
International journal on applications of graph theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.2, No.3, September 2010

DOI : 10.5121/jgraphoc.2010.2301 1

ON THE PROBABILITY OF K-CONNECTIVITY IN

WIRELESS AD HOC NETWORKS UNDER DIFFERENT

MOBILITY MODELS

Natarajan Meghanathan
1
 and Sireesha Gorla

2

1,2
Jackson State University, 1400 Lynch St, Jackson, MS, USA

1natarajan.meghanathan@jsums.edu, 2sireesha.gorla@gmail.com

ABSTRACT

We compare the probability of k-Connectivity of an ad hoc network under Random Way Point (RWP),

City Section and Manhattan mobility models. A Network is said to be k-Connected if there exists at least k

edge disjoint paths between any pair of nodes in that network at any given time and velocity. Initially, for

each of the three mobility models, the movement of the each node in the ad hoc network at a given

velocity and time are captured and stored in the Node Movement Database (NMDB). Using the

movements in the NMDB, the location of the node at a given time is computed and stored in the Node

Location Database (NLDB). A weighted graph is created using the location of the nodes from NLDB,

which is converted into a residual graph. The k-Connectivity of this residual graph is obtained by running

Ford-Fulkerson’s algorithm on it. Ford Fulkerson’s algorithm computes the maximum flow of a network

by recording the flows assigned to different routes from each node to all the other nodes in the network.

When run for a particular source-destination pair (s, d) pair on a residual network graph with unit edge

weights as capacity, the maximum flow determined by Ford-Fulkerson’ algorithm is the number of edge

disjoint s-d paths on the network graph. Simulations show that the RWP model yields the highest

probability of k-Connectivity compared to City Section and Manhattan mobility models for a majority of

different node densities and velocities considered. Simulation results also show that, for all the three

mobility models, as the k value increases, the probability of k-Connectivity decreases for a given density

and velocity and as the density increases the probability of k-Connectivity increases.

KEYWORDS

Wireless Ad hoc Networks, k-Connectivity, Mobility Models, Probability, Ford-Fulkerson Algorithm,

Simulations

1. INTRODUCTION

A mobile ad hoc network (MANET) is a collection of mobile wireless hosts which

communicate directly with each other in the absence of a fixed infrastructure [1], with some

constraints on the bandwidth of the wireless links. Communication between any two hosts,

which are outside the transmission range of each other is performed through the intermediate

hosts. The network in a MANET is decentralized where each wireless host has the routing

functionality incorporated within it. Variable wireless link quality, propagation path loss,

fading, multi-user interference, limited battery power, and rapid and unpredictable topological

changes are some of the issues that need to be dealt in a MANET.

Vehicular Ad-hoc Networks (VANET) is an emerging, new type of MANET, where vehicles on

the road form a MANET using wireless technology. Limited bandwidth, multi-hop

communication and self-organization are some of the common characteristics that VANET

shares with MANET. The main issue in a VANET is that the nodes move in a high speed with

respect to each other and this in turn results in very frequent topology changes [2]. Battery

power is not an issue with VANETs.

International journal on applications of graph theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.2, No.3, September 2010

2

Evaluating the characteristics of ad hoc networking protocols is usually done through the use of

simulation. Mobility model is an important component of a network simulation and usually

plays an important role in understanding real world MANETs. A mobility model describes the

movement patterns of mobile nodes within a network and the change of location, velocity and

acceleration over time [3]. Initially the nodes are distributed randomly within a network and the

mobility model controls the node movement within the network [4].

A number of mobility models were introduced for ad hoc networks and they vary widely in the

movement characteristics of the nodes. The Random Waypoint mobility model, commonly used

in MANET simulation studies, assumes that nodes can move randomly anywhere within a

network region. On the other hand, the City Section and Manhattan mobility models commonly

used in VANET simulation studies assume the network is composed of horizontal and vertical

streets and a node is allowed to move only along these streets [3].

A Network is said to be k-connected if there exists at least k edge disjoint paths between any

pair of nodes in that network at any given time and velocity. Equivalently, it is connected even

if k nodes are removed. k-Connectivity of a network is different for different mobility model.

