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ABSTRACT 

The data warehouse (DW) technology was developed to integrate heterogeneous information sources for 

analysis purposes. Information sources are more and more autonomous and they often change their 

content due to perpetual transactions (data changes) and may change their structure due to continual 

users' requirements evolving (schema changes). Handling properly all type of changes is a must. In fact, 

the DW which is considered as the core component of the modern decision support systems has to be 

update according to different type of evolution of information sources to reflect the real world subject to 

analysis. The goal of this paper is to propose an overview and a comparative study between different 

works related to the DW evolution problem. 
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1. INTRODUCTION 

 Information sources which are integrated in the DW are autonomous and they can change their 

schema independently of DW. Such changes must be supported when they rich the DW. In fact, 

the DW technology is seen as the process of good decision making since it provides necessary 

tools for data analysis such as the On Line Analytical Processing (OLAP). In the literature the 

DW evolution can be classified into three different approaches namely schema evolution [1, 2, 

3, 4] and schema versioning [5, 6] when the DW is defined as a multidimensional schema (fact 

and dimension tables) and view adaptation and synchronization [7, 8, 9, 10, 11, 12, 13, 14, 15] 

when the DW is defined as a set of materialized views. The goal of this paper is to present 

different works related to DW evolution, then to propose a comparative study between those 

works. 

This paper is organized as follows. In section 2, we present different researches works 

related to DW evolution. In section 3, we present comparative studies between 

researches works cited above. In section 4, we summarize the work and we propose 

new perspectives that can be done in the future. 

2. STATE OF THE ART 

 In the literature, the DW evolution can be classified into three different approaches 

namely schema evolution [1, 2, 3, 4], schema versioning [5, 6] and view maintenance 

[7, 8, 9, 10, 11, 12, 13, 14, 15]. 
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2.1. Schema Evolution 

This approach focuses on dimensions updates [1, 2], instances updates [4], facts updates and 

attributes updates [3]. 

In [1], authors proposed some operators to define dimension updates. Those operators are:  

- Generalize operator: it allows the creation of new level (ln) to which a pre-existent one (l) 

rolls up. Authors took the example of the dimension " store " to which they defined a new level  

"type of store " then the level " type of store " generalize the dimension "store ". 

- Specialize operator: it allows adding a new level (ln) to a dimension. Authors choose to 

specialize the dimension "day" with the level "hour ", and then the level "hour" specializes the 

dimension "day ". 

- Relate levels operator: it allows defining a roll up function between two independent levels of 

the same dimension. Authors defined a relation between the level "category" and the level  

"brand". Those two levels were independent. 

- Unrelated levels operator: it allows deleting a relation between two levels. Authors deleted the 

relation between the levels "company" "category" and the level "brand ". 

- Delete level operator: it allows to delete a level then to define new relations between levels. 

Authors deleted the level "branch" then a direct relation between the levels "category" and 

"item" was defined. 

- Add instance operator: it allows adding an instance to a level in the dimension. Authors added 

the instance item 5 to the level "item ". 

- Delete instance operator: it allows deleting an instance of a level. Authors deleted the instance 

item 4 of the level "item ". 

After defining operators to handle dimension updates, authors of [1] saw that they must handle 

the impact of dimension structural updates on the data cube. In fact, they proposed some data 

cube adaptation after the Dellevel update, Addlevel update, DelInstance update, AddInstance 

update by computing for each cube view an expression to maintain it. 

In this paper, no implementation was done to support those changes impact.  

In [2] authors proposed an extension to the work presented in [1] and defined the WareHouse 

Evolution System (WHES) prototype to support dimensions and cubes update. In fact, they 

extended the SQL language and gave birth to the Multidimensional Data definition Language    

(MDL). This latter allowed defining operators for to support evolution of dimensions and 

cubes. 

For dimensions update, authors defined the following operators: 

- CreateDimension: this operator allows the creation of a new dimension (with its name, its 

properties and its levels). 

- DropDimension: this operator allows the deletion of an existing dimension (with its name, its 

properties and its levels). 

- RenameDimension: this operator allows changing the name of a given dimension. 

- AddLevel: this operator allows the add of a new level to a given dimension. 

- DeleteLevel: this operator allows the deletion of a level from a given dimension. 
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- RenameLevel: this operator allows changing the name of a given level. 

- AddProperty: this operator allows the add of a property or attribute to a given dimension or a 

given level. 

- DeleteProperty: this operator allows the deletion of a property from a dimension or from a 

level. 

