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ABSTRACT 

We compare the probability of k-Connectivity of an ad hoc network under Random Way Point (RWP), 

City Section and Manhattan mobility models. A Network is said to be k-Connected if there exists at least k 

edge disjoint paths between any pair of nodes in that network at any given time and velocity. Initially, for 

each of the three mobility models, the movement of the each node in the ad hoc network at a given 

velocity and time are captured and stored in the Node Movement Database (NMDB). Using the 

movements in the NMDB, the location of the node at a given time is computed and stored in the Node 

Location Database (NLDB). A weighted graph is created using the location of the nodes from NLDB, 

which is converted into a residual graph. The k-Connectivity of this residual graph is obtained by running 

Ford-Fulkerson’s algorithm on it. Ford Fulkerson’s algorithm computes the maximum flow of a network 

by recording the flows assigned to different routes from each node to all the other nodes in the network. 

When run for a particular source-destination pair (s, d) pair on a residual network graph with unit edge 

weights as capacity, the maximum flow determined by Ford-Fulkerson’ algorithm is the number of edge 

disjoint s-d paths on the network graph. Simulations show that the RWP model yields the highest 

probability of k-Connectivity compared to City Section and Manhattan mobility models for a majority of 

different node densities and velocities considered. Simulation results also show that, for all the three 

mobility models, as the k value increases, the probability of k-Connectivity decreases for a given density 

and velocity and as the density increases the probability of k-Connectivity increases. 

KEYWORDS 

Wireless Ad hoc Networks, k-Connectivity, Mobility Models, Probability, Ford-Fulkerson Algorithm, 

Simulations 

1. INTRODUCTION 

A mobile ad hoc network (MANET) is a collection of mobile wireless hosts which 

communicate directly with each other in the absence of a fixed infrastructure [1], with some 

constraints on the bandwidth of the wireless links. Communication between any two hosts, 

which are outside the transmission range of each other is performed through the intermediate 

hosts. The network in a MANET is decentralized where each wireless host has the routing 

functionality incorporated within it. Variable wireless link quality, propagation path loss, 

fading, multi-user interference, limited battery power, and rapid and unpredictable topological 

changes are some of the issues that need to be dealt in a MANET. 

Vehicular Ad-hoc Networks (VANET) is an emerging, new type of MANET, where vehicles on 

the road form a MANET using wireless technology. Limited bandwidth, multi-hop 

communication and self-organization are some of the common characteristics that VANET 

shares with MANET. The main issue in a VANET is that the nodes move in a high speed with 

respect to each other and this in turn results in very frequent topology changes [2]. Battery 

power is not an issue with VANETs.  
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Evaluating the characteristics of ad hoc networking protocols is usually done through the use of 

simulation. Mobility model is an important component of a network simulation and usually 

plays an important role in understanding real world MANETs. A mobility model describes the 

movement patterns of mobile nodes within a network and the change of location, velocity and 

acceleration over time [3]. Initially the nodes are distributed randomly within a network and the 

mobility model controls the node movement within the network [4].  

A number of mobility models were introduced for ad hoc networks and they vary widely in the 

movement characteristics of the nodes. The Random Waypoint mobility model, commonly used 

in MANET simulation studies, assumes that nodes can move randomly anywhere within a 

network region. On the other hand, the City Section and Manhattan mobility models commonly 

used in VANET simulation studies assume the network is composed of horizontal and vertical 

streets and a node is allowed to move only along these streets [3].  

A Network is said to be k-connected if there exists at least k edge disjoint paths between any 

pair of nodes in that network at any given time and velocity. Equivalently, it is connected even 

if k nodes are removed. k-Connectivity of a network is different for different mobility model. 

Connectivity is one of the most important properties of a MANET. k-Connectivity of a network 

is a helpful tool to balance the load and energy level at the nodes and to enable secure reliable 

communication. In a k-connected wireless ad hoc and sensor networks, fault tolerance and 

robustness increase with increasing k value.  

