
International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

DOI : 10.5121/ijdps.2013.4102 15

A PERFORMANCE EVALUATION OF A PARALLEL

BIOLOGICAL NETWORK MICROCIRCUIT IN

NEURON

Salvatore Cuomo
1
, Pasquale De Michele

2
 and Francesco Piccialli

3

University of Naples “Federico II” Department of Mathematics and Applications,

Via Cinthia, 80126, Napoli, ITALY.
1salvatore.cuomo@unina.it

2pasquale.demichele@unina.it
3francesco.piccialli@gmail.com

ABSTRACT

A critical issue in biological neural network modelling is the parameter tuning of a model by means ofthe

numerical simulations to map a real scenario. This approach requires a huge amount ofcomputational

resources to assesses the impact of every model value that, generally, changes thenetwork response. In

this paper we analyse the performance of a CA1neural network microcircuit model for pattern

recognition. Moreover, we investigate its scalability andbenefits on multicore and on parallel and

distributed architectures.

KEYWORDS

Parallel Computing, GPU Computing, Performance Analysis, Programming, Biological Neural Network.

1. INTRODUCTION

Prototyping and developing computational codes of biological networks, in terms of reliability,

efficient, and portable building blocks allow to the computational neuroscientists to simulate

real cerebral behaviours and to validate theories and experiments. In prior work,we

describedseveral mathematical models and software for biological cells modelling

[13];softwareare divided into two main categories: the general and the special purpose Problem

Solving Environments (PSEs). The widely diffused PSEsareNEURON [8] and GENESIS [14].

These frameworks have large communities where the users collect and maintain databases of

published computational models. In this work, we use NERUON to solve problems at several

levels of biological details.

Many research papers ([9], [12], [15], [16] and [17])adopt parallel computing and scientific

tools to increase the performance of novel neural network models. Generally, they highlight the

biological results, without dealing on the computational aspects related to the parameter issue

setting or to the simulation strategies.Moreover, they do not report detailed analysis of the

parallel and distributed algorithms, which are essential to optimize a network in terms of its

scalability and performance. In other words, building a neural network that reproduces a real

scenario requires long and deep stepsto set the model parameters through numerical simulations.

The validation of a computational model, by tuning different biological parameters, represents a

critical issue in terms of memory allocations and computing time. For example, in [13] we have

showed that the tuning of the external electrical stimuli and the random synapses of a modified

CA1 model [17] requires a full computational time of Ttot ≈ 9h for a single cell. The adjustment

phase increases the simulation timedramatically, when switching from a single cell to a

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

16

network. In this work, the starting point is a multi-pattern modification of a CA1 neural network

microcircuit model for pattern recognition [9], implemented in NEURON. In our experiments,

the set-up of the network requires the storage of about 45GB of data and several days for any

simulation. Moreover, the computational occupancy of the resources strongly depends on the

model parameter variation. As a consequence, we study the scalability and the performance of

the proposed modification, which is a crucial step to develop a network that recognizes patterns

in a real scenario. This work is useful to highlight the strengths and weaknesses of the scientific

and parallel computing strategies used in the implemented code. We prove that a pivotal role is

played by the combined use of high performance computing techniques, including parallel

scientific computing, multi-cores programming and GPU programming. Finally, we suggest

solutions that may also be adopted to optimize the neural network code and to simulate a

biological scenario in a more reliable time.

The paper in organised as follows. In the Section 2 we show our multi-pattern modification of

the microcircuit. The Section 3 describes the numerical results and in the Section 4 performance

considerations are discussed. Finally, in the Section 5 we report the conclusions.

2. A MULTI-PATTERN MODIFICATION OF A CA1 MICROCIRCUIT

The model in [9] defines a neural network microcircuit model of the hippocampus, a brain

region that is involved in the intermediate term storage of the memories that can be consciously

recalled: the declarative memories [1, 2, 3]. The hippocampus contains two main types of cells:

principal excitatory neurons that are the main information processors of this region, and a large

kind of inhibitory inter-neurons that form connections locally [5, 6]. In [7] it is proposed an

hippocampus feature, the theta rhythm (4-7~ Hz), that contributes to the memory formation by

separating encoding (storage) and retrieval (recall) of memories into different functional half-

cycles. In particular, the model in [9] simulates in NEURON the firing time of different

hippocampal cell types relative to the theta rhythm in anaesthetised animals, and addresses the

roles played by the various types of inhibitory inter-neurons in the dynamical CA1 information

processing.

Our modification consists of re-designing the model in [9] by introducing a new multi-pattern

recognition strategy. Given a set of N patterns, the model is able to store all the N patterns with

the Spike-timing-dependent plasticity (STDP) learning rule and subsequently recall these.

