
International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

DOI : 10.5121/ijp2p.2014.5302 15

A LOAD BALANCING ALGORITHM BASED ON

REPLICATION AND MOVEMENT OF DATA ITEMS

FOR DYNAMIC STRUCTURED P2P SYSTEMS

Narjes Soltani and Mohsen Sharifi

Department of Computer Engineering, Iran University of Science and Technology,

Tehran, Iran

ABSTRACT

Load balancing is one of the main challenges of every structured peer-to-peer (P2P) system that uses

distributed hash tables to map and distribute data items (objects) onto the nodes of the system. In a typical

P2P system with N nodes, the use of random hash functions for distributing keys among peer nodes can

lead to O(log N) imbalance. Most existing load balancing algorithms for structured P2P systems are not

adaptable to objects’ variant loads in different system conditions, assume uniform distribution of objects in

the system, and often ignore node heterogeneity. In this paper we propose a load balancing algorithm that

considers the above issues by applying node movement and replication mechanisms while load balancing.

Given the high overhead of replication, we postpone this mechanism as much as possible, but we use it

when necessary. Simulation results show that our algorithm is able to balance the load within 85% of the

optimal value.

KEYWORDS

Structured P2P Systems, Load Balancing, Node Movement, Replication

1. INTRODUCTION

Distribution of objects among nodes in most structured Peer-to-Peer (P2P) systems is done

through Distributed Hash Table (DHT) mechanism that use consistent hashing to map objects

onto nodes [1,2,3,4]. Using this mechanism, a unique identifier is associated with each data item

(object) and each node in the system. This is simply shown in Figure 1. The identifier space is

partitioned among the nodes that form the P2P system and each node is responsible for storing all

data items that are mapped to an identifier in its portion of the space.

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

16

Figure 1. A schematic view of a structured p2p system

If node identifiers are chosen at random (as in [1,2,3,4]), a random choice of item identifiers

results in O(log N) imbalance factor in the number of items stored at a node, where N is the total

number of nodes in the system. Furthermore, the imbalance may be due to the non-uniform

distribution of objects in the identifier space as well as high degree of heterogeneity in object

loads and node capacities, memories, and bandwidths.

Most existing load balancing algorithms in structured P2P systems, do not consider system

dynamicity, nodes and objects heterogeneities, links latencies between nodes, and the popularity

level of moved data items (objects) [5,6,7]. Furthermore, they are totally ignorant as to the causes

of nodes overloading.

In this paper we present a new load balancing algorithm which is based on our previous work [8]

and differentiates two cases for node overloading: 1) when only one data item on a node is highly

popular, and 2) when more than one item is popular or a high number of data items are mapped to

a node but none of the items is highly popular. Our algorithm differentiates these two cases and

uses two mechanisms namely object replication and node movement to balance the load between

nodes considering the popularities of items. To avoid the overheads of node replication, our

algorithm uses node movement for the purpose of load balancing in most cases. It only uses the

replication mechanism when it detects that an alone node is not able to handle its only popular

data item. The algorithm uses capable nodes to handle load balancing. Also in order to consider

system’s varying loads at different times, it introduces a new notion called valid boundary and

balances the load considering the following parameters:

1. Non-uniform distribution of data items

2. System heterogeneity

3. The different popularity levels of data items

4. Link latency between nodes

The rest of the paper is organized as follows. Section 2 presents related works. Section 3 explains

in more detail and formulates the load balancing problem. Section 4 presents our load balancing

algorithm. Section 5 explains how system directories are stored in more capable nodes to help in

system load balancing. Section 6 shows the performance of our algorithm through simulation.

Section 7 concludes the paper and introduces some future directions.

2. RELATED WORK

Generally load balancing protocols are divided into two main groups in structured P2P systems.

The first group is based on uniform distribution of data items (objects) in identifier space and the

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

17

second group has no such assumption [9]. Suppose that there are N nodes in the system, load

balancing is achieved in the first group if the fraction of address space covered by each node is

O(1/N). Most algorithms have used the notion of virtual servers, first introduced in [1] to achieve

this goal. A virtual server is similar to a single peer to the underlying Distributed Hash Table

(DHT) and has its own routing table and successors list, but each physical node can take the

responsibility of more than one virtual server.

There are two main advantages in using virtual servers. The first advantage is that nodes can own

noncontiguous portions of identifier space when they have multiple virtual servers. The second

advantage is that virtual servers have the ability to move from any node to any other node in the

system; this can easily be done by using a leave followed by a join in the underlying DHT which

is supported by all DHTs.

Chord [1] allows each physical node to host O(log N) virtual servers so that each node gets a

constant number of items with high probability. But this solution has some drawbacks; for

example it assumes uniform load distribution on nodes, assumes all nodes have the same

capacities, and it uses a constant number of virtual servers for every node, a choice which is only

effective in homogenous systems. Also Chord load balancing algorithm is nonreactive and it tries

to balance the load only when new nodes join the system. In other words, it has no provision to

redistribute the load, making it unsuitable for dynamic structured P2P systems.

CFS [10] accounts for nodes heterogeneities by allocating to each node some number of virtual

servers proportional to the node capacity. In addition, CFS proposes a simple solution to shed the

load from an overloaded node by having the overloaded node remove some of its virtual servers.