Connectivity is one of the most important properties of a MANET. k-Connectivity of a network

is a helpful tool to balance the load and energy level at the nodes and to enable secure reliable

communication. In a k-connected wireless ad hoc and sensor networks, fault tolerance and

robustness increase with increasing k value.

The rest of the paper is organized as follows: In Section 2, we briefly review the three mobility

models considered. Section 3 describes the algorithms proposed to extract, store and use the

node mobility profiles for each of the three mobility models. Section 4 briefly reviews the Ford-

Fulkerson algorithm [5] and its use to determine the k-connectivity of an ad hoc network.

Section 5 describes the simulation environment and presents the analysis of k-connectivity of an

ad hoc network at different instants of the simulation as well as under diverse conditions of

network density and mobility. Section 6 concludes the paper.

2. REVIEW OF THE MOBILITY MODELS

In this section, we provide a brief overview of the Random Waypoint mobility model

commonly used in MANET simulation studies and the widely used City Section and Manhattan

mobility models for VANET simulation studies. All the three mobility models [3] assume the

network is confined within fixed boundary conditions. The Random Waypoint mobility model

assumes that the nodes can move anywhere within a network region. The City Section and the

Manhattan mobility models assume the network to be divided into grids: square blocks of

identical block length. The network is thus basically composed of a number of horizontal and

vertical streets. Each street has two lanes, one for each direction (north and south direction for

vertical streets, east and west direction for horizontal streets). A node is allowed to move only

along the grids of horizontal and vertical streets.

2.1 Random Waypoint Mobility Model

Initially, the nodes are assumed to be placed at random locations in the network. The movement

of each node is independent of the other nodes in the network. The mobility of a particular node

is described as follows: The node chooses a random target location to move. The velocity with

which the node moves to this chosen location is uniformly randomly selected from the interval

[vmin,…,vmax]. The node moves in a straight line (in a particular direction) to the chosen location

with the chosen velocity. After reaching the target location, the node may stop there for a certain

time called the pause time. The node then continues to choose another target location and moves

to that location with a new velocity chosen again from the interval [vmin,…,vmax]. The selection

International journal on applications of graph theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.2, No.3, September 2010

3

of each target location and a velocity to move to that location is independent of the current node

location and the velocity with which the node reached that location. In Figure 1, we observe that

nodes A and B move independent of each other, in random directions with randomly chosen

velocities.

 Figure 1: Movement under Figure 2: Movement under Figure 3: Movement under

 Random Waypoint Model City Section Model Manhattan Model

2.2 City Section Mobility Model

Initially, the nodes are assumed to be randomly placed in the street intersections. Each street

(i.e., one side of a square block) is assumed to have a particular speed limit. Based on this speed

limit and the block length, one can determine the time it would take move in the street. Each

node placed at a particular street intersection chooses a random target street intersection to

move. The node then moves to the chosen street intersection on a path that will incur the least

amount of travel time. If two or more paths incur the least amount of travel time, the tie is

broken arbitrarily. After reaching the targeted street intersection, the node may stay there for a

pause time and then again choose a random target street intersection to move. The node then

moves towards the new chosen street intersection on the path that will incur the least amount of

travel time. This procedure is repeated independently by each node. In Figure 2, the movement

of two nodes A and B according to the City Section mobility model has been illustrated.

2.3 Manhattan Mobility Model

Initially, the nodes are assumed to be randomly placed in the street intersections. The movement

of a node is decided one street at a time. To start with, each node has equal chance (i.e.,

probability) of choosing any of the streets leading from its initial location. In Figure 3, to start

with, node A has 25% chance to move in each of the four possible directions (east, west, north

or south), where as node B can move only either to the west, east or south with a 1/3 chance for

each direction. After a node begins to move in the chosen direction and reaches the next street

intersection, the subsequent street in which the node will move is chosen probabilistically. If a

node can continue to move in the same direction or can also change directions, then the node

has 50% chance of continuing in the same direction, 25% chance of turning to the east/north and

25% chance of turning to the west/south, depending on the direction of the previous movement.