STDP is a process that adjusts the strength of the connections between neurons in the brain. In

STDP rule synapses increase (or decrease) their efficacy if the pre-synaptic spike arrives before

(or after) the post-synaptic neuron is activated. For biological aims it is needed to investigate the

CA1 network, by means of the recall stage of a large numbers of stored patterns. The complete

knowledge of the neuronal phenomena requires the increasing of the patterns and multiple

parametric simulations on the network.

As showed in the Figure 1, the model consists of 235 cells: 100 Pyramidal (P), 2 Basket (B), 1

BiStratified (BS), 1 Axo-Axonic (AA) and 1 OriensLacunosum-Moleculare (OLM), that are

cells with biophysical properties adapted from literature; 100 CA3, 20 Entorinal Cortex (EC)

and 10 medial SEPtum (SEP), that are cells whose behaviour is simulated by means of electrical

stimuli. These cells are connected as showed in Table 1. The duration of a single theta rhythm in

the network is fixed to 250 ms: 125 ms for storage and 125 ms for recall phases. Repeating the

theta cycles for a fixed number of times (T) an alternation between phases of the storage and

recall occurs. The algorithm is divided in two sub-algorithms: the storage and the recall.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

2.1. Storage Algorithm

In the Figure 2 (on the left) the graphical representation of the multi

showed. This algorithm for the storage of

tasks.

Figure 2. Graphical representations of the multi

and the recall (on the right) of

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

Figure 1. Network topology

In the Figure 2 (on the left) the graphical representation of the multi-pattern Algorithm 1 is

showed. This algorithm for the storage of N patterns consists of many functionally dependent

Figure 2. Graphical representations of the multi-pattern algorithms for the storage (on the left)

and the recall (on the right) of N patterns

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

17

pattern Algorithm 1 is

patterns consists of many functionally dependent

pattern algorithms for the storage (on the left)

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

18

Table 1. Network connections

Synapse

Number

of

sources

(a) (b) (c)
Number of synapses

in total =
((a)××××(b))××××(c)

Number

of targets
Number of

connections
Number of

synapses in a

single

connection
EC→B 20 2 20 2 (2×20)×2=80

EC→AA 20 1 20 2 (1×20)×2=40

EC→P 20 100 20 3 (100×20)×3=6000

CA3→B 100 2 100 4 (2×100)×4=800

CA3→AA 100 1 100 4 (1×100)×4=400

CA3→BS 100 1 100 4 (1×100)×4=400

CA3→P 100 100 100 1 (100×100)×1=10000

SEP→B 10 2 10 2 (2×10)×2=40

SEP→AA 10 1 10 2 (1×10)×2=20

SEP→BS 10 1 10 2 (1×10)×2=20

SEP→OLM 10 1 10 1 (1×10)×1=10

P→P 100 100 1 1 (100×1)×1=100

P→B 100 2 100 2 (2×100)×2=400

P→AA 100 1 100 2 (1×100)×2=200

P→BS 100 1 100 2 (1×100)×2=200

P→OLM 100 1 100 2 (1×100)×2=200

B→P 2 100 2 1 (100×2)×1=200

B→B 2 2 1 1 (2×1)×1=2

B→BS 2 1 2 1 (1×2)×1=2

AA→P 1 100 1 1 (100×1)×1=100

BS→P 1 100 1 12 (100×1)×12=1200

BS→B 1 2 1 1 (2×1)×1=2

OLM→P 1 100 1 4 (100×1)×4=400

Algorithm 1. Multi-patterns storage algorithm

The tasks of a single pattern are organized in stacks, with different execution steps. In detail,

these steps are: 1) the network initializing (for the first pattern only); 2) the setup of thenetwork

connections by means of a suitable weight matrix W, computed with STDP rule; 3) the

numerical integration and the Wupdate; 4) the storage of W; 5) the output generation. The

numerical integration consists of the solutions of systems of Ordinary Differential Equations

(ODEs) that models the cell computational behaviour. A detailed description of the model is in

the Appendix.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

The W matrix covers a key role in the adaptive multi

opportunely calibrate the network connections, taking into account the synaptic plasticity.

particular, for each pattern i (1 ≤ i

whereW(i-1) is the weight matrix

network connection vector, p(i) is the

the STDP rule.

The stacks of the storage algorithm are functionally dependent, and our implementation strategy

consists of parallelizing the network activity on a single stack (pattern). By using a

strategy, the network cells are distributed among the available hosts [10], as showed in Figure 3.

Figure 3. Example of parallelization with 4 available ho

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

matrix covers a key role in the adaptive multi-pattern recognition, because i

opportunely calibrate the network connections, taking into account the synaptic plasticity.

≤ i ≤ N), the model returns:

W
(i)

= s(W
(i-1)

, c
(i)

, p
(i)

)

is the weight matrix obtained by the (i-1)-th pattern storage (W(0) = 0),

is the i-th pattern to be stored, and s is a function that represents

The stacks of the storage algorithm are functionally dependent, and our implementation strategy

nsists of parallelizing the network activity on a single stack (pattern). By using a round

are distributed among the available hosts [10], as showed in Figure 3.