However this scheme may result in thrashing as removing some virtual servers from an

overloaded node may result in another node becoming overloaded. The reverse operation is done

in the case of node underloading by creating some new virtual servers for the underloaded node,

but it has its own problems again. A node with only some limited number of virtual servers may

have no accurate estimation of the costs of creating new virtual servers. Also when the whole

system is in an underloading status, it is quite probable that every node creates its maximum

allowed number of virtual servers resulting in a huge increment in the sizes of routing tables and

the search time. The main advantage of CFS is that it is completely decentralized.

 Rao et al. [5] have proposed three different mechanisms to balance the load using virtual servers,

yet their mechanisms are static and ignore data items popularities.

Using virtual servers in any algorithm leads to some common disadvantages. The first is that it

leads to churn increase. It means that when a physical node wants to join the system, it should do

the join operation for all of its virtual servers and when it wants to leave the system, it should

remove all of its virtual servers. Because joining and leaving of objects from structured P2P

systems impose some overhead, using virtual servers causes this overhead to be multiplied. Also

in most structured P2P systems, searching is guaranteed to be done in O(log N) steps, but when

using virtual servers this value changes to O(log M) where M is the total number of virtual servers

in the whole system. Another disadvantage of virtual servers is that they increase the size of

routing tables. Considering above problems with virtual servers, we do not use virtual servers in

our proposed algorithm.

Protocols which do not assume uniform object distribution use two different mechanisms to

achieve load balance, namely object movement [9] and node movement [11]. Movement of

objects breaks the DHT assigned addresses of objects to nodes making it hard to find objects

further on. Its application is thus limited to situations where the latter is not an issue, e.g. when

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

18

objects correspond to programs that do not have to be found because they transmit their results

automatically.

Moving nodes by letting them to choose their own addresses arbitrarily increases the threat of

Byzantine attack that can prevent some items from being found in the network. This is done by

simply choosing the node’s address to be the address of the item; the node then becomes

responsible for storing the item and can refuse to do so. Moving nodes preserve the DHT search

mechanism.

Apart from the above classification, replicating data items is another way to achieve load balance.

Akbariani et al. [12] have proposed a replication mechanism on Chord. They have used multiple

hash functions to produce several key identifiers from a single key. Their approach has one main

drawback that is they have defined no way to determine the number of hash functions for

replicating a data item. Xia et al. [13] have discussed this problem and have proposed a solution

for it. A major limitation about their solution is ignoring nodes heterogeneity while replicating,

i.e. replication is done blindly on some nodes and without considering their ability.

CAN [2] has proposed two approaches for data replication. The first approach uses multiple hash

functions, but this is done statically and without considering system varying load patterns at

different times. In the second approach, a node that finds it is being overloaded by requests for a

particular object can replicate the object at each of its neighbouring nodes. The main problem

with this approach is that system cannot control objects replication on nodes with more

capabilities.

In Pastry [3] replicas of an object are stored on the k Pastry nodes with keys numerically closest

to the object’s key. The problem with this approach is again not having the ability to replicate

objects on more capable nodes.

Although some other replication mechanisms such as the one presented in [14] have been

proposed for structured P2P systems, but they are mostly concerned with placing object replicas

to maximize system availability with no concern for balancing the load of objects on the nodes of

the system. Also most of the proposed replication algorithms use to replicate data items from the

early operation of the system in specified number of nodes which seems not to be necessary

especially for unpopular data items, as it leads to wasting of system resources and increase system

complexity.

3. DEFINITIONS AND PROBLEM FORMULATION

In this section we explain the primary definitions in context of load balancing and also present

our formulas.

3.1. Primary Concepts

In most structured P2P systems, the load of each node is defined as the number of items that are

stored in that node [5,6,7,15]. On the other hand, there may exist high popularity items that make

a node overloaded, although it stores some limited number of data items. Therefore, by taking

into account the number of entered requests for a node’s data items, we can define a node’s load

as the average number of bytes that are transferred by that node in each unit of time. By the same

token, we can define the node capacity as the maximum number of bytes that node can transfer

per time unit.

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

19

When a node intends to join the system, it is given a unique key using a hash function we call the

FirstHash hereafter in this paper. For the purpose of load balancing, a set of load directories, each

called LoadDir, is designed in the system to which nodes send their loads, capacities, locations,

and downtimes periodically. A node’s downtime is defined as the summation of continuous times

it is not accessible by other nodes in the system in defined intervals namely t that can be due to

links failure or high traffic. We use the successor and predecessor nodes of each node n to

periodically ping node n and to record the current system time tt somewhere in their local

memories in case they find node n inaccessible. If after a specified timeout interval they again

find node n as their successor (or predecessor), they subtract tt from the current system time and

report this value to node n. The downtime of node n is periodically estimated by summing the

reported values in the related t interval. We store locations of nodes to consider locality during

load balancing process and thus reduce the time it takes to balance load.

Later we explain the way these directories are stored in nodes that are more capable in terms of

bandwidth, uptime and memory in comparison with other nodes. Each node should be aware of a

node that stores its related directory. Specifying directory store nodes however is done

dynamically by considering different system states. So we define some constant nodes as pointer

nodes in which the identifier of directory store nodes are saved.

We use the approach proposed in [16] to prevent Byzantine attacks and to specify pointer nodes.

Each node connects to a central authority once, i.e. the first time it joins the system and obtains a

pointer identifier; we denote this pointer with PointerNo that specifies to which LoadDir the node

should send its information. In other words, each PointerNo specifies a pointer node and each

pointer node specifies the identifier of the node that stores the related LoadDir. The node whose

identifier is equal to or follows a PointerNo is in fact the related pointer node for this PointerNo.