The rest of the paper is organized as follows: In Section 2, we briefly review the three mobility 

models considered. Section 3 describes the algorithms proposed to extract, store and use the 

node mobility profiles for each of the three mobility models. Section 4 briefly reviews the Ford-

Fulkerson algorithm [5] and its use to determine the k-connectivity of an ad hoc network. 

Section 5 describes the simulation environment and presents the analysis of k-connectivity of an 

ad hoc network at different instants of the simulation as well as under diverse conditions of 

network density and mobility. Section 6 concludes the paper. 

2. REVIEW OF THE MOBILITY MODELS 

In this section, we provide a brief overview of the Random Waypoint mobility model 

commonly used in MANET simulation studies and the widely used City Section and Manhattan 

mobility models for VANET simulation studies. All the three mobility models [3] assume the 

network is confined within fixed boundary conditions. The Random Waypoint mobility model 

assumes that the nodes can move anywhere within a network region. The City Section and the 

Manhattan mobility models assume the network to be divided into grids: square blocks of 

identical block length. The network is thus basically composed of a number of horizontal and 

vertical streets. Each street has two lanes, one for each direction (north and south direction for 

vertical streets, east and west direction for horizontal streets). A node is allowed to move only 

along the grids of horizontal and vertical streets.  

2.1 Random Waypoint Mobility Model 

Initially, the nodes are assumed to be placed at random locations in the network. The movement 

of each node is independent of the other nodes in the network. The mobility of a particular node 

is described as follows: The node chooses a random target location to move. The velocity with 

which the node moves to this chosen location is uniformly randomly selected from the interval 

[vmin,…,vmax]. The node moves in a straight line (in a particular direction) to the chosen location 

with the chosen velocity. After reaching the target location, the node may stop there for a certain 

time called the pause time. The node then continues to choose another target location and moves 

to that location with a new velocity chosen again from the interval [vmin,…,vmax]. The selection 
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of each target location and a velocity to move to that location is independent of the current node 

location and the velocity with which the node reached that location. In Figure 1, we observe that 

nodes A and B move independent of each other, in random directions with randomly chosen 

velocities.  

          
 

 Figure 1: Movement under         Figure 2: Movement under        Figure 3: Movement under   

  Random Waypoint Model                 City Section Model                      Manhattan Model 

 

2.2 City Section Mobility Model 

Initially, the nodes are assumed to be randomly placed in the street intersections. Each street 

(i.e., one side of a square block) is assumed to have a particular speed limit. Based on this speed 

limit and the block length, one can determine the time it would take move in the street. Each 

node placed at a particular street intersection chooses a random target street intersection to 

move. The node then moves to the chosen street intersection on a path that will incur the least 

amount of travel time. If two or more paths incur the least amount of travel time, the tie is 

broken arbitrarily. After reaching the targeted street intersection, the node may stay there for a 

pause time and then again choose a random target street intersection to move. The node then 

moves towards the new chosen street intersection on the path that will incur the least amount of 

travel time. This procedure is repeated independently by each node. In Figure 2, the movement 

of two nodes A and B according to the City Section mobility model has been illustrated.  

2.3 Manhattan Mobility Model 

Initially, the nodes are assumed to be randomly placed in the street intersections. The movement 

of a node is decided one street at a time. To start with, each node has equal chance (i.e., 

probability) of choosing any of the streets leading from its initial location. In Figure 3, to start 

with, node A has 25% chance to move in each of the four possible directions (east, west, north 

or south), where as node B can move only either to the west, east or south with a 1/3 chance for 

each direction. After a node begins to move in the chosen direction and reaches the next street 

intersection, the subsequent street in which the node will move is chosen probabilistically. If a 

node can continue to move in the same direction or can also change directions, then the node 

has 50% chance of continuing in the same direction, 25% chance of turning to the east/north and 

25% chance of turning to the west/south, depending on the direction of the previous movement. 

If a node has only two options, then the node has an equal (50%) chance of exploring either of 

the two options. For example, in Figure 3, once node A reaches the rightmost boundary of the 

network, the node can either move to the north or to the south, each with a probability of 0.5 

and the node chooses the north direction. After moving to the street intersection in the north, 

node A can either continue to move northwards or turn left and move eastwards, each with a 

probability of 0.5. If a node has only one option to move (this occurs when the node reaches any 

of the four corners of the network), then the node has no other choice except to explore that 
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option. For example, in Figure 3, we observe node B that was traveling westward, reaches the 

street intersection, which is the corner of the network. The only option for node B is then to turn 

to the left and proceed southwards. 