Figure 3. Example of parallelization with 4 available hosts, for a generic execution stack

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

19

pattern recognition, because it is used to

opportunely calibrate the network connections, taking into account the synaptic plasticity. In

= 0), c(i) is a

is a function that represents

The stacks of the storage algorithm are functionally dependent, and our implementation strategy

round-robin

are distributed among the available hosts [10], as showed in Figure 3.

sts, for a generic execution stack

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

20

From parallel computing point of view, the strategy is the following:

(1) a processor integrates the computational modelon its assigned group of cells;

(2) if a spike event occurs between source and target cells, a network communication

(NetCon)is activated;

(3) theweight matrix information are collected in parallel with a “compare and

exchange” strategy.

The parallel performance of the storage algorithm will be discussed in the Section 3.

2.2. Recall Algorithm

In Figure 2 (on the right), the graphical representation of the recall Algorithm 2 is showed.At

the i-th pattern, the model returns:

OUT
(i)

 = r(W
(N)

, c
(i)

, p
(i)

)

whereW(N) is the weight matrix obtained from the previously storage of the N patterns, c(i) is a

network connection vector, p(i) is the pattern to be recalled, r is a function that evaluates the

recall, OUT
(i)

 is the biological output related on recall performance.

Algorithm 2. Multi-patterns recall algorithm

During the recall of the N patterns, all stacks are independent, thus it is possible both to

distribute and parallelize the execution of these. In detail, a single pattern, that will be recalled,

is parallelized in the same way of the storage phase. Let be K = N * M the number of the

available hosts on the parallel and distributed architecture,in a first phase N master hosts are

selected in order to recall a stored pattern. In a second phase each master host sets the network

on M assigned hosts and carries out the recall algorithm, i.e. it executes a stack. For example,

suppose we have to recall 10 patterns on a parallel architecture with 8 core hosts. Each host

recalls a stored pattern and executes the stack on its 8 core blade.

In Figure 4, the output of the microcircuit for one pattern of the recall algorithm is showed. The

simulation is carried out on 6100 ms with 24 theta cycles and shows the input spikes, the recall

quality, the number of spikes of pyramidal cell and the pyramidal cells involved in the synaptic

activity. After a phase of network setup and calibration, we point out that the matrix of the

weight W obtained by the storage algorithm, is used to recall a fixed memory pattern with the

quality showed in Figure 4.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

Figure 4. Biological output carried out after a pattern

In this work we do not discuss about the biological results of the computational neural network,

but we remark that a simulation on a workstation with 8 cores requires, at this time, ~910

seconds. This experiment is reported with the

simulations by tuning the network parameters. Using the network with a large number of

patterns and theta cycles, it is a preliminary step for validating the CA1 microcircuit from a

biological standpoint. In the next Section we discuss

algorithms.

3. MULTI-CORE AND PARALLEL

The model is implemented by using the problem solving scientific environment NEURON

(v.7.1). The performance tests were carried out on the S.Co.P.E. Grid Infrastru

University of Naples “Federico II

with 8 cores “Intel Xeon E5410

kinds of links: Infiniband, Fiber Channel, 1Gb and 10Gb Ethernet links. Storage and recall

algorithms are performed on a set of 10 patterns, both characterized by duration

cycle of 250ms and an initial delay of

architectures: multicore and distributed.

In order to evaluate the storage and recall performance on these architectures, different

parameters are taken into account. The

Wait is the time spent for exchanging spikes during a simulation;

integrate ODE systems, checking thresholds, and delivering events (it correspond

amount of time needed to numerical integration and weight matrix

creation is the time to setupbiological parameters and to create

Network connection is the time to setup

the time to collect, from each host, the values of the

pattern to be processed; Output

time to collect non-functional information.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

Figure 4. Biological output carried out after a pattern recall during 6100 ms

we do not discuss about the biological results of the computational neural network,

but we remark that a simulation on a workstation with 8 cores requires, at this time, ~910

seconds. This experiment is reported with the aim to show that it is needed to repeat the

simulations by tuning the network parameters. Using the network with a large number of

patterns and theta cycles, it is a preliminary step for validating the CA1 microcircuit from a

next Section we discuss the computational performance of these

ARALLEL DISTRIBUTED CONTEXT COMPARISONS

The model is implemented by using the problem solving scientific environment NEURON

7.1). The performance tests were carried out on the S.Co.P.E. Grid Infrastru

Federico II”, that consists of 300 blade servers (nodes), each of which

Intel Xeon E5410” at 2.33 GHz (2400 cores in total), connected with several

kinds of links: Infiniband, Fiber Channel, 1Gb and 10Gb Ethernet links. Storage and recall

algorithms are performed on a set of 10 patterns, both characterized by duration of each theta

and an initial delay of 100ms. The storage is performed on two different

architectures: multicore and distributed.

