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ABSTRACT 

A critical issue in biological neural network modelling is the parameter tuning of a model by means ofthe 

numerical simulations to map a real scenario. This approach requires a huge amount ofcomputational 

resources to assesses the impact of every model value that, generally, changes thenetwork response. In 

this paper we analyse the performance of a CA1neural network microcircuit model for pattern 

recognition. Moreover, we investigate its scalability andbenefits on multicore and on parallel and 

distributed architectures. 
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1. INTRODUCTION 

Prototyping and developing computational codes of biological networks, in terms of reliability, 

efficient, and portable building blocks allow to the computational neuroscientists to simulate 

real cerebral behaviours and to validate theories and experiments. In prior work,we 

describedseveral mathematical models and software for biological cells modelling 

[13];softwareare divided into two main categories: the general and the special purpose Problem 

Solving Environments (PSEs). The widely diffused PSEsareNEURON [8] and GENESIS [14]. 

These frameworks have large communities where the users collect and maintain databases of 

published computational models. In this work, we use NERUON to solve problems at several 

levels of biological details. 

 

Many research papers ([9], [12], [15], [16] and [17])adopt parallel computing and scientific 

tools to increase the performance of novel neural network models. Generally, they highlight the 

biological results, without dealing on the computational aspects related to the parameter issue 

setting or to the simulation strategies.Moreover, they do not report detailed analysis of the 

parallel and distributed algorithms, which are essential to optimize a network in terms of its 

scalability and performance. In other words, building a neural network that reproduces a real 

scenario requires long and deep stepsto set the model parameters through numerical simulations. 

The validation of a computational model, by tuning different biological parameters, represents a 

critical issue in terms of memory allocations and computing time. For example, in [13] we have 

showed that the tuning of the external electrical stimuli and the random synapses of a modified 

CA1 model [17] requires a full computational time of Ttot ≈ 9h for a single cell. The adjustment 

phase increases the simulation timedramatically, when switching from a single cell to a 
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network. In this work, the starting point is a multi-pattern modification of a CA1 neural network 

microcircuit model for pattern recognition [9], implemented in NEURON. In our experiments, 

the set-up of the network requires the storage of about 45GB of data and several days for any 

simulation. Moreover, the computational occupancy of the resources strongly depends on the 

model parameter variation. As a consequence, we study the scalability and the performance of 

the proposed modification, which is a crucial step to develop a network that recognizes patterns 

in a real scenario. This work is useful to highlight the strengths and weaknesses of the scientific 

and parallel computing strategies used in the implemented code. We prove that a pivotal role is 

played by the combined use of high performance computing techniques, including parallel 

scientific computing, multi-cores programming and GPU programming. Finally, we suggest 

solutions that may also be adopted to optimize the neural network code and to simulate a 

biological scenario in a more reliable time. 

The paper in organised as follows. In the Section 2 we show our multi-pattern modification of 

the microcircuit. The Section 3 describes the numerical results and in the Section 4 performance 

considerations are discussed. Finally, in the Section 5 we report the conclusions. 

2. A MULTI-PATTERN MODIFICATION OF A CA1 MICROCIRCUIT 

The model in [9] defines a neural network microcircuit model of the hippocampus, a brain 

region that is involved in the intermediate term storage of the memories that can be consciously 

recalled: the declarative memories [1, 2, 3]. The hippocampus contains two main types of cells: 

principal excitatory neurons that are the main information processors of this region, and a large 

kind of inhibitory inter-neurons that form connections locally [5, 6]. In [7] it is proposed an 

hippocampus feature, the theta rhythm (4-7~ Hz), that contributes to the memory formation by 

separating encoding (storage) and retrieval (recall) of memories into different functional half-

cycles. In particular, the model in [9] simulates in NEURON the firing time of different 

hippocampal cell types relative to the theta rhythm in anaesthetised animals, and addresses the 

roles played by the various types of inhibitory inter-neurons in the dynamical CA1 information 

processing.  

Our modification consists of re-designing the model in [9] by introducing a new multi-pattern 

recognition strategy. Given a set of N patterns, the model is able to store all the N patterns with 

the Spike-timing-dependent plasticity (STDP) learning rule and subsequently recall these. 

STDP is a process that adjusts the strength of the connections between neurons in the brain. In 

STDP rule synapses increase (or decrease) their efficacy if the pre-synaptic spike arrives before 

(or after) the post-synaptic neuron is activated. For biological aims it is needed to investigate the 

CA1 network, by means of the recall stage of a large numbers of stored patterns. The complete 

knowledge of the neuronal phenomena requires the increasing of the patterns and multiple 

parametric simulations on the network. 

