
International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

DOI : 10.5121/ijcnc.2013.5505 59

TOWARDS INTERNET OF THINGS (IOTS):

INTEGRATION OF WIRELESS SENSOR NETWORK TO
CLOUD SERVICES FOR DATA COLLECTION AND

SHARING

Rajeev Piyare
1
 and Seong Ro Lee

2

1,2
Department of Information Electronics Engineering, Mokpo National University, 534-

729, South Korea
rajeev.piyare@hotmail.com;srlee@mokpo.ac.kr

ABSTRACT

Cloud computing provides great benefits for applications hosted on the Web that also have special

computational and storage requirements. This paper proposes an extensible and flexible architecture for

integrating Wireless Sensor Networks with the Cloud. We have used REST based Web services as an

interoperable application layer that can be directly integrated into other application domains for remote

monitoring such as e-health care services, smart homes, or even vehicular area networks (VAN). For proof

of concept, we have implemented a REST based Web services on an IP based low power WSN test bed,

which enables data access from anywhere. The alert feature has also been implemented to notify users via

email or tweets for monitoring data when they exceed values and events of interest.

KEYWORDS

Internet of Things, Cloud computing, REST, Wireless Sensor Network, XBee

1. INTRODUCTION

The Internet of Things (IoTs) can be described as connecting everyday objects like smart-phones,

Internet TVs, sensors and actuators to the World Wide Web where the devices are intelligently

linked together enabling new forms of communication between things and people, and between

things themselves. Building IoTs has advanced significantly in the last couple of years since it has

added a new dimension to the world of information and communication technologies. According

to [1], in 2008, the number of connected devices surpassed connected people and it has been

estimated by Cisco that by 2020 there will be 50 billion connected devices which is seven times

the world population. Now anyone, from anytime and anywhere can have connectivity for

anything and it is expected that these connections will extend and create an entirely advanced

dynamic network of IoTs. The development of the Internet of Things will revolutionize a number

of sectors, from wireless sensors to nanotechnology.

In fact, one of the most important elements in the Internet of Things paradigm is wireless sensor

networks (WSNs). WSNs consist of smart sensing nodes with embedded CPUs, low power radios

and sensors which are used to monitor environmental conditions such as temperature, pressure,

humidity, vibration and energy consumption [2]. In short, the purpose of the WSN is to provide

sensing services to the users. Since, the number of users of the Internet is increasing therefore; it

is wise to provide WSN services to this ever growing community.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

60

Cloud computing is a flexible, powerful and cost-effective framework in providing real-time data

to users at any time with vast coverage and quality. The Cloud consists of hardware, networks,

services, storage, and interfaces that enable the delivery of computing as a service [3]. In addition,

it’s also possible to upload the data obtained from the wireless sensor nodes to the Web services

based on Simple Object Access Protocol (SOAP) and Representational State Transfer (REST),

using messaging mechanisms such as emails and SMS or social networks and blogs [4]. By

connecting, evaluating and linking these sensor networks, data conclusions can be made in real-

time, trends can be predicted and hazardous situations can be avoided.

In this paper, we present the design, development and integration of an extensible architecture for

WSN with the Cloud based sensor data platform, Open.Sen.se [5] where info-graphic of different

data streams can be displayed, accessed and shared from anywhere with Internet connectivity.

The collected data from the sensor nodes are processed, stored and analyzed on Open.Sen.se

server via an Application Programming Interface (API). We have used REST based Web services

as an interoperable application layer that can be directly integrated into other application domains

like e-health care services, smart homes, or even vehicular area networks (VAN). For proof of

concept in a smart environment, we have implemented a REST based Web services on an IP

based low power WSN test bed, which enables data access from anywhere for the smart

environment.

The remaining of the paper is organized as follows. In Section 2, we briefly discuss related work.

Section 3 describes the proposed architecture while Section 4 outlines the hardware design of the

base station and the End Nodes. In Section 5 we discuss the software implementation of our

approach. Section 6 presents the implementation results and discussions and finally, some

conclusions are presented.