In order to evaluate the storage and recall performance on these architectures, different

parameters are taken into account. The Runtime is the total execution time for the applicatio

is the time spent for exchanging spikes during a simulation; Step is the time spent to

integrate ODE systems, checking thresholds, and delivering events (it correspond

amount of time needed to numerical integration and weight matrix W updating); Setup and cell

is the time to setupbiological parameters and to create all cells of the network;

is the time to setup network connection; New weight matrix storage

, from each host, the values of the weight matrix and storing these for the next

 is the time to store biological output information; Others

functional information.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

21

6100 ms

we do not discuss about the biological results of the computational neural network,

but we remark that a simulation on a workstation with 8 cores requires, at this time, ~910

aim to show that it is needed to repeat the

simulations by tuning the network parameters. Using the network with a large number of

patterns and theta cycles, it is a preliminary step for validating the CA1 microcircuit from a

the computational performance of these

OMPARISONS

The model is implemented by using the problem solving scientific environment NEURON

7.1). The performance tests were carried out on the S.Co.P.E. Grid Infrastructure of

, that consists of 300 blade servers (nodes), each of which

with several

kinds of links: Infiniband, Fiber Channel, 1Gb and 10Gb Ethernet links. Storage and recall

of each theta-

performed on two different

In order to evaluate the storage and recall performance on these architectures, different

is the total execution time for the application;

is the time spent to

integrate ODE systems, checking thresholds, and delivering events (it corresponds to the

Setup and cell

all cells of the network;

New weight matrix storage is

weight matrix and storing these for the next

Others is the

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

Figure 5. Execution times for the storage of 10 patterns with 8 the

The Figure 5 shows that for the storage phase, on a multicore architecture, increasing the

number of hosts (from 1 to 8) lead

the Step time. In fact, from the Figure

to the 95,47% of the Runtime,

(setup and cell creation, network connection, weight matrix storage and output gen

not affect the overall time.

Figure 6. Runtime percentages for the storage of 10 patterns with 8 theta cycles on a multicore

Moreover, the Figure 6 shows a slight increment of the

Runtime) due to the growing number of communications

hosts. This phenomenon is amplified when moving from a multicore to a distributed

architecture.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

Figure 5. Execution times for the storage of 10 patterns with 8 theta cycles on a multicore

architecture

The Figure 5 shows that for the storage phase, on a multicore architecture, increasing the

leads to a huge reduction of Runtime, substantially equivalent to

e Figure 6, it is possible to see a reduction ofStep from the

, moving from 1 to 8 hosts. Hence, the other execution steps

(setup and cell creation, network connection, weight matrix storage and output gen

percentages for the storage of 10 patterns with 8 theta cycles on a multicore

architecture

shows a slight increment of the Wait time (from 0% to 3,86%

o the growing number of communications among the cells mapped on different

hosts. This phenomenon is amplified when moving from a multicore to a distributed

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

22

ta cycles on a multicore

The Figure 5 shows that for the storage phase, on a multicore architecture, increasing the

, substantially equivalent to

from the 100%

execution steps

(setup and cell creation, network connection, weight matrix storage and output generation) do

percentages for the storage of 10 patterns with 8 theta cycles on a multicore

3,86% of the

cells mapped on different

hosts. This phenomenon is amplified when moving from a multicore to a distributed

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

Figure 7. Execution times for the storage of 10 patterns with 8 theta cycles on a d

The Figure 7 shows that on a distributed architecture a slight worsening of the performance

occurs. In detail, the time needed for the numerical integration (

doubling of the host number and there is

time needed to synchronize the communication between two cells mapped on two different

hosts). The Figure 8 confirms this: with 16 hosts (distributed on 2 different nodes)

reaches the 47,76% of the Runtime

86,93% of the Runtime.

Figure 8. Runtime percentages for the storage of 10 patterns with 8 theta cycles on a distributed

Moreover, this behaviour is particularly clear by

event delivery system to implement spike

Detection of a spike launches an event that

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

Figure 7. Execution times for the storage of 10 patterns with 8 theta cycles on a distributed

architecture

The Figure 7 shows that on a distributed architecture a slight worsening of the performance

, the time needed for the numerical integration (Step) continues to decrease with

and there is a strong increment of the Waittime (the amount of

time needed to synchronize the communication between two cells mapped on two different

. The Figure 8 confirms this: with 16 hosts (distributed on 2 different nodes)

Runtime, while with 128 hosts it further increases, reaching the

percentages for the storage of 10 patterns with 8 theta cycles on a distributed

architecture

Moreover, this behaviour is particularly clear by observing the Figure 9. NEURON uses an

event delivery system to implement spike-triggered synaptic transmission between cells.

a spike launches an event that, after an appropriate delay, will be delivered to a

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

23

istributed

The Figure 7 shows that on a distributed architecture a slight worsening of the performance

) continues to decrease with

the amount of

time needed to synchronize the communication between two cells mapped on two different

. The Figure 8 confirms this: with 16 hosts (distributed on 2 different nodes) Wait time

, while with 128 hosts it further increases, reaching the

percentages for the storage of 10 patterns with 8 theta cycles on a distributed

observing the Figure 9. NEURON uses an

triggered synaptic transmission between cells.