As showed in the Figure 1, the model consists of 235 cells: 100 Pyramidal (P), 2 Basket (B), 1 

BiStratified (BS), 1 Axo-Axonic (AA) and 1 OriensLacunosum-Moleculare (OLM), that are 

cells with biophysical properties adapted from literature; 100 CA3, 20 Entorinal Cortex (EC) 

and 10 medial SEPtum (SEP), that are cells whose behaviour is simulated by means of electrical 

stimuli. These cells are connected as showed in Table 1. The duration of a single theta rhythm in 

the network is fixed to 250 ms: 125 ms for storage and 125 ms for recall phases. Repeating the 

theta cycles for a fixed number of times (T) an alternation between phases of the storage and 

recall occurs. The algorithm is divided in two sub-algorithms: the storage and the recall. 
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2.1. Storage Algorithm 

In the Figure 2 (on the left) the graphical representation of the multi

showed. This algorithm for the storage of 

tasks. 

Figure 2. Graphical representations of the multi

and the recall (on the right) of 
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Figure 1. Network topology 

In the Figure 2 (on the left) the graphical representation of the multi-pattern Algorithm 1 is 

showed. This algorithm for the storage of N patterns consists of many functionally dependent 

Figure 2. Graphical representations of the multi-pattern algorithms for the storage (on the left) 

and the recall (on the right) of N patterns 
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Table 1. Network connections 

 
Synapse 

 
Number 

of 

sources 

(a) (b) (c)  
Number of synapses 

in total =  
((a)××××(b))××××(c) 

Number 

of targets 
Number of 

connections 
Number of 

synapses in a 

single 

connection 
EC→B 20 2 20 2 (2×20)×2=80 

EC→AA 20 1 20 2 (1×20)×2=40 

EC→P 20 100 20 3 (100×20)×3=6000 

CA3→B 100 2 100 4 (2×100)×4=800 

CA3→AA 100 1 100 4 (1×100)×4=400 

CA3→BS 100 1 100 4 (1×100)×4=400 

CA3→P 100 100 100 1 (100×100)×1=10000 

SEP→B 10 2 10 2 (2×10)×2=40 

SEP→AA 10 1 10 2 (1×10)×2=20 

SEP→BS 10 1 10 2 (1×10)×2=20 

SEP→OLM 10 1 10 1 (1×10)×1=10 

P→P 100 100 1 1 (100×1)×1=100 

P→B 100 2 100 2 (2×100)×2=400 

P→AA 100 1 100 2 (1×100)×2=200 

P→BS 100 1 100 2 (1×100)×2=200 

P→OLM 100 1 100 2 (1×100)×2=200 

B→P 2 100 2 1 (100×2)×1=200 

B→B 2 2 1 1 (2×1)×1=2 

B→BS 2 1 2 1 (1×2)×1=2 

AA→P 1 100 1 1 (100×1)×1=100 

BS→P 1 100 1 12 (100×1)×12=1200 

BS→B 1 2 1 1 (2×1)×1=2 

OLM→P 1 100 1 4 (100×1)×4=400 

 

Algorithm 1. Multi-patterns storage algorithm 

The tasks of a single pattern are organized in stacks, with different execution steps. In detail, 

these steps are: 1) the network initializing (for the first pattern only); 2) the setup of thenetwork 

connections by means of a suitable weight matrix W, computed with STDP rule; 3) the 

numerical integration and the Wupdate; 4) the storage of W; 5) the output generation. The 

numerical integration consists of the solutions of systems of Ordinary Differential Equations 

(ODEs) that models the cell computational behaviour. A detailed description of the model is in 

the Appendix. 
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The W matrix covers a key role in the adaptive multi

opportunely calibrate the network connections, taking into account the synaptic plasticity. 

particular, for each pattern i (1 ≤ i 

whereW(i-1) is the weight matrix 

network connection vector, p(i) is the 

the STDP rule. 

The stacks of the storage algorithm are functionally dependent, and our implementation strategy 

consists of parallelizing the network activity on a single stack (pattern). By using a 

strategy, the network cells are distributed among the available hosts [10], as showed in Figure 3.