The number of distinct pointer identifiers is limited and determines the number of load directories

in the system.

Using the explained mechanism, a node cannot dishonestly report its information to take

responsibility of some specified items and then refuse to respond to those items’ requests

(Byzantine attack). The reverse case happens when nodes report their information falsely to

prevent movement of some items to them. To stop the occurrences of such cases, incentive

mechanisms such as the ones presented in [17] can be applied. We simply suppose that nodes

report their locations honestly, but more secure mechanisms like the one proposed in [18] can be

applied.

The central authority periodically sends the pointer numbers to the related pointer nodes so that

each directory can get aware of other directories.

In our algorithm we group the nodes based on their load directories. In other words, nodes that

send their information to the same LoadDir, form a group with each other. The use of these

groups is explained in the following part.

3.2. Load and Cost Definition

Our load balancing algorithm tries to minimize the load imbalance factor in the system while

minimizing load movement. Also we consider some other important factors which are related to

the destination of the load transfer. In our algorithm, the calculation of the cost of transferring

load to a destination node is based on destination load, downtime and also its proximity to the

overloaded node. By considering proximity, we want to show the importance of links’ latencies in

the final cost. The final goal is to increase the number of successfully routed queries in the

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

20

system. Since there is no global information in P2P systems, we do not claim to select the best

node in the system to move the load to it, but our algorithm does this in the defined groups. In

other words, by using the following formulas, we want to select nodes in the related group that

impose the minimum cost. So when we want to move some load from a node i to a node j the

destination cost is formulated as below:

DestinationCost=w1* Load_statusj +w2*(loci—locj)/distancemax+w3*(downtimej/t) (1)

Load_statusj =(capmax – capj)/ capmax + loadj / capj (2)

In (1), cap and loc denote the capacity and location of a node respectively. To normalize the

location parameter in (1), we divide the result of subtracting locations by distancemax that stands

for the distance between i and the farthest node in the related group. By downtime, we mean the

summation of continuous times the node is not accessible by other nodes in the system in a

defined interval namely t. Stated differently, downtime is calculated periodically and in defined

intervals each last for t units of time. In formula (1), the downtime of node j is divided by t to

normalize the downtime parameter. Also wi (1<=i<=3) is the weight given to different cost

function parameters and ∑wi=1 is always satisfied. These weights are application-dependent. We

aim to select destination nodes with the minimum DestinationCosts, so the lower the three

parameters’ values are, the lower is this cost.

The load of each node j is defined as the summation of its data items loads, i.e., loadj =
∑

=

m

k

kload
1 , in

which m is the number of j’s items. The stored items in each node are either the items whose keys

fall in the range of IDs for which the node is responsible, or the items that are replicated in the

node. The load of each object k is defined as follows:

Loadk=size* r (3)

In formula (3), we want to calculate the average amount of bytes that is transferred in each unit of

time in relation to object k. Supposing that there are r requests for the object k in the related time

unit, we average the sent bytes for these r requests and set the parameter size to the achieved

result. However, there are some cases in which the node cannot respond to all of the received

requests, so the node load may get bigger than its capacity. The parameter r is set to zero for any

data item to which there is no access in the related unit of time. This way, popularities of items

are applied via their access frequencies.

We define the node capacity as the maximum number of bytes that a node can transfer per time

unit. These definitions focus on node bandwidth as it has been proved that even in remote storage

applications, network bandwidth is likely to be the primary bottleneck [19]. As storage becomes

cheaper and cheaper relative to bandwidth, this case is likely to become more common. A node is

overloaded if its load is more than an upper threshold that is defined relevant to node capacity.

3.3. Valid Boundary Definition

Load balancing algorithms usually define one, two or sometimes even three thresholds [5,7]. In

the same way, we use two thresholds in our algorithm, namely an upper threshold and a normal

threshold. The value of normal threshold is less than the upper threshold for any node and they

are both defined by considering each node capacity. It is shown by simulations that setting normal

and upper thresholds of any node to 75% and 95% of its capacity respectively are appropriate

choices. But different from other algorithms, we also introduce a new notion called valid

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

21

boundary. We suffice to describe valid boundary here and defer how the mentioned thresholds

and valid boundary are used to Section 4.

Valid boundary is separately defined for all nodes that are in the same directory. In other words,

nodes in the same group use the same meaning for valid boundary.

As stated before, each directory contains some information about some of the system nodes.

Using this information, we can have an overall estimation of system nodes’ states in terms of their

load. We mean that if the loads of at least half of the nodes in a directory are less than half of their

capacities, then we guess that nodes have lots of unused capacities. In such case, it is better to

balance the load in a way that more nodes have their loads under their normal thresholds. In other

words, instead of just rescuing nodes from being overloaded, we try to reach their loads below

their normal thresholds. To this end, we set the valid boundary to the normal threshold for this

directory. If the above condition is not held, i.e., loads of at least half of the nodes in a directory

are not less than half of their capacities, we just try to help the nodes not to be overloaded. In this

case, valid boundary is set to the upper threshold for this directory’s nodes.

By setting valid boundary to normal threshold, we stop the nodes that have been recently used in

a load balancing process from becoming overloaded soon while there are unused capacities in the

system. On the other hand, if lots of the nodes in a directory have used much of their capacities,

we set valid boundary to the upper threshold for this directory’s nodes. The reason is that it is

usually hard to find some nodes to transfer the load to them in a way that load balancing process

leads to a state in which all of the involved nodes have their loads under their normal thresholds.