, after an appropriate delay, will be delivered to a

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

24

target cell. The basic problem that has to be overcome in a parallel simulation environment is

that the source cell and its target usually do not exist on the same host [10]. Hence, it is evident

that, moving from a multicore to a distributed architecture, the time for synchronize different

hosts rises with increasing of the involved host number.

Figure 9. Step and Wait curves with the increasing of number of hosts

On a multicore architecture, the recall algorithm has the same performance we have discussed

for the storage phase. On the other hand, as we mentioned earlier, it is possible to implement the

recall algorithm on a distributed architecture: in this way, each algorithm performs the recall of

a single pattern on a node of the architecture. A typical parametric execution of a distributed

recall phase is characterized by the pair (Number of pattern, Number of theta cycles). In the

Table 2 the performance of the parametric execution (10 patterns, 16 theta cycles) are showed.

The recall of N patterns is performed in ~600s, that is the time needed to recall a single pattern

only, obtaining a substantial performance improvement: without the distribution of the

algorithm, the Runtime would have been equal to ~6000s.

Table 2. Execution times for the recall of 10 patterns with 16 theta cycles, distributing the

model

Pattern ID Runtime Wait Step #Spikes Set and

Connect

Output

1 608,775 8,71033 597,987 7975 0,54125 0,61625

2 608,861 8,93715 598,457 8149 0,54125 0,6375

3 607,072 8,51312 597,083 8061 0,54125 0,64875

4 607,812 8,67061 597,683 8033 0,54125 0,635

5 607,119 9,37756 596,286 7946 0,54125 0,6275

6 607,035 8,71243 596,895 7992 0,54125 0,6325

7 607,726 8,79549 597,473 8030 0,54125 0,62125

8 607,191 8,39568 597,321 7848 0,54125 0,63875

9 608,27 10,0982 596,692 8022 0,54125 0,63625

10 608,42 9,3668 597,576 8046 0,54125 0,6325

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

25

4. PERFORMANCE CONSIDERATIONS

In the Section 3, we have discussed the increase of the Wait time when moving from a

multicore to a distributed architecture. Now, we investigate how to limit the Wait time growing.

Better performance and containment of Wait time are given on a multicore architecture. This

kind of architecture is restricted by technological limits related to the small number of cores that

can work together (8-16 cores at this time). Consequently, we need to find an architecture

incorporating the idea behind the multicore computing. The Graphical Processing Unit (GPU)

computing is the solution to this problem. NEURON is a simulator that incorporates molecular,

detailed compartmental modified Hodgkin-Huxley models of axons and dendrites from

anatomical observations, and various ion channels to biophysical details, but unfortunately, at

this time, it is not compatible with parallelization on GPUs. Accordingly, while it is biologically

accurate, it incurs tremendous computational costs for simulation [11]. On the other hand, there

exist many simulation environments that implement and simulate biological neural networks on

GPU architectures.

In [11] is described an easy to use simulator that provide significant computational

performance, as it is able to run on NVIDIA GPUs. Despite this software, differently from

NEURON, uses theIzhikevich neuron model [18] and does not allow to specify the cell

morphologies with great accuracy from a biological point of view,here we implement a

simplified “ad-hoc” version of our model with this tool.

Firstly, we created all the cells specified in the NEURON version.The Figure 10 shows the

creation of Pyramidal and Basket cells, in NEURON (on the left) and in the “ad-hoc” (on the

right) versions. Then, we set the connection between the cells, reproducing the same network

topology specified with NEURON. In Figure 11 is showed the connection between Pyramidal

(pre-synaptic) and Basket Cells (post-synaptic), implemented in NEURON (on the left) and in

the “ad-hoc” (on the right) versions. Finally, we simulated the network activity, on CPU and

GPU architectures.

We compared the performance between CPU(2.4GHz quad-core “Intel Xeon E5620”) and GPU

(NVIDIA Tesla S2050) versions, and we observed a reduction of 85% of the execution time,

moving from CPU to GPU, as showed in Figure 12. This behaviour is due to the

synchronization time removal.

