

Natarajan Meghanathan et al. (Eds) : CCSEA, NCOM, AIFU, DKMP, EMSA, SIPRO, SEA - 2018

pp. 29– 34, 2018. © CS & IT-CSCP 2018 DOI : 10.5121/csit.2018.80303

ON THE DUALITY FEATURE OF P-CLASS

PROBLEMS AND NP COMPLETE

PROBLEMS

WenhongTian

1, 2

1
University of Electronic Science and Technology of China,

Chengdu, China.
2
Chongqing Institute of Green and Intelligent Technology,

Chinese Academy of Science.

ABSTRACT

In term of computational complexity, P-class (abbreviated as P) problems are polynomial-time

solvable by deterministic Turing machine while NP complete (abbreviated as NPC) problems

are polynomial-time solvable by nondeterministic Turing machine. P and NPC problems are

regularly treated in different classes. Determining whether or not it is possible to solve NPC

problems quickly, is one of the principal unsolved problems in computer science today. In this

paper, a new perspective is provided: both P problems and NPC problems have the duality

feature in terms of computational complexity of asymptotic efficiency of algorithms.

KEYWORDS

P Problems; NP problems; NP Complete Problems; the P versus NP Problem; The Duality

Feature.

1. INTRODUCTION

In 1971, Cook [1] firstly established a theorem that a class of problems can be P-reducible

(polynomial time reducible) to each other and each of them can be P-reducible to Boolean

Satisfiability (SAT) problem, this class of problems is called NP (nondeterministic polynomial

time) problems. Karp [2] applied Cook’s 1971 theorem that the SAT problem is NP Complete

(also called the Cook-Levin theorem) to show that there is a polynomial time reduction from the

SAT problem to each of 21 combinatorial problems, thereby showing that they are all NP

complete (NPC). This was one of the first demonstrations that many natural computational

problems occurring throughout computer science are computationally intractable, and it drove

interest in the study of NP-completeness and the P versus NP problem [3]. The P versus NP

problem, determining whether or not it is possible to solve NP problems quickly, is one of the

principal unsolved problems in computer science today and listed as one of seven millennium

problems [3,4], challenging tens of thousands of researchers.

Simply speaking, P problems mean that the class of problems can be solved exactly in polynomial

time while NPC problems stands for a class of problems which might not be solvable in

polynomial time. NPC problems has far-reaching consequences to other problems in

mathematics, biology, philosophy and cryptography. More specifically, in Big O-notation (refer

30 Computer Science & Information Technology (CS & IT)

to Definition 1 and 2) of computational complexity in asymptotic efficiency of algorithms, P

problems can be solved in polynomial time of O

input to the problem, while NPC problems may have computational complexity of O

including both exponential time and sub

than zero.

Karp [2] ever claimed that if any of NPC problems have efficient polynomial time algorithms,

then they all do. It is for this reason that research into the P versus NP problem centers on NPC

problems, i.e., looking for efficient polynomial time algorithms

decades’ efforts by many researchers, it is still an open question. There are quite many results but

none of them is commonly accepted yet by the research community.

The current author also classified NPC problems based on their

found that NPC problems are not equivalent in computational complexity.

In the following, we show a new perspective: both P problems and NPC problems have

features of each other in terms of computational complex

algorithms, especially by considering the representation of the input.

2. PROBLEM FORMULATIONS

The following definitions are based on the computational complexity of different problems in the

worst case.

Definition 1: The asymptotic efficiency of algorithms [6,7]: concerns with how the running time

of an algorithm increases with the size of the input

without bound.

Definition 2: The O-notation

bounds a function from above within a constant factor [6,7]. For a given function

by O(g(n)) :

O(g(n))={f(n): there exist positive constants

Fig.1 shows the intuition behind O

function f(n) is on or below g(n).

Computer Science & Information Technology (CS & IT)

to Definition 1 and 2) of computational complexity in asymptotic efficiency of algorithms, P

problems can be solved in polynomial time of O(n
k
) for some constant k where n

input to the problem, while NPC problems may have computational complexity of O

including both exponential time and sub-exponential time, where c is a positive constant larger

Karp [2] ever claimed that if any of NPC problems have efficient polynomial time algorithms,

then they all do. It is for this reason that research into the P versus NP problem centers on NPC

problems, i.e., looking for efficient polynomial time algorithms for NPC problems. Through

decades’ efforts by many researchers, it is still an open question. There are quite many results but

none of them is commonly accepted yet by the research community.

The current author also classified NPC problems based on their natures and other methods [5] and

found that NPC problems are not equivalent in computational complexity.

In the following, we show a new perspective: both P problems and NPC problems have

in terms of computational complexity of asymptotic efficiency of

algorithms, especially by considering the representation of the input.