To add a level X (brand) to a dimension Y (product) using the MDL, users should respect the 

following syntaxes with X= brand and Y= product: 

Alter dimension Y                                                                                    Alter dimension Product 

Add level X: type of X                                                                           Add level brand: char (20) 

Default 'value of X'                                                                                                    Default 'ABC' 

For cube updates, authors defined the following operators: 

- CreateCube: this operator allows the creation of a new cube. 

- DropCube: this operator allows the deletion of a given cube. 

- RenameCube: this operator allows the change of the name of a given cube. 

- AddMeasure: this operator allows the add of a measure to a given cube. 

- DeleteMeasure: this operator allows the deletion of a measure from a given cube. 

- RenameMeasure: this operator allows the change of the name of a given measure. 

- AddAxis: this operator allows the add of an axis of analyse to a given cube. 

- DeleteAxis: this operator allows the deletion of a given axis of analyse from a cube. 

Let's mention that a cube is the fact table and the axis is the dimension in the relational schema. 

To add an axis X (city) to a cube Z (sales) using the MDL, users should respect the following 

syntax: 

Alter cube Y                                                                                                           Alter cube sales 

Add axis X                                                                                                                 Add axis city 

Default ' value of X'                                                                                           Default ' Grenoble' 

In [3], authors defined a formal description of multidimensional schemas and instances. This 

formal description constitutes the data model. This latter was defined as follows: a MD model м 

is a 6 tuple (F, L, A, gran, class, attr) where F  is a finite set of fact names, L  is a finite set of 

dimension level names, A is a finite set of attributes names, Gran is a function that associates a 

fact with a set of dimension level names, Class : is a relation defined on the level name,  Attr  is 

a function mapping an attribute to a given fact or to a given dimension level 

After defining the data model, authors presented a set of formal evolution operations. Those 

latter can have an effect on the model or not. The following evolution operations have no 

effects on the model: 
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- Insert level: it consists on extending the MD model by a new dimension level. This operation 

has no effects on instances. 

- Delete level: it consists on deleting a dimension level from an MD model but the deleted 

dimension must not be connected to the fact. This operation has no effects on instances. 

- Insert attribute: it consists on creating new attribute without attaching it to a dimension level 

or fact. This operation has no effects on instances. 

- Delete attribute: it consists on deleting an attribute which is a disconnected attribute (A € F, A 

€ D). This operation has no affects on instances. 

- Insert classification relationship: it consists on defining a classification relationship between 

two existing dimension levels. This operation has no effect on instances. 

- Delete classification relationship: it consists on deleting a classification relationship without 

deleting the corresponding dimension levels. This operation has no effect on instance. 

 

The following evolution operations have effects on the model: 

- Connect attribute to dimension level: it consists on connecting an existing attribute to a 

dimension level. This operation has an effect on the instance. In fact, it should define a new 

function for each new attribute to assign an attribute value to each member of the corresponding 

level. 

- Disconnect attribute from dimension level: it consists on disconnecting an attribute from a 

dimension level. This operation has an effect on the instance since it should eliminate the 

deleted attribute functions. 

- Connect attribute to fact: it consists on connecting an existing attribute to a fact. This 

operation has an effect on the instance. In fact, it should define a function that maps coordinates 

of the cube to measures. 

- Disconnect attribute from fact: it consists on disconnecting an existing attribute from a fact. 

This operation has an effect on instance. In fact, it should delete the function that maps 

coordinates to measures. 

- Insert fact: it consists on extending the MD model by a new fact and without attaching 

dimension levels to this fact. It should define dimensions for this fact separately. This operation 

has no effect on the instance but has an effect on the MD model since it should define a new 

function that associates a fact with a set of dimension level names. 

- Delete fact: it consists on removing   an existing fact from the MD model but this fact must 

not be connected to any dimension and don’t contain any attributes. This operation has no effect 

on the instance but has an effect on the MD model since the name of the deleted fact will be 

removed from the finite set of fact names. 

- Insert dimension into fact: it consists on inserting a dimension at a given dimension level into 

an existing fact. This operation has as an effect the computing of the new fact. 

- Delete dimension: it consists on deleting a dimension which is connected to a fact from it. 

This operation has as an effect the deleting of the function that maps coordinates of the cube to 

measures. 