Figure 3.  Example of parallelization with 4 available ho
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matrix covers a key role in the adaptive multi-pattern recognition, because i

opportunely calibrate the network connections, taking into account the synaptic plasticity. 

≤ i ≤ N), the model returns: 

W
(i) 

= s(W
(i-1)

, c
(i)

, p
(i)

) 

is the weight matrix obtained by the (i-1)-th pattern storage (W(0) = 0), 

is the i-th pattern to be stored, and s is a function that represents 

The stacks of the storage algorithm are functionally dependent, and our implementation strategy 

nsists of parallelizing the network activity on a single stack (pattern). By using a round

are distributed among the available hosts [10], as showed in Figure 3.

 

Figure 3.  Example of parallelization with 4 available hosts, for a generic execution stack
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pattern recognition, because it is used to 

opportunely calibrate the network connections, taking into account the synaptic plasticity. In 

= 0), c(i) is a 

is a function that represents 

The stacks of the storage algorithm are functionally dependent, and our implementation strategy 

round-robin 

are distributed among the available hosts [10], as showed in Figure 3. 

sts, for a generic execution stack 
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From parallel computing point of view, the strategy is the following:  

(1) a processor integrates the computational modelon its assigned group of cells;  

(2) if a spike event occurs between source and target cells, a network communication 

(NetCon)is activated;  

(3) theweight matrix information are collected in parallel with a “compare and 

exchange” strategy.  

The parallel performance of the storage algorithm will be discussed in the Section 3. 

2.2. Recall Algorithm 

In Figure 2 (on the right), the graphical representation of the recall Algorithm 2 is showed.At 

the i-th pattern, the model returns: 

OUT
(i)

 = r(W
(N)

, c
(i)

, p
(i)

) 

whereW(N) is the weight matrix obtained from the previously storage of the N patterns, c(i) is a 

network connection vector, p(i) is the pattern to be recalled, r is a function that evaluates the 

recall, OUT
(i)

 is the biological output related on recall performance. 

 

Algorithm 2. Multi-patterns recall algorithm 

During the recall of the N patterns, all stacks are independent, thus it is possible both to 

distribute and parallelize the execution of these. In detail, a single pattern, that will be recalled, 

is parallelized in the same way of the storage phase. Let be K = N * M the number of the 

available hosts on the parallel and distributed architecture,in a first phase N master hosts are 

selected in order to recall a stored pattern. In a second phase each master host sets the network 

on M assigned hosts and carries out the recall algorithm, i.e. it executes a stack. For example, 

suppose we have to recall 10 patterns on a parallel architecture with 8 core hosts. Each host 

recalls a stored pattern and executes the stack on its 8 core blade. 

In Figure 4, the output of the microcircuit for one pattern of the recall algorithm is showed. The 

simulation is carried out on 6100 ms with 24 theta cycles and shows the input spikes, the recall 

quality, the number of spikes of pyramidal cell and the pyramidal cells involved in the synaptic 

activity. After a phase of network setup and calibration, we point out that the matrix of the 

weight W obtained by the storage algorithm, is used to recall a fixed memory pattern with the 

quality showed in Figure 4. 
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Figure 4. Biological output carried out after a pattern

In this work we do not discuss about the biological results of the computational neural network, 

but we remark that a simulation on a workstation with 8 cores requires, at this time, ~910 

seconds. This experiment is reported with the

simulations by tuning the network parameters. Using the network with a large number of 

patterns and theta cycles, it is a preliminary step for validating the CA1 microcircuit from a 

biological standpoint. In the next Section we discuss

algorithms. 

3. MULTI-CORE AND PARALLEL 

The model is implemented by using the problem solving scientific environment NEURON 

(v.7.1). The performance tests were carried out on the S.Co.P.E. Grid Infrastru

University of Naples “Federico II

with 8 cores “Intel Xeon E5410

kinds of links: Infiniband, Fiber Channel, 1Gb and 10Gb Ethernet links. Storage and recall 

algorithms are performed on a set of 10 patterns, both characterized by duration 

cycle of 250ms and an initial delay of 

architectures: multicore and distributed.

