB and its equations were implemented in Java programming language. 

The results obtained are as shown in figures 5-7 for the three performance measures listed below. 

Table 1 indicates the simulation parameters. 
 

Performance Measure 1 (������ vs. �� at different 9� values): The impact of data rates on soft 

blocking for given offered load. 

Performance Measure 2 (������ vs. �� at different %� �&⁄  values): The impact of signal energy 

per bit to noise spectral density for given offered load. 

Performance Measure 3 (������ vs. �� at different .&/567 values): The impact of other-cell 

interference on soft blocking for given offered load. 
 

In figure 5, the developed system accepts input parameters and runs numbers of simulations for 

performance measure 1(i.e. model 1). The result obtained indicates that at different traffic data 

rates for given offered load to the system, the soft blocking probability values are higher for 

services that require higher data rates and vice versa. Nevertheless, the overall performance of the 

system is improved as the soft blocking probability values obtained are less than 0.02 showing 

significant reduction. 
 

In figure 6, the system evaluates the impact of each user’s signal energy per bit to noise spectral 

density %� �&⁄  on soft blocking since in reality, it value cannot be fixed for all service classes in a 

CDMA network. This parameter is sometimes used to ascertain the user’s QoS requirement. For 

different values of %� �&⁄  input for performance measure 2 (i.e. model 2), the soft blocking 

probability is reduced significantly indicating that more user calls are admitted into the system for 

resource sharing.  
 

In figure 7, the impact of other-cell interference .&/567 on soft blocking probability is simulated 

for given traffic load considering performance measure 3 (i.e. model 3). The results indicate that 

though the soft blocking probability values obtained are higher for higher values of .&/567 
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indicating the negative effect of inter-cell interference on CDMA networks, the values are 

significantly reduced thus allowing lower blocking rates. 
 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Pseudo code for the Developed Algorithm 

 

 

 
 

Figure 4: Pseudo code for the developed algorithm 

 
Table 1: Simulation parameters 

 

Parameter Value 

Chip rate, W 5MHz 

BS thermal noise, �& -174dBm 

Data rate, 9�  144Kbps,253Kbps,384Kbps 

Voice activity factor, u� 0.65, 1 

Signal bit energy over noise spectral density, %� �&⁄  3 - 7dB 

Multi user detection factor, : 0.78 

Transmitting antenna gain, K/L  11dBi 

BS antenna height, ∆N�  15m, omnidirectional 

MS transmitted power signal 21-30dBm 

Maximum cell load, f_0L 0.8 

Values of other-cell interference, .&/567 5 ��=��� - 6��=��� 

Offered load, �� 0.2 – 2.0 Erlang 

Loading factor, J� 0.05, 0.1, 0.15, 0.2, 0.25 

Maximum number of states, ,_0L 4 

Number of service class, | 3 
 

 

 

 

 

01 while (connection request is from a new user) { 

02 do 

03            initiate new call request; 

04 if (./&/01 ^ ._0L c ./5) 

05           accept new call request; 

06 elseif (f 4 J� ^ f_0L) 

07          accept new call request; 

08 else 

09         { compute ����|�; 
10 if �����|� ^  P���k�th�  
11            accept new call request;  

12 else 

13 Block new call request; } } 

14 Ignore connection request; // it’s a handoff request 

15 End 
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Figure 5: Soft blocking results for performance measure 1 

 

 
 

Figure 6a: Soft blocking results for performance measure 2 in MATLAB 
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Figure 6b: Soft blocking results for performance measure 2 in JAVA 
 

 
 

Figure 7a: Soft blocking results for performance measure 3 in MATLAB 
 

 

 
 

Figure 7b: Soft blocking results for performance measure 3 in JAVA 
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5. CONCLUSION 
 

We started from the verification that call blocking perceived negatively by users in mobile 

cellular networks actually exist at an alarming rate in a well established CDMA network - 

Visafone in the region under study. As a solution, we developed a model for soft blocking 

probability evaluation by extending the Kaufman-Roberts algorithm which allows an efficient 

approximation of the blocking probabilities. We validate our results by simulation and show that 

the approximation yields accurate results even for large other-cell interferences and low user 

activities. Moreover, the impact of the model’s parameters on soft blocking probability has been 

studied. This work showed that an efficient and fair resource management is possible for 

supporting traffic with strict QoS requirements. The results are particularly useful for operators 

who aim to predict the QoS of their networks for several combinations of the parameters (for 

dimensioning, prediction or optimization). 
 

The imperfect power control framework considered addresses three main issues while ensuring 

that MSs achieve their QoS targets. First, it reduces the overall interference from neighboring 

cells, which is important for frequency reuse in multi-cell CDMA network. Second, it reduces the 

battery usage of MSs according to their individual preferences. Third, it mitigates the near-far 

problem by ensuring that MSs closest to the BS do not overpower the system at the detriment of 

those farther away. 

 

REFERENCES 
 

[1] Ramesh Babu H.S., Gowrishankar & Satyanarayana P.S. (2009) “Call Admission Control 

Performance Model for Beyond 3G Wireless Networks”, (IJCSIS) International Journal of  

Computer Science and Information Security, Vol. 6, No. 3, pp224-229. 

[2] Karray, M. K. (2010) “Evaluation of the Blocking Probability and the Throughput in the Uplink  of 

Wireless Cellular Networks”, IEEE, In Proceedings of International Conference on  

Communications and Networking (CommNet), Tozeur, Tunisia. 

[3] Levine, D., Akyildiz, I. & Naghshineh, M. (1997) “A Resource Estimation and Call Admission 

Algorithm for Wireless Multimedia Networks using the Shadow Cluster Concept”, IEEE/ACM  

Trans. Net., Vol. 5, No. 1, pp1–12. 