If a node has only two options, then the node has an equal (50%) chance of exploring either of

the two options. For example, in Figure 3, once node A reaches the rightmost boundary of the

network, the node can either move to the north or to the south, each with a probability of 0.5

and the node chooses the north direction. After moving to the street intersection in the north,

node A can either continue to move northwards or turn left and move eastwards, each with a

probability of 0.5. If a node has only one option to move (this occurs when the node reaches any

of the four corners of the network), then the node has no other choice except to explore that

International journal on applications of graph theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.2, No.3, September 2010

4

option. For example, in Figure 3, we observe node B that was traveling westward, reaches the

street intersection, which is the corner of the network. The only option for node B is then to turn

to the left and proceed southwards.

3. ALGORITHMS TO GENERATE NODE MOBILITY PROFILE AND

DETERMINE NODE LOCATIONS AT A PARTICULAR TIME INSTANT

This section outlines the algorithms to generate the mobility profile for each node in the

network and also outlines the algorithms to determine the location of a node at any time instant

based on the mobility profiles generated.

3.1 Random Waypoint Model Node Movement Generator

Input: Velocity v, Simulation Time st, Node ID i

Auxiliary Variables:
 startTime; // the beginning time of a direction change (waypoint)

 endTime; // the ending time of a waypoint

 time t; // current time of node movement

 velocity v; // velocity of the node

Initialization:
 startTime � 0

 endTime � 0

 t � 0

Output: NMDBi; // Node mobility database for node i

Begin RWP-Node-Movement-Generator

Step 1: Generate a random point (x1, y1) within a 1000*1000 Square Unit area.

Step 2: Generate a random point (x2, y2)

Step 3: Compute distance =
2

21

2

21)()(yyxx −+−

Step 4: Compute Angle =
()

()21

21

yy

xx

−

−

Step 5: Compute transTime = distance / v

Step 6: endTime � endTime + transTime

Step 7: Store [startTime, endTime; (x1, y1) (x2, y2), v] in a Node Mobility Database (NMDB)

Step 8:

 x1 � x2,

 y1 � y2,

 startTime � endTime,

 t � t + transTime

Step 9: if (t ≤ st)

 go to Step2

 else

 return NMDBi

End RWP-Node-Movement-Generator

Figure 4: Algorithm to Generate Mobility Profile under the Random Waypoint Model

International journal on applications of graph theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.2, No.3, September 2010

5

3.2 City Section Node Movement Generator

City Section Mobility Model
Let there be a set of nodes ‘N’, where N = {N1, N2, N3……..Nn}, where n is the number of

nodes.

Input: Street Intersection Graph SIG (maxRows, maxCols, blockLength, ILDB)

 maxRows – Number of horizontal roads in the graph

 maxColumns – Number of vertical roads in the graph

 blockLength – The length of a block of road in the graph

 ILDB – Database storing the location of each intersection in the SIG,

 Speed Limit (Velocity) v m/s, Simulation Time st

Auxiliary Variables:

 startTime; // the beginning time of a direction change (waypoint)

 endTime; // the ending time of a waypoint

 time t; // current time of node movement

Initialization:

 startTime � 0

 endTime � 0

 t � 0

Output: NMDBi; // Node Mobility database for node i

Begin City Section-Node-Movement-Generator

Step1: Generate a Random Intersection Point (x1, y1) with in the given graph

Step2: Generate a Random Intersection Point (x2, y2)

Step3: Find the path P with the minimum number of street intersections between (x1, y1)

 and (x2, y2) using the Dijkstra’s shortest path algorithm.

Step4: Compute distanceTraveled = (blockLength) * (Psize)

 where Psize – the number of intermediate street intersections in P

Step5: Compute transTime =
v

aveleddistanceTr

Step6: endTime � endTime + transTime

Step7: Store [endTime; (x1, y1) (x2, y2), v] in a Node Mobility Database (NMDB)

Step8:

 x1 � x2,

 y1 � y2,

 startTime � endTime,

 t � t + transTime

Step9: if (t ≤ st) go to Step2

 else

 return NMDBi

End City Section-Node-Movement-Generator

Figure 5: Algorithm to Generate Mobility Profile under the City Section Mobility Model

3.3 Manhattan Node Movement Generator

International journal on applications of graph theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.2, No.3, September 2010

6

Let there be a set of nodes ‘N’, where N = {N1, N2, N3……..Nn}, where n is the number of

nodes.