3. ALGORITHMS TO GENERATE NODE MOBILITY PROFILE AND 

DETERMINE NODE LOCATIONS AT A PARTICULAR TIME INSTANT 

This section outlines the algorithms to generate the mobility profile for each node in the 

network and also outlines the algorithms to determine the location of a node at any time instant 

based on the mobility profiles generated.  

3.1 Random Waypoint Model Node Movement Generator  
 

 

Input: Velocity v, Simulation Time st, Node ID i 

Auxiliary Variables: 
         startTime; // the beginning time of a direction change (waypoint) 

         endTime; // the ending time of a waypoint 

         time t; // current time of node movement 

        velocity v; // velocity of the node 

Initialization: 
         startTime � 0 

         endTime � 0 

          t � 0 

Output: NMDBi; // Node mobility database for node i 

        

 

Begin RWP-Node-Movement-Generator 

         

Step 1: Generate a random point (x1, y1) within a 1000*1000 Square Unit area. 

Step 2: Generate a random point (x2, y2) 

Step 3: Compute distance = 
2

21

2

21 )()( yyxx −+−   

Step 4: Compute Angle = 
( )

( )21

21

yy

xx

−

−
 

Step 5: Compute transTime = distance / v 

Step 6:  endTime � endTime + transTime 

Step 7: Store [startTime, endTime; (x1, y1) (x2, y2), v] in a Node Mobility Database (NMDB) 

Step 8:  

             x1 � x2,  

             y1 � y2,  

             startTime � endTime,  

             t � t + transTime 

Step 9: if (t ≤ st)  

                go to Step2 

            else 

                 return NMDBi  

 

End RWP-Node-Movement-Generator 

 

Figure 4: Algorithm to Generate Mobility Profile under the Random Waypoint Model 
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3.2 City Section Node Movement Generator 

 

 

City Section Mobility Model 
Let there be a set of nodes ‘N’, where N = {N1, N2, N3……..Nn}, where n is the number of 

nodes. 

Input: Street Intersection Graph SIG (maxRows, maxCols, blockLength, ILDB) 

                           maxRows – Number of horizontal roads in the graph 

                           maxColumns – Number of vertical roads in the graph 

                           blockLength – The length of a block of road in the graph 

                           ILDB – Database storing the location of each intersection in the SIG, 

             Speed Limit (Velocity) v m/s, Simulation Time st 

Auxiliary Variables: 

         startTime; // the beginning time of a direction change (waypoint) 

         endTime; // the ending time of a waypoint 

         time t; // current time of node movement 

Initialization: 

         startTime � 0 

         endTime � 0 

         t � 0 

Output: NMDBi; // Node Mobility database for node i 

 

Begin City Section-Node-Movement-Generator 

 

Step1: Generate a Random Intersection Point (x1, y1) with in the given graph 

Step2: Generate a Random Intersection Point (x2, y2) 

Step3: Find the path P with the minimum number of street intersections between (x1, y1) 

           and (x2, y2) using the Dijkstra’s shortest path algorithm. 

Step4: Compute distanceTraveled = (blockLength) * (Psize) 

            where Psize – the number of intermediate street intersections in P 

Step5: Compute transTime = 
v

aveleddistanceTr
 

Step6: endTime � endTime + transTime  

Step7: Store [endTime; (x1, y1) (x2, y2), v] in a Node Mobility Database (NMDB) 

Step8:  

            x1 � x2,  

            y1 � y2,  

            startTime � endTime,  

            t � t + transTime 

Step9: if (t ≤ st) go to Step2 

          else 

                 return NMDBi  

End City Section-Node-Movement-Generator 

 

 
Figure 5: Algorithm to Generate Mobility Profile under the City Section Mobility Model 

 

3.3 Manhattan Node Movement Generator 
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Let there be a set of nodes ‘N’, where N = {N1, N2, N3……..Nn}, where n is the number of 

nodes. 

