
International Journal on Soft Computing (IJSC) Vol.4, No.2, May 2013 

 

DOI: 10.5121/ijsc.2013.4201                                                                                                                            1 

 

 

MARKOV CHAIN AND ADAPTIVE PARAMETER 

SELECTION ON PARTICLE SWARM OPTIMIZER  

 
Chao-Wei Chou, Jiann-Horng Lin* and Rong Jeng  

 

Department of Information Management 

I-Shou University, Kaohsiung 840, Taiwan 
{choucw, jhlin, rjeng}@isu.edu.tw  

*Corresponding author , E-mail address: jhlin@isu.edu.tw 

 

 

ABSTRACT 

 
Particle Swarm Optimizer (PSO) is such a complex stochastic process so that analysis on the stochastic 

behavior of the PSO is not easy. The choosing of parameters plays an important role since it is critical in 

the performance of PSO. As far as our investigation is concerned, most of the relevant researches are 

based on computer simulations and few of them are based on theoretical approach. In this paper, 

theoretical approach is used to investigate the behavior of PSO. Firstly, a state of PSO is defined in this 

paper, which contains all the information needed for the future evolution. Then the memory-less property of 

the state defined in this paper is investigated and proved. Secondly, by using the concept of the state and 

suitably dividing the whole process of PSO into countable number of stages (levels), a stationary Markov 

chain is established. Finally, according to the property of a stationary Markov chain, an adaptive method 

for parameter selection is proposed. 
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1. INTRODUCTION 

 
The Particle Swarm Optimizer (PSO), introduced by Kennedy and Eberhart, is a stochastic 

optimization technique likened to the behavior of a flock of birds or the sociological behavior of a 

group of people [10], [11]. PSO is a population based optimization technique. The population is 

called a swarm. PSO is motivated from the simulation of social behavior of the group of 

individuals and therefore different from other evolutionary computational methods. It generates 

new values for all particles (individuals) in the swarm (population). PSO memorizes the previous 

individual and social (swarm) experience and uses them to help generate new particles. This idea 

for generation of new individuals differentiates PSO from other population-based algorithms.  

 

PSO is a high performance optimizer that possesses several desirable attributes, including the fact 

that the basic algorithm is very easy to understand and implement. It is similar in some ways to 

genetic algorithm (GA) and evolutionary algorithms. But it requires very less computational 

bookkeeping and fewer lines of code. Hence, it gains increasing popularity with its wide 

applicability and effectiveness in performing difficult optimization tasks. Among other 

applications, it has been applied to many problems, including multi-objective problems, mini-max 

problems, integer programming problems, errors-in-variables problems, and numerous 
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engineering applications. It also shares the ability of the genetic algorithm to handle arbitrary 

nonlinear cost functions, but with a much simpler implementation. It clearly demonstrates good 

possibilities for widespread use in electromagnetic optimization [3]. Though PSO has the 

advantage of being easy, it suffer from the “curse of dimensionality” just like other stochastic 

optimization algorithms including GA. This implies that the performance deteriorates as the 

dimensions of the search space increase. It does not possess the ability to improve upon the 

quality of the solutions as the number of generations was increased. We give a simple explanation 

in the following. Consider a basic stochastic global search algorithm that generates a sample from 

a uniform distribution on the entire search space. The algorithm stops when it generates a solution 

that falls in the optimality region, a small volume of the search space surrounding the global 

optimum such that the fitness is under a given threshold. The probability of generating a sample 

inside the optimality region is simply the volume of the optimality region divided by the volume 

of the search space. This probability will decrease exponentially as the dimensionality of the 

search space increases. Given this explanation, it is clear that it is typically significantly harder to 

find the global optimum of a high-dimensional problem, compared with a low-dimensional 

problem with similar topology. Beside the “curse of dimensionality,” another drawback of PSO is 

associated with the lack of a mechanism responsible for the control of the magnitude of the 

velocities, which may incur the danger of swarm explosion and divergence. To address the 

explosion problem a threshold on the absolute value of the velocity that can be assumed by any 

particle was incorporated. Also, PSO suffers from “being trapped in local minima” or “having 

slower convergence rate.” 