ORMULATIONS

The following definitions are based on the computational complexity of different problems in the

asymptotic efficiency of algorithms [6,7]: concerns with how the running time

of an algorithm increases with the size of the input in the limit, as the size of the input increases

 of computational complexity of an algorithm: asymptotically

bounds a function from above within a constant factor [6,7]. For a given function g(n)

: there exist positive constants c and n0 such that 0≤f(n)≤cg(n) for n≥ n0

Fig.1 shows the intuition behind O-notation. For all values n to the right of n0, the value of

.

Figure 1.f(n)=O(g(n)) [6]

to Definition 1 and 2) of computational complexity in asymptotic efficiency of algorithms, P

 is the size of

input to the problem, while NPC problems may have computational complexity of O(2cn)

ve constant larger

Karp [2] ever claimed that if any of NPC problems have efficient polynomial time algorithms,

then they all do. It is for this reason that research into the P versus NP problem centers on NPC

for NPC problems. Through

decades’ efforts by many researchers, it is still an open question. There are quite many results but

natures and other methods [5] and

In the following, we show a new perspective: both P problems and NPC problems have duality

ity of asymptotic efficiency of

The following definitions are based on the computational complexity of different problems in the

asymptotic efficiency of algorithms [6,7]: concerns with how the running time

, as the size of the input increases

computational complexity of an algorithm: asymptotically

g(n), we denote

0}.

, the value of

Computer Science & Information Technology (CS & IT) 31

Since O-notation describes an upper bound, when we use it to bound the worst-case running time

of an algorithm, we have a bound on the running time of the algorithm on every input. For

example, the doubly nested loop structure of the insertion sort algorithm has an O(n
2
) upper

bound; equivalently, we mean that the worst-case running time is O(n
2
).

Definition 3: P-class problems in term of O-notation of computational complexity: in the worst

case, their exact algorithms have computational complexity of O(n
k
) for some constant k where n

is the size of input to the problem.

Definition 4: NPC problems: in the worst case, their exact solutions may have computational

complexity of O(2cn) in O-notation, where n is the size of input to the problem and c is a

positive constant.

Table 1 provides a summary of variables used in this paper. Table 2 shows computational

complexities of exact solutions to some NPC problems (abstracted from [8]).

Table 1. The summary of variables

Variables Meaning

k, c, n0 a positive constant

n,e The size of inputs to a problem

s, m The number of bits (binary)

 B0 min(2cn, nk, 2m, 2s)

 W, C, b a positive number

Table 2. The complexities of exact solutions to some NPC problems from [8]

Problem Complexity Genre

MIS (maximum independent set) 1.1996n Packing

Set covering problem (SCP) * 1.1996n Covering

3CP (3-coloring of planar graph) 1.3446
n
 Partitioning

SSP (subset sum problem) [7] nW Numerical

3SAT 1.4802
n
 Satisfaction

TSP n
2
2

n
 Sequencing

*: derived from MIS since SCP and MIS are complementary [7].

We also consider that the representation of the input to the problem by m bits (in binary) and the

space complexity of a problem by s bits (in binary) in memory.

Fact 1: A regular system (the computer hardware, called the system in the following) has

capability of handling B0 numbers in term of computational and space complexity, i.e., handling

the input efficiently within reasonable time (may be within a few hours or minutes depending on

the applications) without overflowing the system, where B0 may be related to the memory size or

whichever (CPU, memory, disk et.) is the bottleneck of the system.

32 Computer Science & Information Technology (CS & IT)

Based on the definitions above, the capabilityB0can be represented by

B0=min(2cn, nk, 2m, 2s) (1)

3. RESULTS

Lemma 1. Dynamic programming algorithm for Subset Sum problem (SSP) is pseudo-

polynomial time.

Proof. removed■

Lemma 2. Any NPC problem can be reduced to SSP.

Theorem 1:The instances of SSP can have computational complexity of NPC problems and

P-class problems, this is called the duality feature in this paper.

Proof: removed■

Fact 2: The instances of other NPC problems also have the duality feature.

Proof: removed.■

In Table 3, records of optimum solutions to TSP problem are provided. One can see that the size

of the problem is increasing as year goes. Notice that the instance with 1904711 nodes is still not

yet solved exactly but just has a good lower bound [14]. Similar results are also observed for

other NPC problems. For real-life problems with small or moderate number of variables, they can

be solved to exactly very easily (LKH [15] and Concorde [16] are considered as two of the best

such solvers which can now find exact solutions for medium size TSP Problems). However, if the

problem size increases to very large, finding efficient solutions to NPC problems just become

intractable.

Theorem 2: The P-class Problems can have the duality feature in terms of computational

complexity.