Input: Street Intersection Graph SIG (maxRows, maxCols, blockLength, ILDB) 

                           maxRows – Number of horizontal roads in the graph 

                           maxColumns – Number of Vertical roads in the graph 

                           blockLength – The length of a block of road in the graph 

                           ILDB – Database storing the location of each intersection in the SIG, 

                            (xI, yI) -next intersection to which a node moves 

                            Speed Limit (Velocity) v m/s, Simulation Time st 

Auxiliary Variables: 

         startTime; // the beginning time of a direction change (waypoint) 

         endTime; // the ending time of a waypoint 

         time t; // current time of node movement 

Initialization: 

         startTime � 0;          endTime � 0;          t � 0 

Output: NMDBi; // Node Mobility database for node i 

 

Begin Manhattan-Node-Mobility-Generator    

 

Step1: Generate a Random Intersection Point (x1, y1) within the given graph SIG 

Step2: Let (xS, yS) � (x1, y1) 

Step3: Let SI be the set of all neighboring intersections of (xS, yS) and nI be number of   

            elements in SI.. 

Step4: if (|SI | = 1) // SI = [(xA, yA)] 

                    (xI, yI) � (xA, yA)                      

 Step5: if (nI = 2) // SI = [(xA, yA), (xB, yB)] 

                Generate a random number rI from 0 to 1 

                if (rI < 0.5) 

                    (xI, yI) � (xA, yA) 

                else 
                    nextI  � (xB, yB) 

Step6: if (nI = 3) // SI = [(xA, yA), (xB, yB), (xC, yC)] 

            Choose the intersection (xA, yA) ∈  SI which is in the same axis as that of (xS, yS) 

            Let (xB, yB) and (xC, yC) be the two intersections in SI that are not in the same axis as that 

of (xS, yS) generate a random number rn from 0 to 1 

                   if (rn < 0.5) 

                    nextI � (xA, yA) 

                    else 
                        if (0.5<rn < 0.75) 

                             nextI � (xB, yB) 

                             else  nextI � (xC, yC)      

Step7: Compute distanceTraveled = blockLength 

Step8: Compute transTime = 
v

aveleddistanceTr
 

Step9: Assign endTime+ = transTime 

             Store [endTime;  (xS, yS), (xI, yI), v] in Node Mobility Database (NMDB) 

Step10: Assign xS � xI, yS � yI, startTime � endTime, t+ � transTime 

Step11: If (t <= st) go to Step3 Otherwise go to Step1 

 

End Manhattan-Node-Mobility-Generator 
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Figure 6: Algorithm to Generate Mobility Profile under the Manhattan Model 

 

The Node Movement Generator algorithm for each of the three mobility models outputs a Node 

Mobility Database (NMDB) for each node in the network. The NMDB of a node has the 

movement information of the node. The information includes the time at which the node started 

moving, starting location, ending location and the velocity of the node. The node location 

algorithm of a mobility model takes the corresponding NMDBs of all the nodes in the network 

and generates a Node Location Database (NLDB) which gives the location of each node at a 

given time. 

 

3.4 RWP Node Location Generator 

 

Let there be set of nodes ‘N’ where N = {N1, N2, N3……..Nn} and T = {t1, t2, t3, t4,……..tst} and 

N, T∈NMDBi 

 
Input: time t, Simulation Time st, NMDB of Ni;  

Output: NLDBi; // Node location database for node i     

 
Begin RWP-Node-Location-Generator    

 

Step1:  if (t ∈ T) go to Step5 

            else go to Step2 

Step2: Iterate through NMDB of Ni and find a value of ‘tj’ and ‘tj+1’ such that  

             tj < t < tj+1 

Step3: Compute fraction f = 
jj

j

tt

tt

−

−

+1

  

Step4: Let (xt, yt) be the location at time t then  

      

                   Compute xt = f * xj+1 + (1-fr) * xj 

                   Compute yt = f * yj+1 + (1-fr) * yj 

Step5: Store [ Ni; (xt, yt) ,t] in Node Position Database (NLDB)   