Figure 10. Cell creation in the NEURON and the “ad-hoc” versions

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

Figure 11. Example of cell connection in the NEURON and the “ad

Cell has 2 synapses with each Pyramidal Cell; 400 synapses in total

Figure 12. Execution time reduction moving from a CPU to a GPU architecture

5. CONCLUSIONS

The simulation of biological neural networks is a challenging application from a computational

point of view. The calibration and

simulate the biological behaviour of the

environments for developing simulation codes. In practice,

the real behaviour of a biological neural network, with a large number of connections between

its neurons, requires algorithms and communi

In this work we propose a modification of an exiting CA1 microcircuit for the multi

recognition. Our aim is to analy

distributed and a multicore architecture. We observe that the

overcome is the communication between a source cell and its target, in a parallel simulation

environment. We proof that the microcircuit well scale on a multicore architecture, when the

spike communications are carried out on a dedicated bus. We

purpose simulation environments that support massively parallel multicore programming.

Finally, we think that the performance analysis of the proposed microcircuit is useful

simulate a large number of microbiological multi

acceptable computing time. We are working on the microcircuit optimization on a massively

parallel GPU architecture. We are investigating the compatibility o

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

11. Example of cell connection in the NEURON and the “ad-hoc” versions: each Basket

Cell has 2 synapses with each Pyramidal Cell; 400 synapses in total

Figure 12. Execution time reduction moving from a CPU to a GPU architecture

The simulation of biological neural networks is a challenging application from a computational

calibration and setup of a network require mathematical models in order to

simulate the biological behaviour of the different cell type and sophisticated programming

environments for developing simulation codes. In practice, building a microcircuit that mimes

the real behaviour of a biological neural network, with a large number of connections between

and communication strategies computationally expensive.

we propose a modification of an exiting CA1 microcircuit for the multi

ecognition. Our aim is to analyze the performance of the proposed code in a parallel, a

chitecture. We observe that the main problem that has to be

overcome is the communication between a source cell and its target, in a parallel simulation

environment. We proof that the microcircuit well scale on a multicore architecture, when the

unications are carried out on a dedicated bus. We strongly suggest to use general

purpose simulation environments that support massively parallel multicore programming.

Finally, we think that the performance analysis of the proposed microcircuit is useful

simulate a large number of microbiological multi-pattern recognition experiments in an

acceptable computing time. We are working on the microcircuit optimization on a massively

parallel GPU architecture. We are investigating the compatibility of NEURON with GPU

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

26

hoc” versions: each Basket

Figure 12. Execution time reduction moving from a CPU to a GPU architecture

The simulation of biological neural networks is a challenging application from a computational

setup of a network require mathematical models in order to

phisticated programming

a microcircuit that mimes

the real behaviour of a biological neural network, with a large number of connections between

cation strategies computationally expensive.

we propose a modification of an exiting CA1 microcircuit for the multi-pattern

e the performance of the proposed code in a parallel, a

problem that has to be

overcome is the communication between a source cell and its target, in a parallel simulation

environment. We proof that the microcircuit well scale on a multicore architecture, when the

strongly suggest to use general-

purpose simulation environments that support massively parallel multicore programming.

Finally, we think that the performance analysis of the proposed microcircuit is useful in order to

pattern recognition experiments in an

acceptable computing time. We are working on the microcircuit optimization on a massively

f NEURON with GPU

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

27

computing and exporting the code of our microcircuit on a more general-purpose simulator that

supports the GPU.

ACKNOWLEDGEMENTS

This paper is financial supported by Multicentre Research Project funded by Compagnia di San

Paolo: “Molecular Mechanisms of Memory: Identification and Modelling”.

A. APPENDIX: MATHEMATICAL FORMALISM

A.1. Pyramidal Cells

The somatic (s), axonic (a) and radiatum (rad), lacunosum-moleculare (LM) and oriens (ori)

dendritic compartments obey the following current balance equations:

 C
dVs

dt
= −IL − INa − Ikdr − IA − IM − Ih − IsAHP − ImAHP − ICaL − ICaT − ICaR − Ibuff − Isyn

 (1)

 C
dVa

dt
= −IL − INa − Ikdr − IM − Isyn

 (2)

 C
dVrad, ori

dt
= −IL − INa − Ikdr − IA − IM − Ih − IsAHP − ImAHP − ICaL − ICaT − ICaR − Ibuff − Isyn

 (3)

 C
dVLM

dt
= −IL − INa − Ikdr − IA − Isyn

 (4)

whereIL is the leak current, INa is the fast sodium current, Ikdr is the delayed rectifier potassium

current, IA is the A-type K+ current, IM is the M-type K+ current, Ih is a hyperpolarizing h-type

current, ICaL, ICaT and ICaR are the L-, T- and R-type Ca
2+

 currents, respectively, IsAHP and ImAHP

are slow and medium Ca
2+

 activated K
+
 currents, Ibuff is a calcium pump/buffering mechanism

and Isyn is the synaptic current.