In order to evaluate the storage and recall performance on these architectures, different 

parameters are taken into account. The 

Wait is the time spent for exchanging spikes during a simulation; 

integrate ODE systems, checking thresholds, and delivering events (it correspond

amount of time needed to numerical integration and weight matrix 

creation is the time to setupbiological parameters and to create

Network connection is the time to setup

the time to collect, from each host, the values of the 

pattern to be processed; Output 

time to collect non-functional information.
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Figure 4. Biological output carried out after a pattern recall during 6100 ms

we do not discuss about the biological results of the computational neural network, 

but we remark that a simulation on a workstation with 8 cores requires, at this time, ~910 

seconds. This experiment is reported with the aim to show that it is needed to repeat the 

simulations by tuning the network parameters. Using the network with a large number of 

patterns and theta cycles, it is a preliminary step for validating the CA1 microcircuit from a 

next Section we discuss the computational performance of these 

ARALLEL DISTRIBUTED CONTEXT COMPARISONS 

The model is implemented by using the problem solving scientific environment NEURON 

7.1). The performance tests were carried out on the S.Co.P.E. Grid Infrastru

Federico II”, that consists of 300 blade servers (nodes), each of which 

Intel Xeon E5410” at 2.33 GHz (2400 cores in total), connected with several 

kinds of links: Infiniband, Fiber Channel, 1Gb and 10Gb Ethernet links. Storage and recall 

algorithms are performed on a set of 10 patterns, both characterized by duration of each theta

and an initial delay of 100ms. The storage is performed on two different 

architectures: multicore and distributed. 

In order to evaluate the storage and recall performance on these architectures, different 

parameters are taken into account. The Runtime is the total execution time for the applicatio

is the time spent for exchanging spikes during a simulation; Step is the time spent to 

integrate ODE systems, checking thresholds, and delivering events (it correspond

amount of time needed to numerical integration and weight matrix W updating); Setup and cell 

is the time to setupbiological parameters and to create all cells of the network; 

is the time to setup network connection; New weight matrix storage

, from each host, the values of the weight matrix and storing these for the next 

 is the time to store biological output information; Others

functional information. 
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6100 ms 

we do not discuss about the biological results of the computational neural network, 

but we remark that a simulation on a workstation with 8 cores requires, at this time, ~910 

aim to show that it is needed to repeat the 

simulations by tuning the network parameters. Using the network with a large number of 

patterns and theta cycles, it is a preliminary step for validating the CA1 microcircuit from a 

the computational performance of these 

OMPARISONS  

The model is implemented by using the problem solving scientific environment NEURON 

7.1). The performance tests were carried out on the S.Co.P.E. Grid Infrastructure of 

, that consists of 300 blade servers (nodes), each of which 

with several 

kinds of links: Infiniband, Fiber Channel, 1Gb and 10Gb Ethernet links. Storage and recall 

of each theta-

performed on two different 

In order to evaluate the storage and recall performance on these architectures, different 

is the total execution time for the application; 

is the time spent to 

integrate ODE systems, checking thresholds, and delivering events (it corresponds to the 

Setup and cell 

all cells of the network; 

New weight matrix storage is 

weight matrix and storing these for the next 

Others is the 
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Figure 5. Execution times for the storage of 10 patterns with 8 the

The Figure 5 shows that for the storage phase, on a multicore architecture, increasing the 

number of hosts (from 1 to 8) lead

the Step time. In fact, from the Figure

to the 95,47% of the Runtime, 

(setup and cell creation, network connection, weight matrix storage and output gen

not affect the overall time. 

Figure 6. Runtime percentages for the storage of 10 patterns with 8 theta cycles on a multicore 

Moreover, the Figure 6 shows a slight increment of the 

Runtime) due to the growing number of communications 

hosts. This phenomenon is amplified when moving from a multicore to a distributed 

architecture. 
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Figure 5. Execution times for the storage of 10 patterns with 8 theta cycles on a multicore 

architecture 

The Figure 5 shows that for the storage phase, on a multicore architecture, increasing the 

leads to a huge reduction of Runtime, substantially equivalent to 

e Figure 6, it is possible to see a reduction ofStep from the 

, moving from 1 to 8 hosts. Hence, the other execution steps 

(setup and cell creation, network connection, weight matrix storage and output gen

percentages for the storage of 10 patterns with 8 theta cycles on a multicore 

architecture 

shows a slight increment of the Wait time (from 0% to 3,86%

o the growing number of communications among the cells mapped on different 

hosts. This phenomenon is amplified when moving from a multicore to a distributed 
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ta cycles on a multicore 

The Figure 5 shows that for the storage phase, on a multicore architecture, increasing the 

, substantially equivalent to 

from the 100% 

execution steps 

(setup and cell creation, network connection, weight matrix storage and output generation) do 

 

percentages for the storage of 10 patterns with 8 theta cycles on a multicore 

3,86% of the 

cells mapped on different 

hosts. This phenomenon is amplified when moving from a multicore to a distributed 
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Figure 7. Execution times for the storage of 10 patterns with 8 theta cycles on a d

The Figure 7 shows that on a distributed architecture a slight worsening of the performance 

occurs. In detail, the time needed for the numerical integration (

doubling of the host number and there is 

time needed to synchronize the communication between two cells mapped on two different 

hosts). The Figure 8 confirms this: with 16 hosts (distributed on 2 different nodes) 

reaches the 47,76% of the Runtime

86,93% of the Runtime. 