[4] Epstein B. & Schwartz, M. (2000) “Predictive QoS-based Admission Control for Multiclass Traffic in 

Cellular Wireless Networks”, IEEE JSAC, Vol. 18, No. 3, pp523–534. 

[5] Choi, S. & Shin, K. G. (2002) “Adaptive Bandwidth Reservation and Admission Control in QoS-

Sensitive Cellular Networks”. IEEE Transactions on Parallel and Distributed Systems, Vol. 13. 

[6] Chang, J., Chung, J. & Sung, D. (2006) “Admission Control Schemes for Soft Handoff in DS-CDMA 

Cellular Systems Supporting Voice and Stream-type Data Services”, IEEE Trans.Vehic. Tech., Vol. 

51, No.6, pp1445–14459. 

[7] Yang, X. & Bigham, J.  (2007) “A Call Admission Control Scheme using NeuroEvolution Algorithm 

in Cellular Networks”, IJCAI, pp186-191. 

[8] Vassilakis, V. G. & Logothetis, M. D. (2008) “The Wireless Engset Multi-Rate Loss Model for the 

Handoff Traffic Analysis in WCDMA Networks”, IEEE. 

[9] Parkinson, R. (2005) Traffic Engineering Techniques in Telecommunications, Infotel Systems Inc. 

Retrieved 2012-10-17 from http://www.tarrani.net/mike/docs/TrafficEngineering.pdf 

[10] Zukerman, M. (2008) An Introduction to Queuing Theory and Stochastic Teletraffic Models 

Retrieved 2012-11-27 from http://www.ee.cityu.edu.hk/~zukerman/classnotes.pdf 



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 6, No. 4, August 2014 

99 

[11] Quo, J., Chan, S., Wong, E. W. M., Zukerman, M., Taylor, P. & Tang, K. S. (2003) “On Blocking 

Probability Evaluation for Video-on-Demand Systems”. 

[12] Kaufman, J. (1981) “Blocking in a Shared Resource Environment”, IEEE Trans.Commun., Vol. 29, 

No. 10, pp1474-1481. 

[13] Roberts, J. W. (1981) “A Service System with Heterogeneous User Environments”, in G. Pujolle 

(Ed.), Performance of Data Communications Systems and their Applications, North-Holland, 

Amsterdam, pp423-431. 

[14] Andrew, L. L. H., Payne, D. J. B. & Hanly, S. V. (1999) “Queuing Model for Soft-blocking CDMA 

Systems”, IEEE, pp436-440. 

[15] Verdone, R., Orriss, J., Zanella, A. & Barton, S. K. (2002) “Evaluation of the Blocking Probability in 

a Cellular Environment with Hard Capacity: A Statistical Approach”, In Proceedings of 13th IEEE 

International Symposium on person, Indoor and Mobile Radio Communications, Vol. 2: pp658-622. 

[16] Bonald, T. & Proutiere, A. (2005) “Conservative Estimates of Blocking and Outage Probabilities in 

CDMA Networks”. Performance Evaluation, Vol. 62, No. 14, pp50-67. 

[17] Razavilar, J. Farrokhi, F. R. & Liu, K. J. R., (2002) “Blocking Probability of Handoff Calls and 

Carried Traffic in Wireless Networks with Antenna Arrays”, In Proceedings of 1st Asihomer 

Conference on  Signals, Systems and Computers, Vol. 1, pp635-639. 

[18] Huang, J., Huang, C. Y. & Chou, C. M. (2004) “Soft-blocking Based Resource Dimensioning for 

CDMA Systems”, IEEE Veh. Tech. Conf. VTC2004, Vol.6, pp4306-4309. 

[19] Kallos, G. A., Vassilakis, V. G. & Logothetis, M. D. (2008) “Call blocking probabilities in a W-

CDMA Cell with Fixed Number of Channels and Finite Number of Traffic Sources”. 

[20] Hou, I. & Kumar, P. (2009) “Admission Control and Scheduling for QoS Guarantees for Variable Bit-

Rate Applications on Wireless Channels”, in Proc. of MobiHoc’09, pp175-184. 

[21] 3GPP TR 25.942 v10.0.0 (2011). Radio Frequency (RF) System Scenarios. 

[22] Asuquo, D. E., Williams, E. E., Nwachukwu, E. O. & Inyang, U. G. (2013) “An Intelligent Call 

Admission Control Scheme for Quality of Service Provisioning in a Multi-traffic CDMA Network”, 

International Journal of Scientific and Engineering Research, Vol. 4, No. 12, pp152-161.  

 

Authors 

 

Dr Edem Williams is an Associate Professor of Computer Science at University of 

Calabar, Nigeria. He is also a Visiting Professor at Computer Science Department, 

University of Port Harcourt, Nigeria. He holds a PhD in Computer Science from 

University of Lagos, Nigeria, MSc in Computer Science from Manchester University and 

BSc in Computer Science from Obafemi Awolowo University, Ile-Ife, Nigeria. He is a 

member of IEEE, NCS and CPN. His research interest includes Artificial Intelligence, 

Database Management, Data Communications and Networks. 

 

 

Daniel Asuquo received BSc in Computer Science from University of Calabar, Nigeria 

in 2002 and MSc in Computer Science from University of Ibadan, Nigeria in 2007. He is 

a lecturer in the department of Computer Science, University of Uyo, Nigeria. His 

research interest includes Wireless Communications and Mobile Networks, Web 

programming, Software Engineering, and Object-Oriented Programming. He is a member 

of Computer Professionals and Registration Council of Nigeria (CPN) and an associate 

member of Nigeria Computer Society (NCS). 

 

 
 

 