2. RELATED WORK

Wireless sensor platforms have been widely deployed in a number of applications ranging from

medical such as Alarm-Net [6], or CodeBlue [7] to environmental monitoring [8-10]. The

architecture of these systems has been designed in a very ad hoc fashion and is not flexible to

adapt to other applications or scenarios while the core problem is the same, remote monitoring

using sensor networks. During the last few years, many researchers have investigated on ways to

connect wireless sensor networks to the Cloud [11]. Authors in [12-16] have presented Internet

protocols for connecting wireless sensor networks to the Internet but no real implementations

have been shown. Much of the previous work has been on theoretical aspects of system

architecture rather than actual deployment and testing of wireless sensor networks with the

Clouds. Use of Web services to connect sensor networks with external networks have also been

suggested by researchers in [17, 18]. However, their work was mainly focused on the feasibility

of SOAP based Web services in terms of energy and bandwidth overheads.

SenseWeb [19] is one of the first architectures being presented on integrating WSN to the

Internet for sharing sensor data. Users were able to register and publish their own sensor data

using the SenseWeb API. The main drawback of SenseWeb is that all the decision making

process is executed at a single central point called the Coordinator. The Coordinator is the central

point of access for all applications and sensor contributors where all the sensor data is stored and

analyzed. That is, all the intelligence to control and to make a decision is located at this central

point and if the Coordinator fails, the entire network is disrupted.

It is therefore suggested that the various decision levels can be implemented onto different

architectural layers. The upper level known as Supervision Layer will be used for all sensor data

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

61

storage, analysis and for decision making, while the Sensor Layer where the sensors are deployed

can be used to partially analyze data and the determination of reactive response. The Coordinator

still exists as a point of control for analysis of data and remote monitoring as well as acting as a

gateway between sensors and the Cloud.

In order to address the above mentioned issues of flexibility and centralized decision making

process, we designed and implemented a more flexible architecture for integrating WSN to Cloud

using REST based Web services as an interoperable application layer which can be directly

integrated into other applications. The architecture presented in this work can be customized in

different ways in order to accommodate different application scenarios with minimum recoding

and redesign. To build a low power and self-healing Wireless Sensor Network we have used

XBee ZB modules which are ZigBee-complaint wireless sensor networking devices developed by

Digi International, Inc [20]. Due to low power, simple network deployment, reliable data

transmission and low installation costs, the ZigBee wireless standard has been preferred for this

study over Wi-Fi and Bluetooth. In addition, to reduce the overall cost of implementation and

network latency, each End Device is only equipped with an XBee ZB module with sensors.

Furthermore, to reduce energy consumption and to increase the network lifetime, sleep

mechanism for battery powered sensor nodes have been utilized.

3. DESCRIPTION OF PROPOSED ARCHITECTURE

The architecture of the proposed system is divided into three layers (Figure 1): Sensor Layer, the

Coordinator Layer and the Supervision Layer.

Figure 1. Proposed Architecture

The Sensor Layer consists of sensors that interact with the environment. Every sensor was

integrated with wireless nodes using an XBee ZB platform called End Devices. These End

Devices form a Mesh network and send the information gathered by the sensors to the

Coordinator Layer through the sink node called the base station. Messages are routed from one

End Device to another until they reach this base station. There are several hardware platforms

available for wireless sensor network deployment such as TelosB, Mica, IRIS and Wasp mote.

For our prototype system, we have utilized XBee module from Digi International, Inc. Each XBee

ZB module has the capability to directly gather sensor data and transmit it without the use of an

external microcontroller, a capability known as XBee direct [21]. This offers many advantages.

By using XBee alone, it can minimize weight which is an important factor for systems such as

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

62

Body Sensor Networks or wearable’s. Omitting an external microcontroller also reduces power

consumption which is a critical advantage for wireless systems that run on batteries and save

money. However, there are also some important tradeoffs associated with this.