Figure 8. Runtime percentages for the storage of 10 patterns with 8 theta cycles on a distributed 

Moreover, this behaviour is particularly clear by 

event delivery system to implement spike

Detection of a spike launches an event that

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

Figure 7. Execution times for the storage of 10 patterns with 8 theta cycles on a distributed 

architecture 

The Figure 7 shows that on a distributed architecture a slight worsening of the performance 

, the time needed for the numerical integration (Step) continues to decrease with 

and there is a strong increment of the Waittime (the amount of 

time needed to synchronize the communication between two cells mapped on two different 

. The Figure 8 confirms this: with 16 hosts (distributed on 2 different nodes) 

Runtime, while with 128 hosts it further increases, reaching the 

percentages for the storage of 10 patterns with 8 theta cycles on a distributed 

architecture 

Moreover, this behaviour is particularly clear by observing the Figure 9. NEURON uses an 

event delivery system to implement spike-triggered synaptic transmission between cells. 

a spike launches an event that, after an appropriate delay, will be delivered to a 
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The Figure 7 shows that on a distributed architecture a slight worsening of the performance 

) continues to decrease with 

the amount of 

time needed to synchronize the communication between two cells mapped on two different 

. The Figure 8 confirms this: with 16 hosts (distributed on 2 different nodes) Wait time 

, while with 128 hosts it further increases, reaching the 

 

percentages for the storage of 10 patterns with 8 theta cycles on a distributed 

observing the Figure 9. NEURON uses an 

triggered synaptic transmission between cells. 

, after an appropriate delay, will be delivered to a 
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target cell. The basic problem that has to be overcome in a parallel simulation environment is 

that the source cell and its target usually do not exist on the same host [10]. Hence, it is evident 

that, moving from a multicore to a distributed architecture, the time for synchronize different 

hosts rises with increasing of the involved host number. 

 

Figure 9. Step and Wait curves with the increasing of number of hosts 

On a multicore architecture, the recall algorithm has the same performance we have discussed 

for the storage phase. On the other hand, as we mentioned earlier, it is possible to implement the 

recall algorithm on a distributed architecture: in this way, each algorithm performs the recall of 

a single pattern on a node of the architecture. A typical parametric execution of a distributed 

recall phase is characterized by the pair (Number of pattern, Number of theta cycles). In the 

Table 2 the performance of the parametric execution (10 patterns, 16 theta cycles) are showed. 

The recall of N patterns is performed in ~600s, that is the time needed to recall a single pattern 

only, obtaining a substantial performance improvement: without the distribution of the 

algorithm, the Runtime would have been equal to ~6000s. 

Table 2. Execution times for the recall of 10 patterns with 16 theta cycles, distributing the 

model 

Pattern ID Runtime Wait Step #Spikes Set and 

Connect 

Output 

1 608,775 8,71033 597,987 7975 0,54125 0,61625 

2 608,861 8,93715 598,457 8149 0,54125 0,6375 

3 607,072 8,51312 597,083 8061 0,54125 0,64875 

4 607,812 8,67061 597,683 8033 0,54125 0,635 

5 607,119 9,37756 596,286 7946 0,54125 0,6275 

6 607,035 8,71243 596,895 7992 0,54125 0,6325 

7 607,726 8,79549 597,473 8030 0,54125 0,62125 

8 607,191 8,39568 597,321 7848 0,54125 0,63875 

9 608,27 10,0982 596,692 8022 0,54125 0,63625 

10 608,42 9,3668 597,576 8046 0,54125 0,6325 

 

  



International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013 

25 

 

 

 

4. PERFORMANCE CONSIDERATIONS 

In the Section 3, we have discussed the increase of the Wait time when moving from a 

multicore to a distributed architecture. Now, we investigate how to limit the Wait time growing. 