In [3], authors defined a schema evolution algebra based on formal description but no 

implementation was done. 
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2.2. Schema Versioning 

 This approach focuses on keeping trace of changes by keeping different versions of a given 

DW [5, 6]. In [5] authors make the difference between schema evolution and schema 

versioning. In fact, for them schema evolution consists in transferring old data from old schema 

and updating it in a new schema. However, schema versioning consists in keeping the history of 

all versions by temporal extension or by physical storing of different versions. For the schema 

versioning, authors of [5] distinguish two types of versions. In fact, they presented real versions 

and alternative versions. The real versions support changes related to external data sources 

(changes in the real world) but the alternative versions support changes occurred by the " what 

if analysis". That happens when decision makers try to predict or to simulate different virtual 

possible business scenarios. Let’s mention that an alternative version is or will be created from 

a real version and several alternative versions can be created from several real versions or from 

the same real version. As real version, authors of [5] presented the example of changing the 

borders of regions (city Konin moved from the region A to the region B) in the case of police 

DW and its impacts on results of the measure “total-fine” of the fact table “inspected violation”. 

In this case, authors proposed to keep the old version with data before changes and to create a 

new version with data after changes. As alternative version, authors presented virtual scenarios. 

They simulated the scenario of moving the violation 2 from the group A to the group B, then 

the decision maker can compare the real situation with the virtual one. In [5], every version real 

or alternative has a valid time [begin valid time, end valid time] in which the version is called 

valid. It is the time constraints on versions. 

At the implementation level, authors used the data sharing technique to avoid the physical copy 

of data in every DW version. In fact, they stored in a given DW version only data that are new 

or changed in a given version and other data related to a parent version and then shared by its 

child versions. To model this, a prototype multiversion DW was implemented in visual C++. 

In [6], authors handled evolutions in multidimensional structures and provided a new 

conceptual model. In fact, they proposed a case study in which the fact table is related to birds 

and dimensions tables are Date, Gender, City and country. Authors defined for each city the 

districts belonging to it in the year 2001 (the districts D1 and D2 belong to the city C1 and D3 

belongs to C2). In 2002, some changes happened. In fact, D2 was not any more belongs to C1 

but to C2. Due to this change the query about the number of birds per year and per district will 

change. To solve this problem, authors of [6] handled dimension schema evolution (creation 

and deletion of a dimension, creation and deletion of a hierarchy, creation and deletion of a 

level, move of a level in the hierarchical schema structure) and evolution on members (creation 

of a member, deletion of a member, transformation of a member's name or attribute, merging of 

n members into one member, splitting of one member into n members and reclassification of a 

member in the dimension structure). In fact, for each change, a new version was defined in 

order to keep trace and to respect the definition of a DW   (time variant). Each version is valid 

within a time valid interval. This solution was developed with the visual basic interface on the 

commercial OLAP environment. 

2.3. View Synchronization and Maintenance 

This approach focuses on maintaining a materialized view in response to data changes [7, 8, 9, 

and 10] or to data sources changes [10, 11, 12, 13, and 14] and sometimes to monitor the DW 

quality under schema evolution [15]. 

Research works elaborated in the context of view maintenance can be classified in the 

following categories: 
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- View adaptation [7, 8, 9, and 10]: this approach consists in adapting views to changes 

by adding meta data to materialized views. Those meta data contain structural updates 

related to materialized view. 

- View synchronization (rewriting of views) [10, 11, 12, 13, and 14]: many research 

works were interested in this approach because it is in relation with other problems 

such as data integration, data warehouse modeling… 

In [10] Bel presents an approach for dynamic adaptation of views related to data sources  

 (relations sources) changes. The main idea of this work is to avoid the recomputation of views 

which are defined from several sources. In fact, the key idea is to compute the new view from 

the old one. Bel presents the view adaptation problem from two different points of views. 

The first point of view is from the user or from the DW designer or administrator and the 

second point of view is from data sources. For the first point of view, the user or the DW 

designer can bring into play schema changes on views (e.g. adding an attribute, delete an 

attribute, modifying an attribute domain in a view schema) independently of the data sources. 

Then the changes of the view definition lead to recompute the materialized view. This is the so 

called "view adaptation". For the second point of view, the data sources (relation sources) can 

change their schema. This type of changes can touch the DW structural consistency since it may 

invalidate the materialized views. In this case the solution is to preserve the structural 

consistency of the DW. This kind of view adaptation is so called "the structural view 

maintenance". Bel investigated the view adaptation problem from both point of views citing 

above. Let's start with the view adaptation from point of view data sources or relation sources: 

the author of [10] presents the impact of schema changes of data sources on the SELECT, 

WHERE and FROM clauses of the view query. 