4. LOAD BALANCING SCHEME

The area between upper load threshold and the capacity of a node works as a buffer zone before

the node starts rejecting its received requests [20]. In our algorithm, a node starts running the load

balancing algorithm when it notices its load is higher than its upper threshold.

Every node checks its load periodically. If it is overloaded, it puts its popular items in a list called

popular-item-list. This list is stored separately in each node and in relation to its own items. In our

algorithm, an item is popular if more than a quarter of the node load is due to that item load.

Our algorithm uses two mechanisms, namely nodes moving and replication to balance the load

between nodes using the popularities of items. As replication is always followed by its own extra

overheads, we try to postpone replication as much as possible while keeping the nodes in

acceptable load states by applying the node movement mechanism. But in case of necessity, we

make use of replication too. Node movement, replication, and search mechanisms are explained

separately in detail below.

4.1. Node Movement

Node movement is done when one of the following cases arises:

1. A node gets overloaded due to the high popularity of more than one of its items.

2. A node gets overloaded because of high amount of data items put on it while none of

them is highly popular. In this case the popular-item-list for this is empty.

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

22

3. A node gets overloaded while there is only one item in its popular-item-list. This item

key is not equal to node’s key and also the node capacity is less than half of the average

nodes’ capacities in the related directory.

To postpone replication as much as possible, when there is more than one popular item in an

overloaded node, we try to balance its load by moving some of its popular items to another node.

Also when a node gets overloaded due to excess number of assigned items to it while none of

them is highly popular, we apply node movement to move some of these items to other nodes.

For the case that there is only one popular item in an overloaded node’s popular-item-list, it is

probable that due to its increasing popularity rate, moving this item to another node causes that

node to get overloaded too. But considering system heterogeneity, it is possible that this node’s

overloading be much more due to its low capacity and not because of the great number of

requests for the so-called popular item. So to delay replication, we balance the load of nodes even

in this case by node movement if it is possible. To this end, we use nodes’ capacities information

that is stored in each directory to estimate the average capacity of nodes in the system (Cavg).

When a node is overloaded while there is only one item in its popular-item-list, we compare its

capacity with Cavg. If the overloaded node capacity is less than half of Cavg, we guess that its

overloading is probably due to its limited capacity and the only item in the popular-item-list is not

really a popular one. If this item key is the same as the node key, we cannot move it to another

node; in this case, the only remained solution is replicating this item. But if the item key is

different from the node key, we balance the load by the node movement mechanism.

If a node n is overloaded due to one of the above three conditions, it sends a request to its relevant

directory asking it to find proper nodes to move its load. Each heavy node can balance its load

with more than one node, i.e., it is possible that the load balancing process is carried out more

than once and in each round a different node is selected by directory to balance the load. The

selected nodes should leave their previous locations in the overlay and join at the new locations

specified by the n’s directory. We call these points the “split points”.

Selection of each proper node is done in four steps. In the first step, the overloaded node’s

directory searches in its stored information, calculates the destination cost function stated in

Section 3 for each of its entries, and selects a node with the minimum cost. The selected node m

should move to a specified split point, so all of its assigned keys should be reassigned to its

successor.

In the second step, the directory checks that the reassignment process does not end up with m’s

successor load to exceed from its valid boundary value. If so, m is selected as the first proper

node to leave and rejoin the system at the specified split point. If the above condition is not

satisfied, the selection process is repeated from the first step to find the next minimum cost node.

In the third step, the directory checks how much of n’s load can be moved to m such that m’s new

load does not exceed its valid boundary. To do this, the overloaded node’s directory selects some

of n’s data item, starting from the item whose key has the most distance from overloaded node

key and checks the loads of m and n after moving each of these items. If the load of node n is still

bigger than its valid boundary and also the load of node m is less than its valid boundary, the

process of item selection continues in the same flow. In fact, no item is really moved in this step,

but only the imposed load of each selected item is decreased from the current load of n and is

added to the current load of m; then if the result of this summation is less than m’s valid

boundary, this selected item is marked to be moved in the next step. We call the result of this

summation m’s new load. This step terminates when each of the above conditions is not satisfied,

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

23

i.e. the selection of data items leads to m’s new load exceeds its valid boundary or the load of n

gets less that its valid boundary. In this case the last data item is not marked and the split point is

set to the last marked data item key.

The real movement of data items is done in the fourth step and after rejoining of m at the split

point that was defined in the third step.

The process of moving the load of n to other nodes continues in the same flow if n’s load is still

more than its valid boundary by selecting the next minimum cost node. The end of this flow is

when n load reaches to its valid boundary or the only remained data item in n is the one whose

key is equal to overloaded node key. In the latter case, the only remained data item is put in the

node popular-item-list in the next execution of algorithm and this node gets an eligible candidate

for the second load balancing mechanism.

If necessary, this directory can connect to other directories and selects a proper node from them.

To prevent the excess number of movements of nodes when balancing the load of each node, we

can define a minimum amount of load that should be moved in any node movement operation.

This way, nodes that are selected to be moved must have the ability to support at least this basic

minimum amount of load, although we ignore this case for simplicity. The following algorithm

shows the node movement in pseudo-code.