Input: Street Intersection Graph SIG (maxRows, maxCols, blockLength, ILDB)

 maxRows – Number of horizontal roads in the graph

 maxColumns – Number of Vertical roads in the graph

 blockLength – The length of a block of road in the graph

 ILDB – Database storing the location of each intersection in the SIG,

 (xI, yI) -next intersection to which a node moves

 Speed Limit (Velocity) v m/s, Simulation Time st

Auxiliary Variables:

 startTime; // the beginning time of a direction change (waypoint)

 endTime; // the ending time of a waypoint

 time t; // current time of node movement

Initialization:

 startTime � 0; endTime � 0; t � 0

Output: NMDBi; // Node Mobility database for node i

Begin Manhattan-Node-Mobility-Generator

Step1: Generate a Random Intersection Point (x1, y1) within the given graph SIG

Step2: Let (xS, yS) � (x1, y1)

Step3: Let SI be the set of all neighboring intersections of (xS, yS) and nI be number of

 elements in SI..

Step4: if (|SI | = 1) // SI = [(xA, yA)]

 (xI, yI) � (xA, yA)

 Step5: if (nI = 2) // SI = [(xA, yA), (xB, yB)]

 Generate a random number rI from 0 to 1

 if (rI < 0.5)

 (xI, yI) � (xA, yA)

 else
 nextI � (xB, yB)

Step6: if (nI = 3) // SI = [(xA, yA), (xB, yB), (xC, yC)]

 Choose the intersection (xA, yA) ∈ SI which is in the same axis as that of (xS, yS)

 Let (xB, yB) and (xC, yC) be the two intersections in SI that are not in the same axis as that

of (xS, yS) generate a random number rn from 0 to 1

 if (rn < 0.5)

 nextI � (xA, yA)

 else
 if (0.5<rn < 0.75)

 nextI � (xB, yB)

 else nextI � (xC, yC)

Step7: Compute distanceTraveled = blockLength

Step8: Compute transTime =
v

aveleddistanceTr

Step9: Assign endTime+ = transTime

 Store [endTime; (xS, yS), (xI, yI), v] in Node Mobility Database (NMDB)

Step10: Assign xS � xI, yS � yI, startTime � endTime, t+ � transTime

Step11: If (t <= st) go to Step3 Otherwise go to Step1

End Manhattan-Node-Mobility-Generator

International journal on applications of graph theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.2, No.3, September 2010

7

Figure 6: Algorithm to Generate Mobility Profile under the Manhattan Model

The Node Movement Generator algorithm for each of the three mobility models outputs a Node

Mobility Database (NMDB) for each node in the network. The NMDB of a node has the

movement information of the node. The information includes the time at which the node started

moving, starting location, ending location and the velocity of the node. The node location

algorithm of a mobility model takes the corresponding NMDBs of all the nodes in the network

and generates a Node Location Database (NLDB) which gives the location of each node at a

given time.

3.4 RWP Node Location Generator

Let there be set of nodes ‘N’ where N = {N1, N2, N3……..Nn} and T = {t1, t2, t3, t4,……..tst} and

N, T∈NMDBi

Input: time t, Simulation Time st, NMDB of Ni;

Output: NLDBi; // Node location database for node i

Begin RWP-Node-Location-Generator

Step1: if (t ∈ T) go to Step5

 else go to Step2

Step2: Iterate through NMDB of Ni and find a value of ‘tj’ and ‘tj+1’ such that

 tj < t < tj+1

Step3: Compute fraction f =
jj

j

tt

tt

−

−

+1

Step4: Let (xt, yt) be the location at time t then

 Compute xt = f * xj+1 + (1-fr) * xj

 Compute yt = f * yj+1 + (1-fr) * yj

Step5: Store [Ni; (xt, yt) ,t] in Node Position Database (NLDB)

End RWP-Node-Location-Generator

Figure 7: Algorithm to Generate Node Location under the Random Waypoint Model

3.5 City Section Node Location Generator

Let there be a set of nodes ‘N’ where N = {N1, N2, N3……..Nn} and T = {t1, t2, t3, t4,……..tst}

and N, T∈NMDBi

Input: time t, Simulation Time st, Node Mobility Database (NMDB) of Ni; Velocity v;

Auxiliary Variables:

 blockLength b;//length of any street between two intersections

 TimePerBlock TB; //time taken to travel a single bockLength of street

Initialization:

International journal on applications of graph theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.2, No.3, September 2010

8

 TB =
v

b

Output: NLDBi; // Node location database for node i

Begin City-Section-Node-Location-Generator

Step1: if (t ∈ T)

 go to Step7

 else
 go to Step2

Step2: Iterate through NMDB and find a value of ‘tj’ and ‘tj+1’ such that

 tj < t < tj+1

Step3: Find the shortest path P on the street intersection graph.