 

To overcome the above difficulties, many researches are devoted to improving the performance 

of the original PSO. For example, the original PSO does not have an inertia weight, i.e., 

0)( =rω  in (6), while Shi and Eberhart [23] introduced the improvement by adding an inertia 

weight, which results in faster convergence and increases the overall performance of PSO. 

Angeline [1] introduced a form of selection such that the properties making some solutions 

superior are transferred directly to some less effective particles. Angeline used a tournament 

selection process based on the particles’ current fitness, copying the current positions and 

velocities of the better half of the population onto the worse half. This technique improved the 

performance of PSO in three of the four test functions. Kennedy [17] proposed the LBEST 

method by dividing the swarm into multiple “neighborhoods,” with each neighborhood 

maintaining its own local best solution. This approach is less prone to becoming trapped in local 

minima, but typically has slower convergence.  

 

Since PSO and Genetic Algorithm (GA) both work with a population of solutions, Bergh and 

Engelbrecht [2] combined the searching abilities of both methods. Based on the compensatory 

property of GA and PSO, they propose a new algorithm, a variation on the traditional PSO 

algorithm, called the cooperative particle swarm optimizer (CPSO) that combines the evolution 

ideas of both. On the other side Parsopoulos and Vrahatis [22] propose a technique aiming to 

compute all global optimizers, while avoiding local optimizers, through PSO. Because the 

existing methods are all simulation-based, in this paper the theoretical part of PSO will be the 

main concern. 

 

A simple explanation of the PSO operation is as follows. Each particle in the whole swarm 

represents a possible solution to the optimization task at hand. During iterations each particle 

accelerates in the direction of its own personal (individual) best solution found so far, as well as 

in the direction of the global best position discovered so far by all the particles in the swarm. This 

means that if a particle discovers a promising new solution, all the other particles will move 

closer to it, exploring the region more thoroughly in the process. 
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Instead of using evolutionary operators to manipulate the individuals, like in evolutionary 

computational algorithms, each particle in PSO flies in the search space with a velocity that is 

dynamically adjusted according to its own flying experience and its companions’ flying 

experience. Through this paper, we assume a D-dimensional search space S with  

 

                                                   ),,(),(),( 2211 DD bababaS ×××= L                                      (1) 

 

where Daaa L,, 21 and Dbbb L,, 21 are the lower bounds and upper bounds of respective 

dimensions. We have a swarm consisting of I particles on S. Let i  be the index of particle and 

r be the index of iteration. The position of the ith particle after its rth iteration is a D-dimensional 

random vector 

 

                     .,,2,1;,,2,1,))(,),(),(()(
~

,2,1, RrIiSrXrXrXrX Diiii LLL ==∈=               (2) 

 

The velocity acting on the ith particle at its rth iteration is also a D-dimensional random vector  

 

                  .,,2,1;,,2,1,))(,),(),(()(
~
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The personal best position of the ith particle after its rth iteration is recorded and represented as  
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~

,2,1, RrIiSrXrXrXrX
P

Di

P

i

P

i

P

i LLL ==∈=                   (4)  

 

The global best position after the rth iteration of the ith particle is recorded and represented as     

 

                     .,,2,1;,,2,1,))(,),(),(()(
~

,2,1, RrIiSrXrXrXrX
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i

G
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G
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 The conditions of the whole swarm before the first iteration are given as follows. SX i ∈)0(
~

is 

given at random, i.e., IiXXX iii ,,2,1),0(,),0(),0( 1,2,1, LL =  are mutually independent and 

uniformly distributed on ),(),,(),,( 2211 DD bababa L , respectively. The initial velocities are set 

to be zero vectors, i.e. 0000=)0(
~

iV  . The initial personal and global best positions are set to be that  

 

  )0()0(
~

i

P

i XX ≡  

 

and  

 

 ).0(,),0(),0(   )0(
~

21

P

D

PPG

I XXXofbesttheX L≡  

 

 Here a continuous, non-constant fitness function f is given and the positions X
~

is said to be 

“better” thanY
~

means that X
~

has lower fitness function value, i.e. )
~

()
~

( YfXf < ; X
~

is said to be 

“best” if )
~

(Xf is the minimum. Now the initial conditions are determined, the iterations can keep 

going on. Before each position renewal, the previous personal best and global best positions are 

used to compute the new velocities and then the new position is determined according to ((6) and 