The only remaining question is what happens if we try to find one node with a lot of unused

capacity and move all the extra load of an overloaded node to it, i.e., using single node load

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

24

balancing instead of multiple nodes load balancing. This way, node movement process is done

only once for each overloaded node and it seems less overhead is imposed on the system. But as

we show later in the simulation section, usually finding only one node requires much searching

for that node which causes the load balancing process to become very slow.

4.2. Replication

If a node is overloaded because of the high popularity of one of its items while its capacity is not

less than half of the average capacity of nodes in the system (Cavg), we avoid repetition of

overloading due to this item by replicating it. In other words, supposing that there are a lot of

requests for the only item in popular-item-list of a node while the node capacity is not so low

compared to other system nodes, it is better to replicate this item so that its related load is

distributed between the replicas.

Consider that node n is overloaded due to the above condition. If loadn/Cavg = k, we use this ratio

to specify the number of replicas for the related data item. In other words, if n’s load is k times

bigger than Cavg and k is an integer, we should redistribute the load of n on k nodes by replicating

the related popular data item on k-1 nodes other than n itself. In this case, each of the replicas

should have the ability to support an extra load of at least loadn/k. If k is not an integer and

assuming that k’ is the lower bound (floor) of k, we replicate the related popular data item on k’

nodes other than n itself and each of the replicas should have the ability to support an extra load

of at least loadn /(k’+1). If 1/2<=k<=1 is held, we replicate the related data item only on one

node other than n itself.

For the purpose of replication, we use a second hash function called SecHash and also a set of

replication directories each called RepDir. Each entry of these directories consists of two parts,

namely the name of replicated data item and a list of replication destinations. Creation of

replication directories is done dynamically throughout system operation. If a node wants to

replicate one of its items named A, it should do an operation similar to searching to find the

RepDir where it should add an entry, but instead of searching for successor of FirstHash(A), it

searches for successor of SecHash(A). Any node that stores a RepDir should distribute the

received queries for the replicated data items among their replicas.

The replication destinations are specified by the overloaded node’s LoadDir. This directory

calculates the destination cost function stated in Section 3 for each of its entries and at last selects

k-1 or k of the nodes that impose the minimum cost and also by moving loadn /k or ,m to them

they do not change to overloaded nodes. Again this directory can connect to other directories if

necessary. A is replicated in the found nodes in association with another field where FirstHash(A)

is stored. This field is used during search process as we explain below.

The overloaded node can then refuse the replicated item’s received requests until its load reaches

its valid boundary. This way, if a node is searching for a replicated item, it may receive no result

after a period of time, which means a timeout has occurred. If this is the case, the requester node

uses the second hash function to find the relevant RepDir and reads the replication destinations

from it. It is possible however that lack of response to a request during the timeout interval be due

to other reasons, e.g., links failure or high network traffic. In this case, the requester node finds no

relevant entry when it refers to RepDir and should send another request to the item owner node.

We can avoid bandwidth wasting which is due to the short timeout intervals by setting this

interval dynamically and with regard to recent response times of requests. The overloaded node

sends a message to the relevant RepDir and replica destination nodes after its load reaches its

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

25

valid boundary, so that they can remove the associated replication information. The following

algorithm shows the node replication in pseudo-code.

To make the system fault tolerant, we can backup replication directories in the b next successors

of the nodes where they are stored. The value of b is defined considering the fault tolerance level

needed in system.

4.3. Search Mechanism

Every time a node receives a request with key k, it checks whether k falls in the interval it is

responsible for or not. If it is the case, this node returns the requested item. Otherwise, the node

should forward the request to another node with respect to its finger table [2], but in our algorithm

this step is delayed by another step in which the node checks whether a replica of the searched

item is stored in itself. Since intermediate nodes have no information about the name of requested

items during search process and work only with hashed keys, the node checks the requested item

key with the fields stored on it in association with the replicated items, namely their FirstHash

values. If no match is found, it forwards the request to another node with respect to its finger

table, otherwise it responds to the requester node itself.

5. SELECTING CAPABLE NODES AS DIRECTORY STORES

In our algorithm we use more capable nodes to store directories in them and also using them as

the director in load balancing and conflict resolution processes. In this section we first define

capability metrics and then present a formula to rank nodes and select more capable nodes.

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

26

5.1. Selection Metrics

The first metric is the node bandwidth. In the context of data networks, bandwidth quantifies the

data rate at which a network link or a network path can transfer [21]. The owned bandwidth of

each node is not constant implying that although communication links of a node have constant

hardware capacities, their free capacities highly depends on node load. This leads us to define

another parameter namely Bandwidthavail which is calculated via (4).

Bandwidthavail=capacity – load (4)

Uptime is another metric. A node’s uptime is defined as the average of continuous time the node

stays in the system. Our load balancing mechanism depends on the stored information in

directories. But since nodes in P2P systems can leave the system at any time, it is important to

store directories in the nodes that stay in the system longer. Nodes with high values of uptime are

more likely to stay longer in the system [22].

Each directory contains different kinds of information about some system nodes for the purpose

of load balancing and replication. So there should be sufficient remaining memory in the nodes

that are selected as directory stores. We thus consider the free memories of nodes as the third

metric.

We use these defined metrics to specify where the directories should be stored. To normalize our

metrics, we apply the following formula to calculate a node i score and then rank nodes based on

their scores.