 

End RWP-Node-Location-Generator    

 

 
Figure 7: Algorithm to Generate Node Location under the Random Waypoint Model 

 

3.5 City Section Node Location Generator 

 

 

Let there be a set of nodes ‘N’ where N = {N1, N2, N3……..Nn} and T = {t1, t2, t3, t4,……..tst} 

and N, T∈NMDBi 

 

Input: time t, Simulation Time st, Node Mobility Database (NMDB) of Ni; Velocity v; 

Auxiliary Variables: 

         blockLength b;//length of any street between two intersections 

         TimePerBlock TB; //time taken to travel a single bockLength of street 

Initialization: 
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         TB = 
v

b
 

Output: NLDBi; // Node location database for node i     

 

Begin City-Section-Node-Location-Generator    

 

Step1: if (t ∈ T) 

                go to Step7 

          else 
                 go to Step2 

Step2: Iterate through NMDB and find a value of ‘tj’ and ‘tj+1’ such that  

             tj < t < tj+1 

Step3: Find the shortest path P on the street intersection graph. 

           Let P be represented as (xj, yj), (xk1, yk1), (xk2, yk2), ……….(xkh,  ykh), (xj+1, yj+1), 

           where k1, k2, k3, …………kh are the street intersections forming  the shortest path,  

            and tk1, tk2, tk3,………tkh the times respectively. 

           and h is the number for street intersections between (xj, yj) and (xj+1, yj+1) 

           Let the l be the count, and tl be the time and count 

           Initialize l = 1 and tl = tj. 

 Step4: Let Xstart = xkl, Ystart = ykl and Xend = xkl+1, Yend = ykl+1 

 Step5: if (tl ≥ t >= tl + TB) 

                           l = l + 1 

                            Repeat Step4 

            else  

                   Compute fraction f = 
tt

tt

kl

kl

−

−

+1

                                              

Step6: Let (xt, yt) be the location at time t then  

           Compute xt = f * xkl+1 + (1-f) * xkl 

           Compute yt = f * ykl+1 + (1-f) * ykl 

Step7: Store [ Ni; (xt, yt), t ] in Node Position Database (NPDB)   

 

End City-Section-Node-Location-Generator    

 

 

Figure 8: Algorithm to Generate Node Location under the City Section Mobility Model           

 

3.6 Manhattan Node Location Generator 

 

 

Let there be a set of nodes ‘N’ where N = {N1, N2, N3……..Nn} and T = {t1, t2, t3, t4,……..tst} 

and N, T∈NMDBi 

 

Input: time t, Simulation Time st, NMDB of Ni;  

Output: NLDBi; // Node location database for node i     

 

Begin Manhattan-Node-Location-Generator    

 

Step1:  if (t ∈ T) 

                go to Step5 

          else 
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                 go to Step2 

Step2: Iterate through NMDB of Ni and find a value of ‘tj’ and ‘tj+1’ such that  

             tj < t < tj+1 

Step3: Compute fraction f = 
jj

j

tt

tt

−

−

+1

  

Step4: Let (xt, yt) be the location at time t then  

      

                   Compute xt = f * xj+1 + (1-fr) * xj 

                   Compute yt = f * yj+1 + (1-fr) * yj 

 

Step5: Store [ Ni; (xt, yt) ,t] in Node Position Database (NLDB)   

 

End Manhattan-Node-Location-Generator 

 

 
Figure 9: Algorithm to Generate Node Location under the Manhattan Mobility Model 

 

4. DETERMINING THE K-CONNECTIVITY OF A RESIDUAL GRAPH USING 

FORD-FULKERSON ALGORITHM 

From the NLDBs obtained using the Node Location Generators for a mobility model, a graph is 

created depending on the distances between the nodes and the transmission range of each node. 

A residual graph [5] is a directed graph where each edge has a positive residual capacity and is 

labeled by its residual capacity. For a given graph G = (V, E) with source s and destination t, let 

f be the flow in G and u, v ∈  V be a pair of vertices then, the additional amount of net flow that 

can be pushed from u to v before exceeding the capacity c(u, v) is the residual capacity of (u, v), 

which is given by: cf (u, v) = c(u, v) – f(u ,v). 