The Coordination Layer is responsible for the management of the data received from the sensor

network. It temporarily stores the gathered data into buffer and sends it to the Supervision layer at

predefined intervals. Base station which comprises of Arduino UNO, Ethernet shield and XBee is

connected to the Internet using RJ45 cable and is powered using an AC adaptor. It serves as a

mobile mini application server between the wireless sensors and the dedicated network and has

more advanced computational resources compared to the End Devices found in Sensor Layer. At

the base station, the sink node gathers data from wireless sensors using the ZigBee protocol and

sends this data to Cloud based sensor data platforms.

Finally, the Supervision Layer accommodates the base station with a Web server to connect and

publish the sensor data on the Internet. This layer stores the sensor data in a database and also

offers a Web interface for the end users to manage the sensor data and generate statistics. For the

Supervision Layer, we have used Open.sen.se [5] HTTP Service which provides a REST based

API to publish and access the sensor data. Thus, allowing existing networks to be connected into

other applications with minimal changes. Open.Sen.se offers a graphical interface for real-time

monitoring of systems using info graphic data streams and to retrieve the sensor values using

device type and timestamp. Alerts can also be automatically generated to notify the user each time

if the desired event has been sensed by the domain rules programmed in the base station.

4. WIRELESS SENSOR NODE DESIGN

This section highlights the design and development phases of test bed in terms of hardware in

order to integrate it to the proposed architecture.

4.1. Base station (Coordinator) Design

The base station plays a key role in our proposed system as illustrated in Figure 1. This node has

been kept minimum size while ensuring all functions of communication, sensing and calculation.

The prototype of the base station is shown in Figure 2. The hardware of base station consists of an

Arduino UNO board, an Ethernet shield and an XBee shield that supports XBee ZB module. The

Arduino is an open-source microcontroller that uses ATMEGA 328, an Atmel AVR processor

which can be programmed by the computer in C language via USB port [22]. Arduino also has

on-board 5 analog pins and 13 digital pins for input and output operations, supporting SPI and

I2C which can be used to interface with other devices. The role of the microcontroller in this

wireless sensor network is to collect sensor readings from the End Devices via XBee ZB module,

arrange sensor data using developed packet protocols and send it to Open.Sen.se server via an

Ethernet module. The Ethernet module acts as a central node to bridge the wireless sensor

network with local proxy. Generally, the function of the base station is divided into two parts:

Web-Server and XBee interface to the wireless sensor network. These two functions are

implemented on Arduino UNO. The Web-Server function uses <Ethernet.h> library, while XBee

interface uses <XBee.h> library.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

63

Figure 2. Base station connected to Ethernet router consisting of an Arduino UNO, an Ethernet Shield and

XBee ZB module

4.2. End Device

4.2.1. XBee ZB Interface

The End Devices consist of two parts: Sensor Interface and XBee ZB Interface as illustrated in

Figure 3. The End Device is developed based on XBee Radio Frequency module operating in an

unlicensed band of 2.4 GHz with a data transfer rate of 250 kbps [23]. XBee uses ZigBee protocol

and support the needs of low cost, low power wireless sensor networks. ZigBee is built on top of

IEEE 802.15.4 standard which defines the Medium Access Control (MAC) and physical layers.

ZigBee protocol also features multi-hop communication capability, therefore providing a vast

range of communication and a wide coverage area [24]. An XBee ZB offers transmission range of

40m in indoor scenarios and 140m in outdoor. End Devices wait for data reading request (i.e.

Polling) from the Coordinator and then responses with the value from the sensor. Polling is a

method in which the network Coordinator requests each End Device one by one to send sensor

readings. This avoids interference from multiple nodes transmitting to the Coordinator

simultaneously.

Figure 3. End device with temperature and voltage sensing unit

4.2.2. Sensor Interface

A cost reduction for each node is achieved by removing the additional use of a microcontroller

and using XBee ZB as a standalone device known as XBee direct as mentioned in Section 3.