 Let P be represented as (xj, yj), (xk1, yk1), (xk2, yk2), ……….(xkh, ykh), (xj+1, yj+1),

 where k1, k2, k3, …………kh are the street intersections forming the shortest path,

 and tk1, tk2, tk3,………tkh the times respectively.

 and h is the number for street intersections between (xj, yj) and (xj+1, yj+1)

 Let the l be the count, and tl be the time and count

 Initialize l = 1 and tl = tj.

 Step4: Let Xstart = xkl, Ystart = ykl and Xend = xkl+1, Yend = ykl+1

 Step5: if (tl ≥ t >= tl + TB)

 l = l + 1

 Repeat Step4

 else

 Compute fraction f =
tt

tt

kl

kl

−

−

+1

Step6: Let (xt, yt) be the location at time t then

 Compute xt = f * xkl+1 + (1-f) * xkl

 Compute yt = f * ykl+1 + (1-f) * ykl

Step7: Store [Ni; (xt, yt), t] in Node Position Database (NPDB)

End City-Section-Node-Location-Generator

Figure 8: Algorithm to Generate Node Location under the City Section Mobility Model

3.6 Manhattan Node Location Generator

Let there be a set of nodes ‘N’ where N = {N1, N2, N3……..Nn} and T = {t1, t2, t3, t4,……..tst}

and N, T∈NMDBi

Input: time t, Simulation Time st, NMDB of Ni;

Output: NLDBi; // Node location database for node i

Begin Manhattan-Node-Location-Generator

Step1: if (t ∈ T)

 go to Step5

 else

International journal on applications of graph theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.2, No.3, September 2010

9

 go to Step2

Step2: Iterate through NMDB of Ni and find a value of ‘tj’ and ‘tj+1’ such that

 tj < t < tj+1

Step3: Compute fraction f =
jj

j

tt

tt

−

−

+1

Step4: Let (xt, yt) be the location at time t then

 Compute xt = f * xj+1 + (1-fr) * xj

 Compute yt = f * yj+1 + (1-fr) * yj

Step5: Store [Ni; (xt, yt) ,t] in Node Position Database (NLDB)

End Manhattan-Node-Location-Generator

Figure 9: Algorithm to Generate Node Location under the Manhattan Mobility Model

4. DETERMINING THE K-CONNECTIVITY OF A RESIDUAL GRAPH USING

FORD-FULKERSON ALGORITHM

From the NLDBs obtained using the Node Location Generators for a mobility model, a graph is

created depending on the distances between the nodes and the transmission range of each node.

A residual graph [5] is a directed graph where each edge has a positive residual capacity and is

labeled by its residual capacity. For a given graph G = (V, E) with source s and destination t, let

f be the flow in G and u, v ∈ V be a pair of vertices then, the additional amount of net flow that

can be pushed from u to v before exceeding the capacity c(u, v) is the residual capacity of (u, v),

which is given by: cf (u, v) = c(u, v) – f(u ,v).

Input: Given a NLDB at a particular time t,

 Transmission rage R

Output: G = (V, E)

 V – the set of all vertices corresponding to the nodes N1, N2, …, Nn where n is

 the number of nodes in the network

 E – the set of all edges such that the distance between the two constituent nodes

 of an edge is less than or equal to the transmission range R.