(7)). After position renewal, the new personal best and global best positions are computed and 

possibly updated immediately according to (8) and (9). The iteration is by the following order: 
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first iteration of first particle ( 1, 1r i= =  ), first iteration of second particle ( 1, 2r i= =  ),L , 

first iteration of Ith particle ( 1,r i I= =  ), second iteration of first particle ( 2, 1r i= =  ),L .In 

(6)-(9), the action of the r th iteration, 1, 2, ,r R= L ,on particle i , 1, 2, ,i I= L  , is given as 

follows :   

 

))),1(
~

)1(
~

()(
~

()))1(
~

)1(
~

()(
~

()1(
~

)()(
~

1

),0(),0( 21 −−−⊗+−−−⊗+−= − rXrXrUrXrXrUrVrrV i

G

i

c

i

P

i

c

ii ω  (6)  

 

where ( )rω is a parameter called the inertia weight and is a function of r ; 1 2,c c  are positive 

constants, referred to as cognitive and social parameters, respectively; 

 

                                      ,2,1),(,),(),()(
~ ),0(),0(),0(
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k

D
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where the components 
(0, )

( ), 1, 2, , ,kc

dU r d D= L are i.i.d. uniform random variables in the range (0, ), 1, 2.kc k =                

The vector product ⊗ is defined as     

 

 .                                     1 2 1 2 1 1 2 2( , , , ) ( , , , ) ( , , , )D D D Da a a b b b a b a b a b⊗ ≡L L L   

 

After the computation of the new velocity, the new position of the particle i after its r th iteration 

is computed by  

                                                   )1(
~

)(
~

)1(
~

++=+ rVrXrX iii                                                                       (7) 

 

With the new position in (7) and its new fitness function value )),1(
~

( +rXf i   the personal best 

position and global best position are possibly renewed using (8) and (9).  
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                                      ),(
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Here )(
~

1 rX G

i− denotes the global best after the r th iteration of the particle ( i -1). Note that, to be 

consistent in (9). As for i  =1, we define  
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In the iteration process, ( )rω in (6) is employed to manipulate the impact of the previous 

velocity on the current velocity. It can resolve the tradeoff between the global (wide ranging) and 

local (nearby) exploration ability of the swarm. A larger ( )rω encourages global exploration 

(moving to previously not encountered areas of the search space), while a smaller one promotes 

local exploration, i.e., fine-tuning the current search area. A suitable value for inertia weight 

provides the desired balance between the global and local exploration ability of the swarm and, 

consequently, improves the effectiveness of the algorithm. Experimental results suggest that it is 

preferable to initialize the inertia weight to a large value, giving priority to global exploration of 

the search space, and gradually decreasing so as to obtain refined solutions. But the condition 

depends on the scenarios, or more precisely, on the fitness function.   
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2. PROBLEM STATEMENT AND PRELIMINARIES 

 
Up to present most of the modified methods are still faced with a dilemma of compromise 

between the cases of being trapped in local minima or having slower convergence rate. Among 

them many papers deal with the selection of parameters to obtain the best performance.  

 

For the selection of parameterω , most of them use decreasing values during the iteration process, 

i.e. ( )rω ω= is a linearly decreasing function of r from around 1.0 to 0.4 [6, 12, 14, 18, 19, 24], 

or a exponentially decreasing function of r [15], while some treat as constant throughout the 

iteration process between 0.5 and 1 [7, 13, 21]. Among others, in [8]ω is a linearly increasing 

function of r . 

 

For the selection of parameters 1 2,c c , most of them use the same constant value ( 1 2c c= =2 in [14, 

16, 18, 20, 21] and 1 2c c= =1 in [19]), or fixed constant pair (( 1 2,c c  )=(2.0,1.0) in [4], ( 1 2,c c  

)=(3.0,5.0)in [12], ( 1 2,c c  )=(1.8,1.0) in [13]). On a different side, [7] increases 1c from 0.35 to 2.4 

and decreases 2c from 2.4 to 0.35 throughout the iteration process. 