Since, XBee houses on-board 9 analog and digital input and output pins, sensors can be directly

interfaced to it. This allows XBee modules to automatically sample the sensor inputs and report

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

64

back to the Coordinator using API firmware. There are three End Devices for this experimental

setup and each consists of a temperature sensor. For the temperature monitoring sensor, we have

used a low cost LM35 analog sensor from DF Robot to show the proof of concept. LM35 is a

precision integrated-circuit temperature sensor, whose output voltage is linearly proportional to

Celsius temperature [25]. This sensor employs a 3-wire interface, has a low impedance and power

consumption of 60µA from its supply. The sensor interface reads temperature strings from LM35

on analog pin AD0 of XBee ZB module and sends this data packet to the base station. At the base

station, Arduino microcontroller receives this data packet, converts it into numerical values with

specific data format and End Device ID. Analog samples are returned as 10-bit values from the

XBee ZB modules. This analog signal is then sampled and quantized at the base station by the

Arduino into a digital value in the range of 0-1023, where 0 represents 0V and 1023 represents

5V. To convert the A/D reading to mV, the following equation is utilized:

Then the temperature value in volts is further converted into degree Celsius according to equation

(2). Since the scale factor for LM35 is 0.01V/oC, therefore:

To monitor the supply voltage for each End Node, voltage sensing unit has also been

incorporated. If the voltage level is too low, then the End Device enters sleep mode automatically

and a notification is automatically generated and send to the user by Open.Sen.se. One of the

main challenges in integrating voltage sensor into an XBee module is matching the output of the

voltage to the analog input. XBee analog inputs cannot read more than 1.2V [23]. Therefore, a

voltage division circuitry was constructed to map the supply voltage to a safe level for an XBee

input (Figure 4).

Figure 4. Voltage sensing circuitry

XBee ZB modules can operate within a supply voltage of 2.1V to 3.6V. In order to match the

voltage to 1.2V, the values of R1 and R2 were calculated using the voltage division equation:

Where Vout is the desired output voltage and Vin is the input voltage to the circuit. Using Vin as

3.3V, R1 as 200Ω, R2 was found to be 100Ω. This provides a voltage output of 1.1V, which is

within the tolerance of XBee. This voltage data is then transmitted to the base station using the

method as described above. At the base station this data packet is again converted into numerical

values based on the following equation:

4.2.3. Power Supply

1023/)1200/()(mVreadingDAmVAD ×= (1)

10 / mV)in (Vout °C =inTemp (2)

21

2

RR

RV
V

in

out
+

×

=

(3)

1000/)1023/)31200/(()(××= readingDAmVAD
 (4)

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

65

The prototype sensor nodes are powered by a 2000 mAh, 9V Energizer lithium polymer battery.

This particular battery was preferred because of its long battery life and is rechargeable, which is

of interest for continued deployment.

5. SOFTWARE DEVELOPMENT

Different software products were developed for this wireless sensor network experiment in order

to establish the sensor interface, configure ZigBee network and manage the sensed data for

receiving, storing and publishing it on Cloud. Each development phase is described as follows.

5.1. XBee Module Configuration

To realize the proposed network architecture, XBee ZB modules were configured to behave as

Coordinator and End Devices. XBee supports two modes of operation: Transparent mode (AT)

and Application Programming Interface (API) mode with the Escape (ESC) character. API mode

was chosen for this research due to following reasons:

1. Allows XBee modules to receive input and output data from one or more remote XBees.

2. MAC layer Acknowledgment (ACK) and retries. This ACK packet indicates to the source

node that the data packet was successfully received by the destination node. If ACK is not

received, the source node will resend the packet.

3. Receive packets contain the source address of the transmitting node.

4. Packets include a checksum for data integrity.

The data frame for API operation is shown in Figure 5 which is divided into four sections; Start

Delimiter, Length section, Frame Data and Checksum. The checksum is calculated as below:

Figure 5. XBee API data frame

5.2. Communication and Sensor Layers in Arduino

To successfully communicate with remote sensor nodes from the base station, communication

and sensor layers have been implemented on the Arduino. The libraries in the communication

layer are used to establish a reliable connection between the sensor nodes and to communicate

with Open.Sen.se server. The <XBee.h> libraries are used to receive data on Arduino and create

output messages in JavaScript Object Notation (JSON) format. Figure 6 shows the flowchart of

communication and sensor layers in Arduino and the End Nodes. A base station is connected to