Scorei=w1* bandwidthavail i/bandwidthmax+w2* uptimei /uptimemax+w3*memoryi/memorymax (5)

In formula (5), we have divided each node’s bandwidth, uptime and memory by a related

maximum value. This value is in fact the maximum achieved value among the related gathered

information. Also wi (1<=i<=3) is the weight given to different parameters of score function and

∑wi=1 should be always satisfied. These weights are application-defined; for example, if nodes

leave and join the system frequently, we should give a higher value to w2. We explain the

selection process in more details next.

5.2. Selection Process

The P2P system we have assumed consists of two overlay networks namely an overlay where all

system nodes are stored and another overlay in which only directory store nodes exist. We call

these two overlays first level and second level overlays, respectively. Nodes identifiers in the

second level are the same as their first level identifiers.

Taking into account that comparing score values among all system nodes is not actually possible

in large scale P2P systems, directory store nodes are selected as follows.

For each pointer node p, the pointer node after p in the identified space is called p’s Next. To

select directory store nodes, pointer nodes periodically execute a procedure called Second-Level-

Node-Selection. Each pointer node calculates the score function for a limited number of randomly

chosen nodes called candidate nodes whose identifiers fall between its own identifier and its Next

node identifier. Score is also calculated for the node which is already the directory store of the

mentioned pointer. Finally, the node whose score has the maximum value among other

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

27

comparable nodes is selected as the related directory store for the mentioned pointer node.

Because score value for any node is different in variant system conditions and also candidate

nodes are selected randomly, it is possible that a new node is selected in each round of Second-

Level-Node-Selection execution. This is more probable in the early operations of the system. But

as time passes, this changing rate gets lower and lower. Periodic execution of Second-Level-

Node-Selection can help to give the chance to newly entered nodes to store directories.

First level nodes should identify second level nodes. One way is to add another set of routing

tables to each node whose entries only consist of second level nodes. This solution imposes high

overhead on all system nodes. A more reasonable solution is to store a field called DirDest in

each pointer node where the identifier of a related directory store node is saved. If a pointer node

decides to leave the system, it should first give its stored DirDest field to its successor.

As we formerly explained, each node can find its related pointer node through the PionterNo that

is passed to it upon joining the system. So this node can get aware of its relevant LoadDir by

reading the stored identifier in DirDest and it can also store it somewhere in its own memory with

the name of MyDirDest for later uses.

It is possible however that any node including second level nodes leave the system. So the stored

MyDirDest value in a node may be invalid after a while. In this case, when this node uses its

MyDirDest to access its directory, two cases may happen. The first is that it finds no node with

the same identifier and finds out that the previous directory store node has left the system. The

second case happens when the node finds the node with the same identifier as MyDirDest but this

node no longer contains a directory. The latter case happens when a more suitable node is found

for the related interval, so that the previous directory store node is replaced with the new found

node. In both cases the node can again access its pointer node and find the new value from

DirDest. To make the system fault tolerant, each pointer node can replicate its DirDest value to b

of its successors. The value of b is defined by the fault tolerance level needed in system.

If a second level node wants to leave the system, it first should inform its related pointer node, so

that this pointer node can select another proper node to store its relevant directory by executing a

procedure similar to Second-Level-Node-Selection.

As stated previously, the number of directories is limited. This number can be set to

proportionally change with the number of nodes in the system. Small number of directories makes

the nodes that store directories a bottleneck. This is because many nodes want to send their

information to these nodes. On the other hand, a lot of directories in the system increase system

complexity and overhead. So finding the proper number of directories can improve the

performance of our load balancing algorithm. We show by simulation in the next sections that

even with 16 nodes in a single group, most heavy loaded nodes are successful in shedding their

loads by probing only one directory.

It is possible that some node leave the system after a while, so its related stored information in the

directory is no longer valid. As we explained before, nodes periodically send their information to

their related directory and a second level node gets aware of an invalid directory entry if no such

information is sent for this entry in the specified periods. In such cases, this entry can be deleted

by the related directory store node.

To prevent excess number of second level nodes, we define a lower threshold for the minimum

number of entries a second level node can have. If a second level node notices its directory entries

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

28

are lower than the mentioned threshold, it informs the central authority to set the PointerNo of

some of the nodes that want to join the system, to its related PointerNo.

6. SIMULATION RESULTS

To evaluate our algorithm, we have developed a Java program that simulated our algorithm on a

Chord structured P2P system. Our algorithm can be applied to other structured systems too, but

we choose Chord as a basic and simple structured p2p system. Simulation results describe why

we have preferred multiple nodes load balancing to single node load balancing in our algorithm,

shows the importance of proximity factor in bandwidth consumption, and presents the superiority

of our algorithm to another three well-known related algorithms cited in related work section 2.

Our simulated nodes were completely heterogeneous with different capabilities, so Pareto node

capacity distribution with parameters shape=2 and scale=100 were used. In our simulated

environment 1024 nodes are included which can leave or join the system at any time.

For calculating a node down time, we used its successor and predecessor nodes to ping it every 30

seconds, i.e. the variable t that was defined in Section 3 was set to 30 seconds. We set the weights

in Formula (1) as w1=0.5, w2=0.25 and w3=0.25. We gave more weights to the load parameter in

this formula as the first condition in any load balancing process is to find some other node which

is not itself overloaded. Also the defined weights in Formula (5) were set as w1=0.3, w2=0.5 and

w3=0.2. Among these three weights, we gave the maximum value to w2 as it is very important to

place directories in nodes that stay longer in the system compared to other shorter life nodes.