Better performance and containment of Wait time are given on a multicore architecture. This 

kind of architecture is restricted by technological limits related to the small number of cores that 

can work together (8-16 cores at this time). Consequently, we need to find an architecture 

incorporating the idea behind the multicore computing. The Graphical Processing Unit (GPU) 

computing is the solution to this problem. NEURON is a simulator that incorporates molecular, 

detailed compartmental modified Hodgkin-Huxley models of axons and dendrites from 

anatomical observations, and various ion channels to biophysical details, but unfortunately, at 

this time, it is not compatible with parallelization on GPUs. Accordingly, while it is biologically 

accurate, it incurs tremendous computational costs for simulation [11]. On the other hand, there 

exist many simulation environments that implement and simulate biological neural networks on 

GPU architectures. 

In [11] is described an easy to use simulator that provide significant computational 

performance, as it is able to run on NVIDIA GPUs. Despite this software, differently from 

NEURON, uses theIzhikevich neuron model [18] and does not allow to specify the cell 

morphologies with great accuracy from a biological point of view,here we implement a 

simplified “ad-hoc” version of our model with this tool. 

Firstly, we created all the cells specified in the NEURON version.The Figure 10 shows the 

creation of Pyramidal and Basket cells, in NEURON (on the left) and in the “ad-hoc” (on the 

right) versions. Then, we set the connection between the cells, reproducing the same network 

topology specified with NEURON. In Figure 11 is showed the connection between Pyramidal 

(pre-synaptic) and Basket Cells (post-synaptic), implemented in NEURON (on the left) and in 

the “ad-hoc” (on the right) versions. Finally, we simulated the network activity, on CPU and 

GPU architectures. 

We compared the performance between CPU(2.4GHz quad-core “Intel Xeon E5620”) and GPU 

(NVIDIA Tesla S2050) versions, and we observed a reduction of 85% of the execution time, 

moving from CPU to GPU, as showed in Figure 12. This behaviour is due to the 

synchronization time removal. 

Figure 10. Cell creation in the NEURON and the “ad-hoc” versions 
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Figure 11. Example of cell connection in the NEURON and the “ad

Cell has 2 synapses with each Pyramidal Cell; 400 synapses in total

Figure 12. Execution time reduction moving from a CPU to a GPU architecture

5. CONCLUSIONS 

The simulation of biological neural networks is a challenging application from a computational 

point of view. The calibration and 

simulate the biological behaviour of the 

environments for developing simulation codes. In practice, 

the real behaviour of a biological neural network, with a large number of connections between 

its neurons, requires algorithms and communi

In this work we propose a modification of an exiting CA1 microcircuit for the multi

recognition. Our aim is to analy

distributed and a multicore architecture. We observe that the 

overcome is the communication between a source cell and its target, in a parallel simulation 

environment. We proof that the microcircuit well scale on a multicore architecture, when the 

spike communications are carried out on a dedicated bus. We 

purpose simulation environments that support massively parallel multicore programming. 

Finally, we think that the performance analysis of the proposed microcircuit is useful 

simulate a large number of microbiological multi

acceptable computing time. We are working on the microcircuit optimization on a massively 

parallel GPU architecture. We are investigating the compatibility o

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.1, January 2013

 

11. Example of cell connection in the NEURON and the “ad-hoc” versions: each Basket 

Cell has 2 synapses with each Pyramidal Cell; 400 synapses in total 

 

 

Figure 12. Execution time reduction moving from a CPU to a GPU architecture

The simulation of biological neural networks is a challenging application from a computational 

calibration and setup of a network require mathematical models in order to 

simulate the biological behaviour of the different cell type and sophisticated programming 

environments for developing simulation codes. In practice, building a microcircuit that mimes 

the real behaviour of a biological neural network, with a large number of connections between 

and communication strategies computationally expensive.

we propose a modification of an exiting CA1 microcircuit for the multi

ecognition. Our aim is to analyze the performance of the proposed code in a parallel, a 

chitecture. We observe that the main problem that has to be 

overcome is the communication between a source cell and its target, in a parallel simulation 

environment. We proof that the microcircuit well scale on a multicore architecture, when the 

unications are carried out on a dedicated bus. We strongly suggest to use general

purpose simulation environments that support massively parallel multicore programming. 