Open.Sen.se server over TCP/IP. Since Arduino Ethernet shield already supports a TCP/IP stack,

we have focused on implementing software to connect it to Open.Sen.se server. When Arduino is

turned on, it first connects to a local server using a static IP address. To optimize the process of

connection, we have used static IP address rather than acquiring an IP via Dynamic Host

Configuration Protocol (DHCP). Once the connection is successful, the Coordinator requests for

the data from the End Devices. Upon successful reception of data packets, it’s decoded and

∑−×= structureAPIinbytesallofFFChecksum 0

(5)

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

66

converted into numerical values as described in Section 4.2.2. These values are then updated on

Open.Sen.se platform using GET and POST HTTP method which is described in detail in the

next section. Since the Open.Sen.se server accepts several TCP connections while

communicating, it is scalable for the large number of concurrent users. The base station does not

need to re-establish TCP connection every time it sends a message

Figure 6. Flowchart of communication and sensor layers in (a) Arduino and (b) the End Nodes (c) Arduino

without Timer and (d) with Timer

start

Static IP Address

Establish

connection to

http://api.sen.se

server

Connection

successful

Request packets

from remote

Xbees

Wait for

response

response

Decode packets

Post value for feed

to Sen.se

Post successful

Delay

30 min

No

Yes

No

Yes

Yes

No

start

Wait

Response

Enter Sleep Mode

Transmit to

Coordinator

Read value from

sensors

Sen.se Server ARDUINO

REQUEST

DATA

REQUEST

DATA

REQUEST

DATA

.

.

Sen.se Server ARDUINO

TIMER SETUP

DATA

DATA

DATA

.

.

0

30

60

0

30

60

(c) (d)

(a)

(b)

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

67

5.3. Connecting Sensor Network to Cloud Service

As mentioned previously, the access to Cloud services has to be easy, direct, open and

interoperable. That is, the provided communication means and programming interfaces (APIs)

shall be easy to implement on every platform and developing environment [26]. The most open

and interoperable way to provide access to remote services or to enable applications to

communicate with each other is to utilize Web services. There are two classes of Web services:

Simple Object Access Protocol (SOAP) and Representational State Transfer (REST). REST is a

much more lightweight mechanism than SOAP offering functionality similar to SOAP based Web

services.

Open.Sen.se is an open source “Internet of Things” application and API to store and retrieve data

from things and sensors using Hypertext Transfer Protocol (HTTP) over the internet or via a

Local Area Network (LAN). In addition to storing and retrieving numeric and alphanumeric data,

Open.Sen.se API allows for numeric data processing such as time scaling, averaging, median and

summing. The channel feeds supports JavaScript Object Notation (JSON), Extensible Markup

Language (XML), and comma-separated values (CSV) formats for integration into applications.

Therefore, in our approach we have used REST based Web service utilizing standard operation

such as GET and POST requests that return (JSON) responses to communicate between the base

station and the Open.Sen.se server. JSON is a lightweight data-interchange format. It is easy for

human beings to read and write. It is also simpler for machines to parse and generate messages

than using XML. For example, to read the current sensor value, an HTTP GET request is sent to

the resource of the sensor. The response includes a textual representation of the current sensor

value. A soon as the Coordinator decodes the received data packets from the End Devices, an

HTTP POST request is sent from the base station to a pre-specified URL, containing the updated

value as illustrated in Figure 7. To access the Open.Sen.se API, the following base URL is used:

http://api.sen.se. Each data entry is stored with a date and time stamp and is assigned a unique

Entry ID. In terms of authentication, every communication between the connected Device and

Open.Sen.se server is protected with a Sen.se key which is specific and unique to each user.

Figure 7. A serial Monitor window showing successful POST for data values

5.4. Timer and Reset Function

A timer function is also associated to send notifications to Open.Sen.se server from Arduino

periodically. For example, when Sen.se server is required to receive sensor values after every 30

minutes from Arduino, this function is called to configure the Arduino. Once the timer is

activated, Arduino reports Open.Sen.se server with the measured sensor data by periods without

any further request as illustrated in Figure 6 (c) and (d).