For the SELECT clause, authors took the case of deleting an attribute A from a data source and 

its impact on the materialized view V. This latter should be rewritten (V') in order to be updated 

by deleting the attribute A, then the old view V is deleted and the new view V' is renamed as V. 

this idea was translated into the following query: 

 

Create view V' as 

 (Select* From V) 

Hide attribute A 

Drop view V' 

Rename V' as V 

 

For the WHERE clause, Bel presents two cases: 

- The deleted attribute is involved only in the WHERE clause. 

- The deleted attribute is involved in the SELECT and the WHERE clause. 
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In the first case, the deleted attribute A1 was used in the condition C1 of the view V. the 

solution is to define a new view V' from the old one V. V' will contain all attributes (*) of V 

and other attributes from different relation sources ( R1……Rm) under different conditions 

expect the condition C1 which contains the deleted attribute A1. This idea was translated into 

the following query: 

 

Create view V' as (Select*From V) 

Union (select* From R1, R2, …..Rm 

Where not C1 and C2 and……and Ck); 

 

In the second case, the deleted attribute A1 is involved in the SELECT and WHERE clause. 

The solution is to define a new view V'. This latter will contain all attribute of the old view V 

expect the deleted attribute A1 ( A2,…An) and other attributes expect A1 from different relation 

sources ( R1,….Rm) under some conditions expect the condition C1 which contains the deleted 

attribute A1. The old view V will be deleted and replaced by the new view V' since this latter 

will be renamed as V.  This idea was translated into the following query: 

 

  Create view V' as 

 (Select A2, A3,…An From V) 

Union (select A2, A3, …An 

From R1, R2, …..Rm 

Where not C1 and C2 and…Ck) 

Drop view V 

Rename V' as V 

 

For the FROM clause, Bel presents two cases of   impact of DELETE a relation source on the 

FROM clause: existence of only one relation source or existence of several relation sources. 

In the first case, the delete of the only relation source from the FROM clause entails the delete 

of the entire view. In the second case, the delete of a relation source R1 will occur the 

replacement of the old view V by a new one V'. This latter will contain attributes of V and other 

attributes from different relation sources expect the deleted one of course under some 

conditions expect the condition which contains an attribute related to the deleted relation 

source. This idea was translated into the following query: 
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Create view V' as 

(Select R2.Ai, …Rm.Aj  From v) Union  

(Select R2.Ai, …Rm.Aj From R2,…..Rm 

Where not ( R1.Ai = R2.Ai ) And ( R2.Ai = Rm .Aj )) 

As mentioned above, the views can change their schema independently of data sources. In fact, 

the user or the DW administrator can bring into play schema changes directly on views by 

adding an attribute to a view or by modifying the domain of an attribute. 

In [10], the add of new attribute to a view is the result of new requirements. This operation does 

not need the rewriting of the view but only the storage of the value of the new attribute. This 

primitive has the following form: 

Add attribute to V (A: <type of A>) 

The modification of an attribute domain simulates the creation of new view V' from the old one 

V. V' must not involve the specific attribute, then an attribute with the same name and having a 

new type or new definition (domain) is added. The old view V is deleted and the new view V' is 

renamed as V. The following query shows the modification of the domain (new type T) of the 

attribute A: 

Create view V' as 

Select*From V 

Hide attribute A 

Add attribute A: T 

Drop view V 

Rename V' as V 

EVE system [11] proposes a prototype solution to automate view definitions rewriting to solve 

the problem of view inflexibility. This solution has the goal to preserve the maximum number 

of affected view definitions by the occurrence of information sources schema changes. The 

EVE approach assumes that information sources are integrated in the EVE system via a 

wrapper which translates their models into a relational common model. They are supposed to be 

heterogeneous and autonomous which join, or change dynamically their capabilities such as 

their schema. 

EVE system includes two basic modelling tools: a model permitting to user to express view 

definition evolution via an extended SQL called Evolvable SQL (E-SQL) [11] and a model for 

the description of the information sources (MISD) [11] and the relationships between them. 

This model of Information Sources description can be exploited for seeking a suitable 

substitution for the affected view definition components (attributes, relations, and conditions).      
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The View Knowledge Base (VKB) described by E-SQL and the Meta Knowledge Base (MKB) 

revealed by MISD, represent the base for any operation of view rewriting or view 

synchronization process. 

The Data Warehouse Management System constitutes an intermediary between the user space 

called Data Warehouse and the information space including the participating data sources. 