 

 

Input: Given a NLDB at a particular time t,  

             Transmission rage R 

Output: G = (V, E) 

               V – the set of all vertices corresponding to the nodes N1, N2, …, Nn where n is 

                      the number of nodes in the network                        

                E – the set of all edges such that the distance between the two constituent nodes    

                       of an edge is less than or equal to the transmission range R. 

 Begin Graph Generator 

  for ∀ i ∈V 

     for ∀ j ∈  V-{i} 

       Step 1: Compute the distance dij = 
22 )()( yjyixjxi −+−  

       Step 2: if (dij <= R) 

                     (i, j)∈E 

                     weight (i, j) � 1 

                  end if 

          end for 

       end for 

  End Graph Generator 
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Figure 10: Algorithm to Create a Weighted Graph for a Given NLDB 

 

 
Input: Residual Graph GR, initially GR = G (V, E) 

 

Auxiliary Variables: 
          flow f; 

          capacity c; 

          flow capacity cf; 

              count connectivity kC;//count which keeps track of the connectivity 

Initialization: kC � 0 

 

Output: k-Connectivity Database (KCDB) that has the set of all source-destination (s-d) paths 

that has k-edge disjoint paths; In this research, 0 ≤  k ≤  40 

Each entry in KCDB is a tuple [k, SDk] where k is the number of edge-disjoint paths and SDk is 

the set of all s-d pairs that have k-edge disjoint paths 

 

Begin Ford-Fulkerson-Algorithm for k-Connectivity 

   for∀ s-d pair where s ∈V and d ∈V 

      kC � 0 // the number of edge-disjoint paths between s and d        

      Step1: for each edge (u, v) ∈E 

                   do f [u, v] � 0 

                        f [v, u] � 0 

                        c[u, v] � weight(u, v) � 1 

                         if (v, u) ∉E 

                            c[v, u] � 0 

      Step2: if there exits an s-d path P (i.e., a path from node s to node d) in GR 

                    do cf (P) � min{cf (u, v): (u, v) is in P} 

                          for each edge (u, v) in P 

                              do f[u, v] � f[u, v] + cf (P) 

                                   f[v, u] � – f[u, v]                        

                                  c (u, v) = c (u, v) – f (u, v) 

                                  c (v, u) = c (v, u) – f (v, u) 

                                  kC � kC+ 1 

                                     go to Step2 

      Step3: Add (s, d) to SDkC                                         

   end for 

 
End Ford-Fulkerson-Algorithm for k-Connectivity 

 

 
Figure 11: Finding the k-Connectivity of a Residual Graph using Ford-Fulkerson Algorithm 

 

5. SIMULATIONS 

Simulations have been conducted in a discrete-event simulator implemented by the authors in 

Java. The network dimensions are 1000m x 1000m. The network density is varied with 25 

nodes (low density), 50 nodes (medium density) and 75 nodes (high density). The simulation 

time is 1000 seconds. The velocity is uniformly distributed in the range [0…. Vmax]. The Vmax 

values used are 5m/s (representing low node mobility), 15m/s (representing medium node 

mobility) and 30m/s (representing high node mobility). Pause time is 0 seconds. The 

transmission range of each node is 250m. The mobility models used are Random Waypoint, 
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City Section and Manhattan models. Using For-Fulkerson’s algorithm, the k-Connectivity of the 

network is calculated at k = 1, 2, …, 10 and the time instants at which k-Connectivity is 

captured are 100, 600 and 900
th
 seconds, as illustrated in Figures 12 through 20.   