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

68

A reset function initializes all setups on Arduino in software. It performs the same function when

the reset button on the Arduino is pressed. If there are conflicts on the communication with

Open.Sen.se server, the Arduino will be reset and try to connect with Open.Sen.se server again.

Also, Arduino itself calls this function when it finds exceptional errors while connecting.

6. IMPLEMENTATION RESULTS AND DISCUSSION

In order to evaluate and demonstrate the proposed model, we implement it by using the technical

approach which is described in the above sub-sections. A WSN was created to collect temperature

and battery voltage readings. Preliminary experiments were performed to evaluate the system in

terms of sensor data accessibility, alert notification time, and battery consumption. Furthermore,

Senseboard was created on Open.sen.se server to present the collected data to the user in an easy

and meaningful way.

6.1. Senseboard

Open.Sen.se server offers graphical interface called ‘Senseboard’ where different apps can be

added. This allows info graphic data streams to be displayed and viewed in real-time anywhere

and on any website. It also offers critical multiviz functionality to combine data from multiple

sensors into one graph. Figure 8 shows the real-time acquisition curve with measurements

showing environment temperature (Red Line) and End Device battery voltage (Green Line). The

Senseboard created for this implementation is supported by Internet Explorer, Safari, Firefox,

Opera browsers and can also be accessed at http://open.sen.se/sensemeters/tab/3114/.

Figure 8. Senseboard displaying real-time Node Voltage and Environmental Temperature

6.2. Event Notification

An event notification system is also implemented on Open.Sen.se server based on measurements

from sensors and predefined If-conditions. This allows monitoring End Devices supply voltage. If

the voltage is too low, the End Device will enter sleep mode automatically. When Open.Sen.se

server receives the voltage data for each remote Node through the base station, it compares it with

a predefined threshold of 2.1V. If the measurement is equivalent to the threshold, it triggers the

predefined actions. For instance, it can send a notification alert to the user via a push email or

tweets. Figure 9 demonstrates the notification email received by the user as soon as the threshold

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

69

value is reached. The time taken to notify the user from the time the event has occurred, in this

case low battery voltage, was also measured. Using a variable DC power supply, the voltage for

the End Device was manually reduced to 2.1V and the time it takes to receive the alert

notification via an email was noted. Ten trials were conducted and it is observed that it takes

about 8-13s and an average of 11s for the notification email to be auto generated and delivered to

the user on their specified email account from the Open.Sen.se server (Figure 10). For event

notification, we consider this value to be acceptable as the required time to notify the user.

Figure 9. Notification Email to alert the user on low battery voltage

Figure 10. Time taken for auto generation and delivery of Email Alert Notification (10 attempts)

6.3. Battery Lifetime of the End Devices

For wireless sensor networks, energy efficiency is one of the important functional indexes since it

directly affects the life cycle of the system. Replacing batteries regularly for failed sensor nodes

in huge wireless networks is not convenient due to terrain and space limitations and also due to

hazardous environments in which they are placed in. Therefore, the best method to save energy is

setting sleep mechanism. The power consumption measurement is only carried out for the End

Devices as the Coordinator is mains powered at the base station. To provide for an energy-

efficient operation mode, End Devices are configured to be in a cyclic sleep mode (SM = 4).

After transmission has completed, the End Device will return to sleep mode for another sleep

cycle. The following Table 1 shows the average power consumption during different modes of an

End Device. The measured average power consumption is not considering the power consumed

by the XBee module only, but also includes the voltage regulation component and its peripheral

circuits.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

70

Table 1. Current measurement of an End Device

Parameters End Device

Activate and Deactivate current (Ionoff) 8.1mA

Listen current (Ilisten) 40mA

Transmitter current (Itrans) 38mA

Sleep current (Isleep) 0.6mA

Battery Capacity 2000mAh

Battery Voltage 9V

The transmitted data from the End Device consisted of 2 bytes (one to encode the sensed

temperature and the other for the supply voltage). With this data, MATLAB® simulations were

conducted to estimate the lifetime of XBee ZB wireless sensor nodes with variable data packet

size and different values of consecutive transmission time (update period) as shown in Figure 11.