The sodium current is described by:

 INa = gNa × m
2

× h × s × (V − ENa) (5)

The delayed rectifier current is given by:

 IKdr = gKdr × m
2

× (V − EK) (6)

The fast inactivating A-type K
+
 current is described by:

 IA = gA × nA × (V − EK) (7)

The hyperpolarizing h-current is given by:

 Ih = gh × tt × (V − Eh) (8)

The slowly activating voltage-dependent potassium current, IM, is given by the equation:

 Im =10
−4

×Tadj (°C)× gm × m × (V − EK) (9)

The slow after-hyperpolarizing current, IsAHP, is given by:

 IsAHP = gsAHP × m
3
× (V − EK) (10)

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

28

The medium after-hyperpolarizing current, ImAHP, is given by:

 ImAHP = gmAHP × m × (V − EK) (11)

The somatic high-voltage activated (HVA) L-type Ca
2+

 current is given by:

 I
S

CaL = g
S

CaL × m ×
0.001mM

0.001mM + cain

× ghk(V, cain, caout) (12)

where the dendritic L-type calcium channels have different kinetics:

 I
d

CaL = g
d

CaL × m
3
× h × (V − ECa) (13)

The low-voltage activated (LVA) T-type Ca
2+

 channel kinetics are given by:

 ICaT = gCaT × m
2

× h ×
0.001mM

0.001mM + cain

× ghk(V, cain, caout) (14)

The HVA R-type Ca
2+ current is described by:

 ICaR = gCaR × m
3
× h × (V − ECa) (15)

Finally, a calcium pump/buffering mechanism is inserted at the cell body and along the apical

and basal trunk. The factor for Ca
2+ entry was changed from fe=10000 to fe=10000/18 and the

rate of calcium removal was made seven times faster.

The kinetic equations are given by:

drive _ channel =

− f
e
×

ICa

0.2 × FARADAY
if drive_ channel > 0 mM / ms

0 otherwise









(16)

dca

dt
= drive _ channel +

(10−4 (mM)− ca)

7 × 200(ms)
.

A.2. Axo-axonic, Basket and Bistratified Cells

All compartments obey the following current balance equation:

 C
dV

dt
= −Iext − IL − INa − IKdr, fast − IA − ICaL − ICaN − IAHP − IC − Isyn

 (17)

whereC is the membrane capacitance, V is the membrane potential, IL is the leak current, INa is

the sodium current, IKdr,fast is the fast delayed rectifier K+ current, IA is the A-type K+ current,

ICaL is the L-type Ca
2+ current, ICaN is the N-type Ca

2+ current, IAHP is the Ca
2+-dependent K+

(SK) current, IC is the Ca
2+

 and voltage-dependent K
+
 (BK) current and Isyn is the synaptic

current.

The sodium current is described by:

 INa = gNam
3h(V − ENa) (18)

The fast delayed rectifier K+ current, IKdr,fast is given by:

 IKdr, fast = gKdr, fastn f

4(V − EK) (19)

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

29

The N-type Ca
2+

 current, ICaN, is given by:

 ICaN = gCaNc
2
d(V − ECa) (20)

The Ca
2+-dependent K+ (SK) current, IAHP, is described by:

 IAHP = gAHPq2 (V − EK) (21)

The A-type K
+
 current, IA, is described by

 IA = gAab(V − EK) (22)

The L-type Ca
2+

 current, ICaL, is described by:

ICaL = gCaL × s

∞

2
×V ×

1−
[Ca

2+
]i

[Ca2+]0

e2FV kT

1− e
2 FV kT

(23)

wheregCaL is the maximal conductance, s∞ is the steady-state activation variable, F is Faraday's

constant, T is the temperature, k is Boltzmann's constant, [Ca
2+

]0 is the equilibrium calcium

concentration and [Ca
2+

]i is described in Eq (25).

A.3. OLM Cell

The somatic (s), axonic (a) and dendritic (d) compartments of each OLM cell obeyed the

following current balance equations:

 C
dVs

dt
= −Iext − IL − INa, s − IK , s − IA − Ih − Isyn

 (24)

 C
dVd

dt
= −Iext − IL − INa, d − IK , d − IA − Isyn

 (25)

 C
dVa

dt
= −Iext − IL − INa, d − IK , d

 (26)

The sodium current is described by:

 INa = gNam
3
h(V − ENa) (27)

wherem and h are the activation and inactivation variables, respectively.

The potassium current, IK, is described by:

 IK = gKn4(V − EK) (28)

wheren is the activation variable for this channel.

The transient potassium current, IA, is described by:

 IA = gAab(V − EK) (29)

wherea and b are the activation and inactivation variables, respectively.

The nonspecific cation channel, Ih, is described by:

 I
h

= g
h
r(V − E

r
) (30)

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

30

wherer is the activation variable for this channel.

A.4. Septal Cells

Septal cell output was modeled as bursts of action potentials using a presynaptic spike

generator. A spike train consisted of bursts of action potentials at a mean frequency of 50 Hz for

a half-u cycle (125 ms; corresponding to a recall period) followed by a half-u cycle of silence.