Finally, we think that the performance analysis of the proposed microcircuit is useful 

simulate a large number of microbiological multi-pattern recognition experiments in an 

acceptable computing time. We are working on the microcircuit optimization on a massively 

parallel GPU architecture. We are investigating the compatibility of NEURON with GPU 
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Figure 12. Execution time reduction moving from a CPU to a GPU architecture 

The simulation of biological neural networks is a challenging application from a computational 

setup of a network require mathematical models in order to 

phisticated programming 

a microcircuit that mimes 

the real behaviour of a biological neural network, with a large number of connections between 

cation strategies computationally expensive. 

we propose a modification of an exiting CA1 microcircuit for the multi-pattern 

e the performance of the proposed code in a parallel, a 

problem that has to be 

overcome is the communication between a source cell and its target, in a parallel simulation 

environment. We proof that the microcircuit well scale on a multicore architecture, when the 

strongly suggest to use general-

purpose simulation environments that support massively parallel multicore programming. 

Finally, we think that the performance analysis of the proposed microcircuit is useful in order to 

pattern recognition experiments in an 

acceptable computing time. We are working on the microcircuit optimization on a massively 

f NEURON with GPU 
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computing and exporting the code of our microcircuit on a more general-purpose simulator that 

supports the GPU.  
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A. APPENDIX: MATHEMATICAL FORMALISM 

A.1. Pyramidal Cells 

The somatic (s), axonic (a) and radiatum (rad), lacunosum-moleculare (LM) and oriens (ori) 

dendritic compartments obey the following current balance equations: 

 

 C
dVs

dt
= −IL − INa − Ikdr − IA − IM − Ih − IsAHP − ImAHP − ICaL − ICaT − ICaR − Ibuff − Isyn

 (1) 

 C
dVa

dt
= −IL − INa − Ikdr − IM − Isyn

 (2) 

 C
dVrad, ori

dt
= −IL − INa − Ikdr − IA − IM − Ih − IsAHP − ImAHP − ICaL − ICaT − ICaR − Ibuff − Isyn

 (3) 

 C
dVLM

dt
= −IL − INa − Ikdr − IA − Isyn

 (4) 

 

whereIL is the leak current, INa is the fast sodium current, Ikdr is the delayed rectifier potassium 

current, IA is the A-type K+ current, IM is the M-type K+ current, Ih is a hyperpolarizing h-type 

current, ICaL, ICaT and ICaR are the L-, T- and R-type Ca
2+

 currents, respectively, IsAHP and ImAHP 

are slow and medium Ca
2+

 activated K
+
 currents, Ibuff is a calcium pump/buffering mechanism 

and Isyn is the synaptic current. 

 

The sodium current is described by: 

 INa = gNa × m
2

× h × s × (V − ENa )  (5) 

 

The delayed rectifier current is given by: 

 IKdr = gKdr × m
2

× (V − EK ) (6) 

 

The fast inactivating A-type K
+
 current is described by: 

 IA = gA × nA × (V − EK )  (7) 

 

The hyperpolarizing h-current is given by: 

 Ih = gh × tt × (V − Eh )  (8) 

 

The slowly activating voltage-dependent potassium current, IM, is given by the equation: 

 Im =10
−4

×Tadj (°C)× gm × m × (V − EK ) (9) 

 

The slow after-hyperpolarizing current, IsAHP, is given by: 

 IsAHP = gsAHP × m
3
× (V − EK ) (10) 
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The medium after-hyperpolarizing current, ImAHP, is given by: 

 ImAHP = gmAHP × m × (V − EK ) (11) 

 

The somatic high-voltage activated (HVA) L-type Ca
2+

 current is given by: 

 I
S

CaL = g
S

CaL × m ×
0.001mM

0.001mM + cain

× ghk(V, cain, caout )  (12) 

 

where the dendritic L-type calcium channels have different kinetics: 

 I
d

CaL = g
d

CaL × m
3
× h × (V − ECa )  (13) 

 

The low-voltage activated (LVA) T-type Ca
2+

 channel kinetics are given by: 

 ICaT = gCaT × m
2

× h ×
0.001mM

0.001mM + cain

× ghk(V, cain, caout ) (14) 

 

The HVA R-type Ca
2+ current is described by: 

 ICaR = gCaR × m
3
× h × (V − ECa )  (15) 

 

Finally, a calcium pump/buffering mechanism is inserted at the cell body and along the apical 

and basal trunk. The factor for Ca
2+ entry was changed from fe=10000 to fe=10000/18 and the 

rate of calcium removal was made seven times faster. 