Figure 11. Wireless Sensor Network Node lifetime with different packet size and update period

The figures include two extreme cases for the value of data size: 2 bytes and 102 bytes which is

the maximum admissible value of the ZigBee/802.15.4 MAC payload. From the results obtained,

the figure shows that ZigBee technology provides a typical maximum battery lifetime of up to

several years for many typical scenarios of mote networks. It was also observed that the lifetime

of the node decreases as the packet size increases. Hence, it is also possible to achieve longer

lifetime for battery powered sensor nodes using high current capacity lithium batteries.

Apparently, the power consumption of ZigBee End Devices using the cyclic sleep mode can be

reduced effectively, which will improve the lifetime of the entire network.

7. CONCLUSIONS

This paper proposed a flexible architecture for integration of Wireless Sensor Networks to the

Cloud for sensor data collection and sharing using REST based Web services as an interoperable

application layer which can be directly integrated into other applications. To avoid loss of data

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

71

and network disruption due to failure of Coordinator, we embedded intelligence at different

architectural layers to accommodate for the diverse requirements of possible application scenarios

with minimum redesign and recoding. The evaluation results illustrate that the sensor data can be

accessed by the users anywhere and on any mobile device with internet access. The results also

demonstrated that it takes an average of 11s for the alert notification email to be auto generated

and delivered to the user on their specified email account from the Open.Sen.se server. In

addition, using the sleep mechanism for low power XBee ZB transceiver modules provided an

energy efficient approach to increase the lifetime of sensor nodes.

Our future research will focus on integrating Body Sensor Networks (BSNs) to the Cloud for real-

time patient monitoring and notification.

ACKNOWLEDGEMENTS

This work was supported by Priority Research Centers program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-

0093828) and MKEC (The Ministry of Knowledge Economy), Korea, under the ITRC

(Information Technology Research Center) supported program supervised by the NIPA, National

IT Industry Promotion Agency (NIPA-2013-H0301-13-2005).

REFERENCES

[1] M. Swan, "Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the

Quantified Self 2.0," Journal of Sensor and Actuator Networks, vol. 1, pp. 217-253, 2012.

[2] W. Wei, K. Lee, and D. Murray, "Integrating sensors with the cloud using dynamic proxies," in

Personal Indoor and Mobile Radio Communications (PIMRC), 2012 IEEE 23rd International

Symposium on,, 2012, pp. 1466-1471.

[3] Perumal.B, P. Rajasekaran.M, and Ramalingam.H.M, "WSN INTEGRATED CLOUD FOR

AUTOMATED TELEMEDICINE (ATM) BASED e-HEALTHCARE APPLICATIONS," in 4th

International Conference on Bioinformatics and Biomedical Technology, Singapore, 2012, pp. 166-

170.

[4] C. Alcaraz, P. Najera, J. Lopez, and R. Roman, "Wireless Sensor Networks and the Internet of

Things: Do We Need a Complete Integration?," presented at the 1st International Workshop on the

Security of the Internet of Things (SecIoT'10), Tokyo ,Japan, 2010.

[5] (2012, 20th December, 2012). Open.Sen.se. Available: http://open.sen.se/sensemeters/tab/3114/

[6] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, et al., "ALARM-NET: Wireless sensor

networks for assisted-living and residential monitoring," University of Virginia Computer Science

Department Technical Report, 2006.

[7] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, "Codeblue: An ad hoc sensor network

infrastructure for emergency medical care," in International workshop on wearable and implantable

body sensor networks, 2004.

[8] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, et al., "Deploying a wireless

sensor network on an active volcano," Internet Computing, IEEE, vol. 10, pp. 18-25, 2006.