Due to 40% noise in the interspike intervals, the 10 spike trains in the septal population were

asynchronous.

A.5. Entorinal Cortical Cells

EC cells were also modeled as noisy spike trains, using a pre-synaptic spike generator. A spike

train consisted of spikes at an average gamma frequency of 40 Hz, but with individual spike

times Gaussian-distributed around the regular ISI of 25 ms, with a standard deviation of 0.2.

The population of EC inputs fired asynchronously.

A.6. CA3 Pyramidal Cells

CA3 pyramidal cells were modeled as spike trains of the same form and with the same

characteristics (mean frequency and noise level) as the EC cells. Onset of CA3 firing was

delayed by 9 ms relative to the EC trains to model the respective conduction delays of direct and

trisynaptic loop inputs to CA1.

REFERENCES

[1] Eichenbaum, H., Dunchenko, P., Wood, E., Shapiro, M. and Tanila, H. (1999). The

hippocampus, memory and place cells: Is it spatial memory or a memory of space? NEURON,

23, 209-226.

[2] Andersen, P., Morris, R., Amaral, D., Bliss, T. and O'Keede, J. (2007).The Hippocampus Book.

Oxford: University Press.

[3] Wood, E., Dunchenko, P. and Eichenbaum, H. (1999). The global record of memory in

hippocampal neuronal activity.NATURE, 397, 613-616.

[4] Treves, A. and Rolls, E. (1994). Computational analysis of the role of the hippocampus in

memory.HIPPOCAMPUS, 4, 374-391.

[5] Freund, T.F. and Buzsaki, G. (1996). Interneurons of the hippocampus.HIPPOCAMPUS, 6, 347-

470.

[6] Somogyi, P. and Klausberger, T. (2005). Defined types of cortical interneurons structure space

and spike timing in the hippocampus. J PHYSIOL, 562, 9-26.

[7] Hasselmo, M.E., Bodelon, C. and Wyble, B. (2002). A proposed function of the hippocampal

theta rhythm: Separate phases of encoding and retrieval of prior learning. NEURAL COMPUT,

14, 793-817.

[8] Carnevale, N.T. and Hines, M.L. (2006). The NEURON book.Cambridge University Press.

[9] Cutsuridis, V., Cobb, S. and Graham, B.P. (2010).Encoding and Retrieval in a Model of the

Hippocampal CA1 Microcircuit.HIPPOCAMPUS, 20, 423-446.

[10] Hines, M.L. and Carnevale, N.T. (2008). Translating network models to parallel hardware in

NEURON. J NEUROSCI METH, 169(2), 425-455.

[11] Richert, M., Nageswaran, J.M., Dutt N. and Krichmar, J.L. (2011).An efficient simulation

environment for modeling large-scale cortical processing. FRONT NEUROINFORM, 5:(19),

doi: 10.3389/fninf.2011.00019.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

31

[12] Myers, C.E. and Scharfman, H.E. (2011). Pattern Separation in the Dentate Gyrus: A Role for

the CA3 Backprojection, HIPPOCAMPUS, 21:1190-1215.

[13] Cuomo, S., De Michele, P. and Chinnici, M. (2011). Parallel tools and techniques for biological

cells modelling, BuletinulInstitutuluiPolitehnic DIN IASI, Automatic Control and Computer

Science Section, LVII (LXI), Fasc. 3, 2011, pp. 61-75, ISSN 1200-2169.

[14] Bower, J.M., Beeman, D. et al. (2003). The Book of Genesis. Internet Edition.

[15] Cutsuridis, V., Hunter, R., Cobb, S. and Graham, B.P. (2007). Storage and recall in the CA1

microcircuit of the hippocampus: A biophysical model. Vol. 8(suppl 2), 16th Annual

Computational Neuroscience Meeting CNS*2007, Toronto, Canada, BMC NEUROSCI, p. 33.

[16] Cutsuridis, V. and Wenneckers, T. (2009).Hippocampus, microcircuits and associative memory.

HIPPOCAMPUS 22, 1120–1128.

[17] Bianchi, D., Marasco, A., Limongiello, A., Marchetti, C., Marie, H., Tirozzi, B. and Migliore, M.

(2011). On the mechanisms underlying the depolarization block in the spiking dynamics of CA1

pyramidal neurons. J COMPUT NEUROSCI - DOI 10.1007/s10827-012-0383-y.

[18] Izhikevich, E.M. (2004). Which model to use for cortical spiking neurons? IEEE TRANS

NEURAL NETW. 15, 1063–1070.

Authors

Salvatore Cuomo is an Assistant Professor at University of Naples “Federico II”.

Pasquale De Michele is a Ph.D.Student in “Computer Science” at University of Naples “Federico II”.

Francesco Piccialli is a Graduated in “Computer Science” at University of Naples “Federico II”.