 

The kinetic equations are given by: 

 
drive _ channel =

− f
e
×

ICa

0.2 × FARADAY
if drive_ channel > 0 mM / ms

0 otherwise







  

(16) 

 
dca

dt
= drive _ channel +

(10−4 (mM )− ca)

7 × 200(ms)
.  

 

A.2. Axo-axonic, Basket and Bistratified Cells 

All compartments obey the following current balance equation: 

 C
dV

dt
= −Iext − IL − INa − IKdr, fast − IA − ICaL − ICaN − IAHP − IC − Isyn

 (17) 

 

whereC is the membrane capacitance, V is the membrane potential, IL is the leak current, INa is 

the sodium current, IKdr,fast is the fast delayed rectifier K+ current, IA is the A-type K+ current, 

ICaL is the L-type Ca
2+ current, ICaN is the N-type Ca

2+ current, IAHP is the Ca
2+-dependent K+ 

(SK) current, IC is the Ca
2+

 and voltage-dependent K
+
 (BK) current and Isyn is the synaptic 

current. 

 

The sodium current is described by: 

 INa = gNam
3h(V − ENa ) (18) 

 

The fast delayed rectifier K+ current, IKdr,fast is given by: 

 IKdr, fast = gKdr, fastn f

4(V − EK )  (19) 
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The N-type Ca
2+

 current, ICaN, is given by: 

 ICaN = gCaNc
2
d(V − ECa )  (20) 

 

The Ca
2+-dependent K+ (SK) current, IAHP, is described by: 

 IAHP = gAHPq2 (V − EK ) (21) 

 

The A-type K
+
 current, IA, is described by 

 IA = gAab(V − EK )  (22) 

 

The L-type Ca
2+

 current, ICaL, is described by: 

 
ICaL = gCaL × s

∞

2
×V ×

1−
[Ca

2+
]i

[Ca2+ ]0

e2FV kT

1− e
2 FV kT

 
(23) 

 

wheregCaL is the maximal conductance, s∞ is the steady-state activation variable, F is Faraday's 

constant, T is the temperature, k is Boltzmann's constant, [Ca
2+

]0 is the equilibrium calcium 

concentration and [Ca
2+

]i is described in Eq (25). 

 

A.3. OLM Cell 

 

The somatic (s), axonic (a) and dendritic (d) compartments of each OLM cell obeyed the 

following current balance equations: 

 C
dVs

dt
= −Iext − IL − INa, s − IK , s − IA − Ih − Isyn

 (24) 

 C
dVd

dt
= −Iext − IL − INa, d − IK , d − IA − Isyn

 (25) 

 C
dVa

dt
= −Iext − IL − INa, d − IK , d

 (26) 

The sodium current is described by: 

 INa = gNam
3
h(V − ENa ) (27) 

 

wherem and h are the activation and inactivation variables, respectively.  

 

The potassium current, IK, is described by: 

 IK = gKn4(V − EK )  (28) 

 

wheren is the activation variable for this channel. 

 

The transient potassium current, IA, is described by: 

 IA = gAab(V − EK )  (29) 

 

wherea and b are the activation and inactivation variables, respectively. 

 

The nonspecific cation channel, Ih, is described by: 

 I
h

= g
h
r(V − E

r
)  (30) 
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wherer is the activation variable for this channel. 

 

A.4. Septal Cells 

Septal cell output was modeled as bursts of action potentials using a presynaptic spike 

generator. A spike train consisted of bursts of action potentials at a mean frequency of 50 Hz for 

a half-u cycle (125 ms; corresponding to a recall period) followed by a half-u cycle of silence. 

Due to 40% noise in the interspike intervals, the 10 spike trains in the septal population were 

asynchronous. 

 

A.5. Entorinal Cortical Cells 

EC cells were also modeled as noisy spike trains, using a pre-synaptic spike generator. A spike 

train consisted of spikes at an average gamma frequency of 40 Hz, but with individual spike 

times Gaussian-distributed around the regular ISI of 25 ms, with a standard deviation of 0.2. 

The population of EC inputs fired asynchronously. 

A.6. CA3 Pyramidal Cells 

CA3 pyramidal cells were modeled as spike trains of the same form and with the same 

characteristics (mean frequency and noise level) as the EC cells. Onset of CA3 firing was 

delayed by 9 ms relative to the EC trains to model the respective conduction delays of direct and 

trisynaptic loop inputs to CA1. 
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