Proof: removed. ■

Remarks: Actually SSP can be treated as polynomial time solvable problem (P-class problem)

when both n and W is not very large while it is of exponential complexity when both n and W are

very large.

Observation 1: Even one can find efficient solution (polynomial time algorithm) to one or

more NPC problems, some P problems may become exponential time solvable in

computational complexity when the representation of the input to them become very large.

4. DISCUSSIONS AND CONCLUSION

NPC problems have different natures, they can be classified into six basic genres [2, 7], i.e.,

Satisfaction, Packing, Covering, Partitioning, Sequencing, Numerical computing.

Originally, PRIMES and Graph Isomorphism were hard to determine to be in NPC or not in

Cook’s paper [1]. In 2004, PRIMES is found in P-class and accepted by the research community

[10]. And in 2015, Graph isomorphism is reported to have Quasipolynomial time solution [11,

Computer Science & Information Technology (CS & IT) 33

12], though the results are still under verification. These show some new perspectives and trends

on NPC problems.

As another perspective, it is recently proved mathematically that memcomputing machines (a

novel non-Turing paradigm) have the same computational power of nondeterministic Turing

machines [13]. Therefore, they can solve NPC problems in polynomial time with resources that

only grow polynomially with the input size.

NPC problems and the P versus NP problem challenge many researchers to tackle them through

decades of efforts. In this paper, a new perspective is provided: both P problems and NPC

problems have the duality feature in terms of computational complexity of asymptotic efficiency

of algorithms.

Table 3. Records of optimum solutions to TSP problems [14] where n is the number of nodes in TSP. All

TSP problems in the table are solved to optimum except for the last one

n

Year

(solved) Node type

48 1954 USA cities

64 1971 random nodes

80 1975 random nodes

120 1977 Germany cities

318 1987 cities

532 1987 USA cities

666 1987 World cities

1002 1987 cities

2392 1987 cities

3038 1992 cities

13509 1998 USA cities

15112 2001 cities

24978 2004 Sweden cities

85900 2006 cities

100000 2009 Japan

1904711 2010* World TSP Challenge

ACKNOWLEDGMENTS

The abstract version of this manuscript is posted at my research gate.

REFERENCES

[1] S.A. Cook (1971). The Complexity of Theorem Proving Procedures, Proceedings of the third annual

ACM symposium on Theory of computing. pp. 151158, March of 1971.  

[2] R. M. Karp (1972), Reducibility Among Combinatorial Problems, In R. E. Miller and J. W. Thatcher

(editors). Complexity of Computer Computations. New York: Plenum. pp. 85-103.  

[3] Clay Mathematics Institute, http://www.claymath.org/millennium-problems/millennium-prize-

problems.

34 Computer Science & Information Technology (CS & IT)

[4] Wikipedia, http://en.wikipedia.org/wiki/NP-complete.  

[5] WenhongTian, NP Complete Problems Are not All Equivalent, under review, submitted 2017.

[6] T. Cormen,C. Leiserson, R.L. Rivest,C. Stein, Introduction to Algorithm, 2nd edition, MIT Press,

2004.

[7] J. Kleinberg, E. Tardos, Algorithm Design, 2006, Pearson Education Asia Limited, pp. 475-479.

[8] G. J. Woeginger, Exact algorithms for NP-hard Problems: A Survey, Combinatorial optimization -

Eureka, you shrink! Pages 185 - 207 , Springer-Verlag New York, Inc. New York, NY, USA ©2003

[9] WenhongTian, C. Huang, X. Wang, A Near Optimal Approach for Symmetric Traveling Salesman

Problem in Eclidean Space, In Proceedings of ICORES 2017, Portugal, also available at arxiv

https://arxiv.org/pdf/1502.00447.pdf

[10] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, The Annals of Mathematics, Pages 781-793 from

Volume 160, Issue 2, 2004. 

[11] L. Babai, Graph Isomorphism in Quasipolynomial Time, https://arxiv.org/abs/1512.03547, Dec 11,

2015.

[12] A. Cho , Science news, mathematician-claims-breakthrough-complexity-theory,

 http://www.sciencemag.org/news/2015/11/mathematician-claims-breakthrough-complexity-theory,

Nov. 11, 2015.

[13] F. L. Traversa, C. Ramella, F. Bonani and M.D. Ventra, memcomputing NP-complete problems in

polynomial time using polynomial resources and collective states, Science, Vol. 1, no. 6, e1500031,

Nov. 2015.

[14] W. Cook, In Pursuit of the Traveling Salesman, Princeton University Press, 2012.  

[15] LKH codes, http://www.akira.ruc.dk/~keld/research/LKH/

[16] Concorde codes, http://www.math.uwaterloo.ca/tsp/concorde.html