When an information source joins the structure the DWMS, it provides its structure, its data 

model and eventually its content. This information is stored into the MKB with respect to the 

MISD. 

As well, the relationships between information sources, also called substitution rules, can be 

added by the DWMS administrator and/or generated automatically, then inserted into the MKB. 

This information constitutes the key platform for finding affected view definitions components 

substitutions. 

Another contribution of EVE approach is to propose an E-SQL language allowing user 

preferences placing into SQL view definition. E-SQL is an extension of SELECT-FROM-

WHERE SQL enriched by specifications defined by the developer in charge of the view 

definitions in order to indicate how those latter can evolved. The E-SQL defined views are then 

stored into a structure called View Knowledge Base. 

The view synchronization [11] consists in determining legal rewritings for the affected views, 

referring to the rules or constraints embodied into the MKB. These rules enable substitutions 

retrieval for the affected view definition components while respecting preference parameters 

described into the VKB. 

The view rewriting is legal when it is compatible with the current information space. This 

rewriting have to preserve the information presented by the initial view definition according to 

preferences parameters associated to the view definition components and the possibilities of 

substitutions offered by the MISD. In [11], the user must intervene in preferences definition 

otherwise; the system can not take into account the schema changes. 

In the context of extension of SQL, the authors on [12] defined the cooperative SQL named C-

SQL which detends the simplicity of SQL. In [13], authors defined the schema SQL named S-

SQL. This latter allows integrating the relational databases and meta data. This language can be 

exploited by database analyst in order to describe the schema transformation. 

The increase need to decrease the network saturation and to minimize communication costs, 

have led [14] to the EVE solution to become more adapted for dynamic and distributed 

environment by adopting new techniques like the mobile agents. In fact, authors of [14] propose 

to design a mobile agents view synchronization system based on EVE called MAVIE. This 

latter has to ensure data warehouse maintenance under schema changes. 

MAVIE solution decreases the synchronization time due to parallelism permitted by mobile 

agents and avoids the saturation of the network. The architecture of MAVIE system [14] is 

distributed on four entities which are the mobile MKB agent, the mobile VKB agent, the mobile 

detector agent and the mobile synchronizer agent. All those agents know each other via their 

identifier, names and sites. That fact will assure the direct communication between all mobile 

agents. 
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The following figure describes the communication between mobile agents of MAVIE system. 

 

Figure 1: MAVIE agent communication [14] 

Mobile information sources can change their schema continuously. This fact  makes the views 

of the data warehouse undefined. To solve this problem, mobile agent technology imposes it 

self as a new solution to schema change detection system. In fact the mobile detector agent in 

contrast to the static one can move from one information source to another to detect changes. 

The change detection operation consists on comparing for each schema component, two schema 

versions (schemat-1 , schemat ), if they have been found different, it implies that a change has 

been occurred and it has to be computed. This latter will be sent in parallel to the mobile Meta 

Knowledge Base (MKB) and the mobile View Knowledge Base (VKB). 

After receiving messages from mobile detectors about schema changes, the mobile MKB agent 

must look into all MKB components in order to determine affected knowledge and rules by the 

indicated schema changes, and then it computes the affected knowledge before sending them to 

the mobile view synchronizer agent. 

After receiving messages from mobile detectors about schema changes, the mobile VKB agent 

must look into all VKB components in order to determine affected views by the indicated 

schema changes, and then it computes the affected views before sending them to the mobile 

view synchronizer agent.  

The role of the mobile view synchronizer (VS) agent is to find legal rewritings for the affected 

views (the view rewriting is legal when it is compatible with the current information space), 

then it emits the affected knowledge and views replacement to the mobile MKB agent and the 

mobile VKB agent respectively.  

The above solution based on EVE and on a technique resulting from the field of artificial 

intelligence which is the mobile agents called MAVIE permitted more autonomy ( by 

separating between schema change detection, affected knowledge and view definition 

determination and view definition synchronization tasks), parallel schema change detection (by 

using parallel detector agent instances running over distributed information sources), parallel 
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determination of affected knowledge and view definition determination and parallel view 

definitions synchronization ( by triggering view synchronizer agent instances). 