Because memory is cheaper than bandwidth we gave more weight to bandwidth compared to

memory.

We first show why we have decided to balance the load of any overloaded node with more than

one node if necessary. In other words, why we have preferred multiple nodes load balancing to

single node load balancing. Considering our proposed solution to estimate the average of nodes’

capacities in the system (Cavg), we compare the load of overloaded nodes (loadoverloaded) with Cavg.

The results of simulations in Figure 2 show that increases in the ratio of loadoverloaded/Cavg,

increases the number of searches required to find a proper node to move all the extra load of this

overloaded node to it. This indicates that it takes a long time just to find a proper node to balance

the load of each overloaded node. To depreciate this overhead, it is reasonable for our algorithm

to use more than one node (if necessary) to transfer the extra load of each overloaded node to

them.

Figure 2. The rate of increase of the number of searches as loadoverloaded /Cavg increases

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

29

Simulations results shown in Figure 3 compares the average download times for two approaches,

when multiple nodes load balancing and when single node load balancing were used. The average

download time has been defined as the average (for all peer nodes) of the time elapsed since a

peer requested to download a data item until the time it finished its download. Figure 3 shows the

improvement (in minutes) on the average download times simulated for different query inter-

arrival times (x-axis). The best results related to cases when the queries were very frequent. For

example, for a query inter-arrival time of 0.2 minutes, the average download time of the data

items in the multiple nodes load balancing approach was 5 minutes shorter than when the same

simulation ran for the single node load balancing approach. When queries were less frequent, the

improvement was negative; implying that multiple nodes load balancing is slower and less

efficient than single node load balancing in case of less frequent queries.

Figure 3. Download times in case of single node and multiple nodes load balancing

To demonstrate the importance of proximity in our algorithm, Figure 4 shows the bandwidth

consumption of load transfer process in terms of the number of required physical hops during

load balancing process. As it is shown, when we have relaxed the proximity factor, the number of

required physical hops has increased.

Figure 4. Changes in links delays while load balancing

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

30

Figure 5 shows the effectiveness of our algorithm by comparing it with three other related

algorithms, namely Rao et al. algorithm [5], CFS algorithm [10] and log(N) virtual Server

algorithm [1]. As we have mentioned previously in Section 2, Rao et al. have proposed three

different schemes to balance the load using virtual servers. In our simulations, we have only

considered their “one-to-one” scheme in which one node contacts a single other node per unit of

time, given that their other two schemes also utilize nodes similarly.

The focus was put on the percentage of successfully routed queries for trace-driven simulations

with varying loads. To this end, we have used Zipf query distribution that has first been presented

by Gummadi et al. in their trace analysis of Kazaa [23] and this distribution is common to many

other usages (e.g., web page file access [24] and file popularity [25]). So queries were uniformly

initiated from nodes at random with destinations chosen from Zipf distribution.

Our simulations examined how the load balancing algorithms responded to different degrees of

applied workload. In almost all cases, we found our algorithm performs the same or better than

the other algorithms. We varied the applied query load by orders-of-magnitude and recorded the

percentage of queries that reached their destination.

Figure 4. Percentage of successfully routed queries in trace-driven simulation with varying loads

7. CONCLUSION AND FUTURE WORKS

This paper presented a new load balancing algorithm for dynamic structured p2p systems

assuming non-uniform distribution of data items in the system, heterogeneous nodes, system

dynamicity, and variable popularities of objects. Also two important factors namely the downtime

and proximity were considered during load transfer process. The main goal of the proposed load

balancing algorithm was to increase the percentage of successfully routed queries. For the

purpose of load balancing, we have designed some directories to handle the load balancing

process and proposed a new approach to place these directories in more capable nodes in the

system. Also we used two different mechanisms, namely node movement and replication to

balance the load. Simulation results showed the superiority of our load balancing algorithm in

variant load conditions in terms of the percentage of successfully routed queries.

A number of potential improvements to our algorithm deserve further studying. First, in this

paper we have assumed only one bottleneck namely bandwidth. However, a system may be

constrained by other resources like CPU processing capability. So our load balancing algorithm

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

31

would have to be improved to handle this generalization. Secondly, our algorithm simply assumes

there is no conflict when replication is done; although we postpone replication as much as

possible in our algorithm, but some conflict resolution mechanism is still needed to be applied in

the case of changeable data items.

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord: A Scalable Peer-to-

Peer Lookup Service for Internet Applications," in Proceedings of the 2001 Conference on

Applications, Technologies, Architectures, and Protocols For Computer Communications, New York,

pp. 149-160, 2001.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Scott , "A Scalable Content-Addressable

Network", in Applications, Technologies, Architectures, and Protocols for Computer

Communications, USA, pp. 161-172, 2001.

[3] A. Rowstron and P. Druschel, "Pastry: Scalable, Decentralized Object Location, and Routing for

Large-Scale Peer-to-Peer Systems," in Middleware, pp. 329-350, 2001.

[4] B. Zhao, J. Kubiatowicz, and A. Joseph, "Tapestry: An Infrastructure for Fault-Tolerant Wide-Area

Location and Routing," Technical Report UCB/CSD-01-1141, 2001.

[5] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, "Load Balancing in Structured P2P

Systems," in Second Int’l Workshop Peer-to-Peer Systems (IPTPS ’02), USA, pp. 68-79, 2003.