 Begin Graph Generator

 for ∀ i ∈V

 for ∀ j ∈ V-{i}

 Step 1: Compute the distance dij =
22)()(yjyixjxi −+−

 Step 2: if (dij <= R)

 (i, j)∈E

 weight (i, j) � 1

 end if

 end for

 end for

 End Graph Generator

International journal on applications of graph theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.2, No.3, September 2010

10

Figure 10: Algorithm to Create a Weighted Graph for a Given NLDB

Input: Residual Graph GR, initially GR = G (V, E)

Auxiliary Variables:
 flow f;

 capacity c;

 flow capacity cf;

 count connectivity kC;//count which keeps track of the connectivity

Initialization: kC � 0

Output: k-Connectivity Database (KCDB) that has the set of all source-destination (s-d) paths

that has k-edge disjoint paths; In this research, 0 ≤ k ≤ 40

Each entry in KCDB is a tuple [k, SDk] where k is the number of edge-disjoint paths and SDk is

the set of all s-d pairs that have k-edge disjoint paths

Begin Ford-Fulkerson-Algorithm for k-Connectivity

 for∀ s-d pair where s ∈V and d ∈V

 kC � 0 // the number of edge-disjoint paths between s and d

 Step1: for each edge (u, v) ∈E

 do f [u, v] � 0

 f [v, u] � 0

 c[u, v] � weight(u, v) � 1

 if (v, u) ∉E

 c[v, u] � 0

 Step2: if there exits an s-d path P (i.e., a path from node s to node d) in GR

 do cf (P) � min{cf (u, v): (u, v) is in P}

 for each edge (u, v) in P

 do f[u, v] � f[u, v] + cf (P)

 f[v, u] � – f[u, v]

 c (u, v) = c (u, v) – f (u, v)

 c (v, u) = c (v, u) – f (v, u)

 kC � kC+ 1

 go to Step2

 Step3: Add (s, d) to SDkC

 end for

End Ford-Fulkerson-Algorithm for k-Connectivity

Figure 11: Finding the k-Connectivity of a Residual Graph using Ford-Fulkerson Algorithm

5. SIMULATIONS

Simulations have been conducted in a discrete-event simulator implemented by the authors in

Java. The network dimensions are 1000m x 1000m. The network density is varied with 25

nodes (low density), 50 nodes (medium density) and 75 nodes (high density). The simulation

time is 1000 seconds. The velocity is uniformly distributed in the range [0…. Vmax]. The Vmax

values used are 5m/s (representing low node mobility), 15m/s (representing medium node

mobility) and 30m/s (representing high node mobility). Pause time is 0 seconds. The

transmission range of each node is 250m. The mobility models used are Random Waypoint,

International journal on applications of graph theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.2, No.3, September 2010

11

City Section and Manhattan models. Using For-Fulkerson’s algorithm, the k-Connectivity of the

network is calculated at k = 1, 2, …, 10 and the time instants at which k-Connectivity is

captured are 100, 600 and 900
th
 seconds, as illustrated in Figures 12 through 20.

In low density networks, for all conditions node mobility (5m/s, refer Figure 12; 15m/s, refer

Figure 13; and 30m/s, refer Figure 14), the Random Waypoint mobility model has the highest

probability of k-Connectivity at lower values of k (k = 1, 2, 3) while Manhattan has the highest

probability of k-Connectivity at medium (k = 4, 5, 6, 7) and higher (k = 4, 5, 6, 7) values. For

medium density networks, for all conditions node mobility (5m/s, refer Figure 15; 15m/s, refer

Figure 16; and 30m/s, refer Figure 17), the Random Waypoint mobility model has the highest

probability of k-Connectivity at lower (k = 1, 2, 3), medium (k = 4, 5, 6, 7) and higher (k = 8, 9,

10) values of k. For high density networks, in conditions of low node mobility (5m/s, refer

Figure 18), Random Waypoint mobility model has the highest probability of k-Connectivity at

lower (k = 1, 2, 3), medium (k = 4, 5, 6, 7) and higher (k = 8, 9, 10) values of k at low velocity

and high density. In conditions of moderate node mobility (15m/s, refer Figure 19), the

Manhattan mobility model has the highest probability of k-Connectivity at lower values of k (k

= 1, 2, 3) while the Random Waypoint model has the highest probability of k-Connectivity at

medium (k = 4, 5, 6, 7) and higher (k = 8, 9, 10) values of k at medium mobility and high

density. In conditions of high node mobility (30m/s, refer Figure 20), the Manhattan mobility

model has the highest probability of k-Connectivity at lower values of k (k = 1, 2, 3) while the

Random Waypoint model has the highest probability of k-Connectivity at medium (k = 4, 5, 6,

7) and higher (k = 8, 9, 10) values of k at high mobility and high density.