In low density networks, for all conditions node mobility (5m/s, refer Figure 12; 15m/s, refer 

Figure 13; and 30m/s, refer Figure 14), the Random Waypoint mobility model has the highest 

probability of k-Connectivity at lower values of k (k = 1, 2, 3) while Manhattan has the highest 

probability of k-Connectivity at medium (k = 4, 5, 6, 7) and higher (k = 4, 5, 6, 7) values. For 

medium density networks, for all conditions node mobility (5m/s, refer Figure 15; 15m/s, refer 

Figure 16; and 30m/s, refer Figure 17), the Random Waypoint mobility model has the highest 

probability of k-Connectivity at lower (k = 1, 2, 3), medium (k = 4, 5, 6, 7) and higher (k = 8, 9, 

10) values of k. For high density networks, in conditions of low node mobility (5m/s, refer 

Figure 18), Random Waypoint mobility model has the highest probability of k-Connectivity at 

lower (k = 1, 2, 3), medium (k = 4, 5, 6, 7) and higher (k = 8, 9, 10) values of k at low velocity 

and high density. In conditions of moderate node mobility (15m/s, refer Figure 19), the 

Manhattan mobility model has the highest probability of k-Connectivity at lower values of k (k 

= 1, 2, 3) while the Random Waypoint model has the highest probability of k-Connectivity at 

medium (k = 4, 5, 6, 7) and higher (k = 8, 9, 10) values of k at medium mobility and high 

density. In conditions of high node mobility (30m/s, refer Figure 20), the Manhattan mobility 

model has the highest probability of k-Connectivity at lower values of k (k = 1, 2, 3) while the 

Random Waypoint model has the highest probability of k-Connectivity at medium (k = 4, 5, 6, 

7) and higher (k = 8, 9, 10) values of k at high mobility and high density. 

 

   
  Figure 12.1: @ 100th second     Figure 12.2: @ 600th second      Figure 12.3: @ 900th second 

Figure 12: Probability of k-Connectivity (Low Density, Low Mobility) 
 

   
  Figure 13.1: @ 100th second     Figure 13.2: @ 600th second      Figure 13.3: @ 900th second 

Figure 13: Probability of k-Connectivity (Low Density, Moderate Mobility) 

 

   
  Figure 14.1: @ 100

th
 second     Figure 14.2: @ 600

th
 second      Figure 14.3: @ 900

th
 second 

Figure 14: Probability of k-Connectivity (Low Density, High Mobility) 
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  Figure 15.1: @ 100th second     Figure 15.2: @ 600th second      Figure 15.3: @ 900th second 

Figure 15: Probability of k-Connectivity (Moderate Density, Low Mobility) 

 

   
  Figure 16.1: @ 100th second     Figure 16.2: @ 600th second      Figure 16.3: @ 900th second 

Figure 16: Probability of k-Connectivity (Moderate Density, Moderate Mobility) 

 

   
  Figure 17.1: @ 100th second     Figure 17.2: @ 600th second      Figure 17.3: @ 900th second 

Figure 17: Probability of k-Connectivity (Moderate Density, High Mobility) 

 

   
  Figure 18.1: @ 100

th
 second     Figure 18.2: @ 600

th
 second      Figure 18.3: @ 900

th
 second 

Figure 18: Probability of k-Connectivity (Moderate Density, Low Mobility) 

 

   
  Figure 19.1: @ 100

th
 second     Figure 19.2: @ 600

th
 second      Figure 19.3: @ 900

th
 second 

Figure 19: Probability of k-Connectivity (Moderate Density, Moderate Mobility) 
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  Figure 20.1: @ 100

th
 second     Figure 20.2: @ 600

th
 second      Figure 20.3: @ 900

th
 second 

Figure 20: Probability of k-Connectivity (Moderate Density, High Mobility) 

 

6. CONCLUSIONS 

The Random Waypoint mobility model has the highest probability of k-Connectivity when 

compared to City Section and Manhattan models. At low values of k (k = 1, 2, and 3), City 

Section model has better probability of k-Connectivity than the Manhattan model for almost 

scenarios. At medium (k = 4, 5, 6, and 7) and high (k = 8, 9, and 10) values of k, the Manhattan 

model has the highest probability of k-Connectivity at lower densities, while the City Section 

model has the highest probability of k-Connectivity at moderate and higher densities. For each 

mobility model, with increase in density, the variation in the probability of k-Connectivity 

decreases and the absolute mean value of the k-Connectivity increases. For a given density, 

velocity and k, the Random Waypoint mobility model has less variation in k-Connectivity 

compared to the City Section and Manhattan mobility models.  
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