[6] J. Byers, J. Considine, and M. Mitzenmacher, "Simple Load Balancing for Distributed Hash Tables,"

in Second International Workshop, IPTPS, Berkeley, USA, pp. 80-87, 2003.

[7] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load Balancing in Dynamic

Structured P2P Systems”, in INFOCOM 2004, Hong Kong, March 2004.

[8] Narjes Soltani, Ehsan Mousavi Khaneghah, Mohsen Sharifi, Seyedeh Leili Mirtaheri, Dynamic

Popularity-Aware Load Balancing Algorithm for Structured P2P Systems, International Conference

on Network and Parallel Computing, September 6-8, 2012, Korea

[9] J. M. Ruhl, "Efficient Algorithms for New Computational Models", USA, Technical Report,

Massachusetts Institute of Technology, 2003.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-Area Cooperative Storage with

CFS”, in Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP ’01),

October 2001.

[11] S. Rieche, L. Petrak, and K. Wehrle, "A Thermal-Dissipation-Based Approach for Balancing Data

Load in Distributed Hash Tables", in Proc. of 29th Annual IEEE Conference on Local Computer

Networks (LCN), Germany, pp. 15-23, 2004.

[12] R. Akbariani, V. Martins, E. PAcitti, and P. Valduriez, “Global Data Management (Chapter Design

and Implementation of Atlas P2P Architecture)”. 1st Ed., IOS Press, July 2006.

[13] Y. Xia, S. Chen, and V. Korgaonkar, “Load Balancing with Multiple Hash Functions in Peer-to-Peer

Networks”, in Proc. of the IEEE Int. Conf. on parallel and Distributed Systems (ICPADS), pages 411-

420, Minneapolis, Minnesota, July 2006.

[14] A. Ghodsi, L. Alima, and S. Haridi, “Symmetric Replication for Structured Peer-to-Peer Systems”, in

Databases, Information Systems, and Peer-to-Peer Computing, pp. 74–85, 2007.

[15] M. Mitzenmacher, A. W. Richa, and R. Sitaraman, "The Power of Two Random Choices: A Survey

of Techniques and Results," in Handbook of Randomized Computing, USA, pp. 255-312, 2000.

[16] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach, "Secure Routing for Structured

Peer-to-Peer Overlay Networks", in ACM SIGOPS Operating Systems Review - OSDI '02:

Proceedings of the 5th symposium on Operating systems design and implementation , New York,

USA, pp. 299-314, 2002.

[17] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani, "Do Incentives Build

Robustness in Bittorrent?", in NSDI'07 Proceedings of the 4th USENIX conference on Networked

systems design & implementation , Cambridge, MA, pp. 1-14, 2007.

[18] M. Costa, M. Castro, A. Rowstron, and P. Key, "PIC: Practical Internet Coordinates for Distance

Estimation", in Proceedings of the 24th International Conference on Distributed Computing Systems

(ICDCS'04), Tokyo, Japan , 2004.

[19] C. Blake and R. Rodrigues, "High Availability, Scalable Storage, Dynamic Peer Networks: Pick

Two", in Proceedings of HotOS IX, Lihue, HI, May 2003.

International Journal of Peer to Peer Networks (IJP2P) Vol.5, No.3, August 2014

32

[20] E. Pournaras, G. Exarchakos b, and N. Antonopoulos, "Load-Driven Neighbourhood Reconfiguration

of Gnutella Overlay ", in Computer Communications, vol. 31, no. 13, pp. 3030-3039, Feb. 2008.

[21] R. Prasad, C. Dovrolis, M. Murray, and K. C. Claffy, “Bandwidth Estimation: Metrics, Measurement

Techniques, and Tools”, in Network, IEEE, vol. 17, no. 6, pp. 27–35, 2003.

[22] F. E. Bustamante and Y. Qiao, "Designing Less-structured P2P Systems for the expected high churn

", in IEEE/ACM Transactions on Networking , vol. 16, no. 3, pp. 617-627, Jun. 2008.

[23] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Zahorjan, “Measurement, Modeling,

and Analysis of a Peer-to-Peer File-Sharing Workload”, in Proceedings of the 19th ACM SOSP,

Bolton Landing, NY, October 2003.

[24] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache: A Scalable Wide-Area Web Cache

Sharing Protocol”, in IEEE/ACM Transactions on Networking, 2000.

[25] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer, “Passive NFS tracing of Email Workloads”, in

Proceedings of the 2003 USENIX Conference on File and Storage Technology, San Francisco, CA,

March 2003.

Authors

Mohsen Sharifi is Professor of Software Engineering, in Computer Engineering

Department of Iran University of Science and Technology. He directs a distributed system

software research group and laboratory. His main interest is in the development of

distributed systems, solutions, and applications, particularly for use in various fields of

science. He has developed a high performance scalable cluster solution comprising any

number of ordinary PCs for use in scientific applications requiring high performance and availability. The

development of a true distributed operating system is on top of his wish list. He received his B.Sc., M.Sc.

and Ph.D. in Computer Science from the Victoria University of Manchester in the United Kingdom in

1982, 1986, and 1990, respectively.

Narjes Soltani is M.Sc. graduate student of computer engineering in Iran University of

Science and Technology (IUST). She received her bachelor’s degree in Computer

Engineering from Shahid Bahonar University of Kerman, Iran, in 2009. Her research

interests are in the areas of distributed and parallel systems and peer-to-peer computing.