[9] J. Tooker, X. Dong, M. C. Vuran, and S. Irmak, "Connecting soil to the cloud: A wireless

underground sensor network testbed," in Sensor, Mesh and Ad Hoc Communications and Networks

(SECON), 2012 9th Annual IEEE Communications Society Conference on, 2012, pp. 79-81.

[10] F. Kausar, E. Al Eisa, and I. Bakhsh, "Intelligent Home Monitoring Using RSSI in Wireless Sensor

Networks," International Journal of Computer Networks & Communications (IJCNC), vol. 4, pp. 33-

46, 2012.

[11] H. ElAarag, D. Bauschlicher, and S. Bauschlicher, "System Architecture of HatterHealthConnect: An

Integration of Body Sensor Networks and Social Networks to Improve Health Awareness,"

International Journal of Computer Networks & Communications, vol. 5, p. 22, 2013.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013

72

[12] P. A. C. d. S. Neves and J. J. P. C. Rodrigues, "Internet Protocol over Wireless Sensor Networks,

from Myth to Reality," JOURNAL OF COMMUNICATIONS, vol. 5, pp. 189-195, 2010.

[13] M. R. Kosanović and M. K. Stojčev, "CONNECTING WIRELESS SENSOR NETWORKS TO

INTERNET," FACTA UNIVERSITATIS, Mechanical Engineering, vol. 9, pp. 169-182, 2011.

[14] A. E. Kouche, "Towards a wireless sensor network platform for the Internet of Things: Sprouts WSN

platform," in Communications (ICC), 2012 IEEE International Conference on,, 2012, pp. 632-636.

[15] B. Li and J. Yu, "Research and Application on the Smart Home Based on Component Technologies

and Internet of Things," Procedia Engineering, vol. 15, pp. 2087-2092, // 2011.

[16] N. Mitton, S. Papavassiliou, A. Puliafito, and K. S. Trivedi, "Combining Cloud and sensors in a smart

city environment," EURASIP Journal on Wireless Communications and Networking, vol. 2012, p.

247, 2012.

[17] D. Guinard and V. Trifa, "Towards the web of things: Web mashups for embedded devices," in

Workshop on Mashups, Enterprise Mashups and Lightweight Composition on the Web (MEM 2009),

in proceedings of WWW (International World Wide Web Conferences), Madrid, Spain, 2009.

[18] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, "Tiny web services: design and

implementation of interoperable and evolvable sensor networks," in Proceedings of the 6th ACM

conference on Embedded network sensor systems, 2008, pp. 253-266.

[19] A. Kansal, S. Nath, J. Liu, and F. Zhao, "SenseWeb: An Infrastructure for Shared Sensing," IEEE

MultiMedia, vol. 14, pp. 8-13, 2007.

[20] D. International, "XBee User Manual," ed: Digi International, 2012, pp. 1-155.

[21] C. Chiu-Chiao, H. Ching Yuan, W. Shiau-Chin, and L. Cheng-Min, "Bluetooth-Based Android

Interactive Applications for Smart Living," in Innovations in Bio-inspired Computing and

Applications (IBICA), 2011 Second International Conference on, 2011, pp. 309-312.

[22] C.-H. Chen, C.-C. Gao, and J.-J. Chen, "Intelligent Home Energy Conservation System Based On

WSN," presented at the International Conference on Electrical, Electronics and Civil Engineering,

Pattaya, 2011.

[23] S. Hilton. (2012, 14 January). Progression from M2M to the Internet of Things: an introductory blog.

Available: http://blog.bosch-si.com/progression-from-m2m-to-internet-of-things-an-introductory-

blog/

[24] Z. Alliance. (2012, accessed on 6 October). ZigBee Specification. Available: http://www.zigbee.org

[25] Y. A. Alqudah, "VITAL SIGNS REMOTE MONITORING AND ANALYSIS: SEAMLESS

INTEGRATION WITH A SMART PHONE," Biomedical Engineering: Applications, Basis and

Communications, vol. 0, p. 1350003.

[26] C. Doukas, Building Internet of Things with the Arduino vol. 1, 2012.