 Figure 12.1: @ 100th second Figure 12.2: @ 600th second Figure 12.3: @ 900th second

Figure 12: Probability of k-Connectivity (Low Density, Low Mobility)

 Figure 13.1: @ 100th second Figure 13.2: @ 600th second Figure 13.3: @ 900th second

Figure 13: Probability of k-Connectivity (Low Density, Moderate Mobility)

 Figure 14.1: @ 100

th
 second Figure 14.2: @ 600

th
 second Figure 14.3: @ 900

th
 second

Figure 14: Probability of k-Connectivity (Low Density, High Mobility)

International journal on applications of graph theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.2, No.3, September 2010

12

 Figure 15.1: @ 100th second Figure 15.2: @ 600th second Figure 15.3: @ 900th second

Figure 15: Probability of k-Connectivity (Moderate Density, Low Mobility)

 Figure 16.1: @ 100th second Figure 16.2: @ 600th second Figure 16.3: @ 900th second

Figure 16: Probability of k-Connectivity (Moderate Density, Moderate Mobility)

 Figure 17.1: @ 100th second Figure 17.2: @ 600th second Figure 17.3: @ 900th second

Figure 17: Probability of k-Connectivity (Moderate Density, High Mobility)

 Figure 18.1: @ 100

th
 second Figure 18.2: @ 600

th
 second Figure 18.3: @ 900

th
 second

Figure 18: Probability of k-Connectivity (Moderate Density, Low Mobility)

 Figure 19.1: @ 100

th
 second Figure 19.2: @ 600

th
 second Figure 19.3: @ 900

th
 second

Figure 19: Probability of k-Connectivity (Moderate Density, Moderate Mobility)

International journal on applications of graph theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.2, No.3, September 2010

13

 Figure 20.1: @ 100

th
 second Figure 20.2: @ 600

th
 second Figure 20.3: @ 900

th
 second

Figure 20: Probability of k-Connectivity (Moderate Density, High Mobility)

6. CONCLUSIONS

The Random Waypoint mobility model has the highest probability of k-Connectivity when

compared to City Section and Manhattan models. At low values of k (k = 1, 2, and 3), City

Section model has better probability of k-Connectivity than the Manhattan model for almost

scenarios. At medium (k = 4, 5, 6, and 7) and high (k = 8, 9, and 10) values of k, the Manhattan

model has the highest probability of k-Connectivity at lower densities, while the City Section

model has the highest probability of k-Connectivity at moderate and higher densities. For each

mobility model, with increase in density, the variation in the probability of k-Connectivity

decreases and the absolute mean value of the k-Connectivity increases. For a given density,

velocity and k, the Random Waypoint mobility model has less variation in k-Connectivity

compared to the City Section and Manhattan mobility models.

REFERENCES

[1] N. Chatterjee, A. Potluri and A. Negi, “A Self-Organizing Approach to MANET Clustering,” Vol.

4882, Lecture Notes in Computer Science, pp. 73-78, November 2007.

[2] M. Rudack, M. Meincke, K. Jobmann and M. Lott, “On Traffic Dynamical Aspects Inter-vehicle

Communication (IVC),” Proceedings of the 57
th

 IEEE Semiannual Vehicular Technology Conference

(VTC03 Spring), April 2003.

[3] T. Camp, J. Boleng and V. Davies, “A Survey of Mobility Models for Ad Hoc Network Research,”

Wireless Communication and Mobile Computing, Vol. 2, No. 5, pp. 483-502, September 2002.

[4] A. Jardosh, E. M. Belding-Royer, K. C. Almeroth, S. Suri, “Towards Realistic Mobility Models For

Mobile Ad hoc Networks,” Proceedings of the 9
th

 Annual International Conference on Mobile

Computing and Networking, 2003, San Diego, CA, USA.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, “Single-Source Shortest Paths,”

Introduction to Algorithms, 2
nd

 Edition, MIT Press, 2001.