In [15], Quix saw that the quality of the DW is important. In fact, his approach is embedded in 

the Data Warehouse Quality (DWQ) framework. The aim of [9] is not to provide new 

techniques to maintain views but to monitor the DWQ under evolution. In fact, Quix presented 

many evolution operations and their impacts on quality factor. For example, the add /delete of a 

view and the add/delete of an attribute to/from view will affect the completeness, the 

correctness and the consistency of the logical schema. The rename of a view will affect the 

interpretability and understand ability of the view and its attributes. The change of an attribute 

domain will affect the interpretability of data. The add of an integrity constraint will affect the 

credibility and consistency of data in data store. The delete of an integrity constraint will affect 

the consistency of data. 

3. COMPARATIVE STUDIES 

In this section we propose to compare researches works related to the same approach of DW 

evolution. For the schema evolution approach,   our comparative study is based on the 

following criteria: level evolution, instance evolution, dimension evolution and fact evolution. 

Works in [1], [2] and [3] supported the level evolution but if we detail this type of evolution we 

will find that each author supported a set of level evolution but not the total. In fact, authors in 

[1], [2] and [3] tacked into account the Add and the Delete of level but only authors in [1] 

treated the Relate and Unrelate of level and only [2] treated the Rename of level. 

Hurtado in [1] was interested in Instance evolution by introducing the Add and Delete of 

instance. 

Benitez [2] and Blashka [3] were interested in Dimension evolution. In fact, both of them 

presented the Add, the Delete of dimension and the Add, the Delete of attribute but only [2] 

presented the rename of dimension. 

Benitez [2] and Blashka [3] were interested in Fact evolution but each author was interested in 

some operators which supported such evolution. In fact, Benitez [2] presented the Add, the 

Delete and the Rename of measure while Blashka presented the Add and the Delete of fact.  

To summarize this section we propose the following table (table 1):  

Table1.  Schema evolution 

Fact 

evolution 

Dimension 

evolution 

Instance 

evolution 

Level  

evolution 

Criteria 

Author 

    x  x  Hurtado [1]  

x  x    x  Benitez [2]  

x  x    x  Blaschka [3]  
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Dealing with the schema versioning, we can base our comparative study on the following 

criteria:  real version and alternative version. 

As we mentioned above, the real version supports changes of the real world while the 

alternative version supports the what-if-analysis since it is used to simulate different business 

scenarios. Authors in [5] and   [6] were interested in presenting real versions.  Authors in [6] 

simulated some business scenarios by presenting alternative versions. 

 

To summarize this section we propose the following comparative table (table 2): 

Table2. Schema versioning 

Alternative Versions 

(what if analysis) 

Real versions Criteria 

Author 

  x  Bebel [5]  

x  x  Body [6]  

 

For the view maintenance, we can base our comparative study on the following criteria: view 

adaptation, view synchronization, extension of SQL and impact of schema changes on DWQ.  

The user or the DW administrator can bring modification directly on views independently of 

data sources by adding   attributes or relations to a view definition. This is the so called view 

adaptation. The data sources can change their schema and this may invalidate the materialized 

views. This is the so called the structural view maintenance. 

Authors in [10], [11], [12], [13] and [14] focuses on structural view maintenance. In fact, they 

presented the problem of DW evolution when the data sources change their schema. 

 Authors in [7], [8], [9] and [10] treated the DW evolution problem when data change 

independently of data sources changes so they dealt with the view adaptation approach.  Jalel in  

[14] was the only author that used a new technique based on mobile agents to decrease the 

synchronization time and then to avoid the saturation of the network. 

Authors in [11], [12] and [13], defined new languages based on SQL. In fact, authors in [11] 

defined the E-SQL, authors in [12] defined the C-SQL and authors in [13] defined the S-SQL. 

All those authors cited above focused on view maintenance after data changes or data sources 

changes but they didn't take into account the quality of the DW, that means the impact of such 

changes on the data warehouse quality (DWQ) while this was treated by Quix in [15]. 

 

To summarize this section we propose the following comparative table (table 3): 
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Table3. View maintenance 

Criteria View 

adaptation 

 View 

synchronization 

Extension 

of SQL 

DWQ 

Author              

Gupta [7] x    

Nica [8] x    

Rundensteiner [9] x    

Bel [10] x x   

Zhang [11]  x x ( E-SQL)  

Rajarman [12]  x x (C-SQL)  

Lakshmanan [13]  x x (S-SQL)  

Jalel [14]  x   

Quix [15]    x 

 

3. CONCLUSION 

In this paper, we presented different research works which focused on the DW evolution. Those 

works were classified into three approaches. In fact, we presented the schema evolution 

approach, the versioning approach and the view maintenance approach. As future work, we 

propose to investigate the problem of schema changes in the case of spatio-temporal and 

trajectory data warehouse. 
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