 

As for the selection of parameter maxV , almost all of them use a constant value except that [9] 

decreases it throughout the iteration process.      

 

By considering the Markov property which will be introduced and proved in the following, it 

seems to have a better way of parameter selection since the fate of PSO depends on the present 

achievement (fitness value) instead of iteration r .This details will be explained in the following. 

As far as our investigation is concerned, most of the relevant researches are based on computer 

simulations and seldom of them are based on theoretical approach. Hence, theoretical approach 

about the behaviour of PSO will be the main concern in this paper. Some theoretical results as 

well as heuristic adaptive methods on parameter selection will be proposed. 

 

Before going into the details of the theoretical results, some preliminary results will be given first. 

Theorem 2.1 and Lemma 2.1 are from Chou etc. [5]. Theorem 2.1 gives the result that even the 

non-cooperative independent and identically distributed (i.i.d.) searching algorithm will converge 

and find the solution eventually under suitable conditions, even though no personal experience 

and group experience are incorporated in the searching process. The theorem is stated in the 

following. 

 

Theorem 2.1. (Converge in probability of i.i.d. search)  Let f be a D-dimensional continuous, 

non-constant function on domain S  in (1), and )
~

( 0Xf  be the minimum value of f  on S, i.e. 

 

  .
~

),
~

()
~

( 0 SXXfXf ∈∀≤  

 

Furthermore, let nXXX
~

,,
~

,
~

21 L  be  i.i.d. uniform random vector on S  in (1) and 

)
~

()
~

()
~
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~

(,),
~
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 in probability. 
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Theorem 2.1 proposes a convergence behavior of a non-cooperative i.i.d. searching algorithm if 

the fitness function is continuous.  

 

Furthermore, the real distribution can be approximated by empirical distribution for large data set 

and the estimation of probability percentile is of great importance in practical application. In 

Lemma 2.1, the minimum of n realized function values can be used to estimate the 1/n-percentile 

of the distribution of the function value and, with the help of Theorem 2.1, the estimate will 

converge to the true minimum. This can help to estimate the percentiles for the distribution and 

can be used in our adaptive parameter selection. 

 

Lemma 2.1. (Estimation of Percentile) As in Theorem 1, let nXXXY
~

,,
~

,
~

,
~

21 L  be i.i.d. uniform 

random vector and the random functions )
~

()
~

()
~

( ::2:1 nnnn XfXfXf ≤≤≤ L be the order statistics 

of )
~

(,),
~
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~

( 21 nXfXfXf L  and )~()~()~( ::2:1 nnnn xfxfxf ≤≤≤ L be their realized function 

values. Then  
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≤
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From lemma 2.1, we know that, for large n, the realized value )~( :1nxf can be treated as a good 

estimate for (1/n)-percentile of )
~

(Yf . The result of Lemma 1 gives a theoretical base for 

estimation of percentiles. To be more precise, when 1/ ,nα =  then )~( :1nxf can be a good estimate 

of α -percentile for f values. The percentiles will help to build our Markov chain as well as index 

of comparison in the following. 

 

The rest of this paper is organized as follows. In Section 3 we define the state of a PSO and 

accordingly investigate the memory-less property of the state. This sets the foundation for the 

Markov chain in later sections. In Section 4 a Markov chain is established and investigated. 

Adaptive method of parameter selection in PSO process is then presented. In Section 5, some 

conclusion and discussion is given for the future research. 

 

3. MEMORY-LESS PROPERTY OF PSO STATES  
 

In this section, the state of PSO is defined and its memory-less property is investigated. Also, the 

definition and the concept ofα _Dominating is given for the measure of achievement in a 

probability sense. 

 

3.1. A definition of the state of a PSO  
 

Before we investigate the Markov (memory-less) property of the states of PSO, we must well 

define the states of PSO and investigate them. We hope that the state defined in this paper can be 

a good indicator throughout the whole process. Thus the states must contain as much information 

as possible that is concerned in the process.  

 

In the following we use the index of time t to represent every position change and function 

evaluation, i the index of particle. 1t = is the time of the first position change and function 

evaluation of the first particle ( 1)i = and 2t = is the time of the first position change and function 
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evaluation of the second particle ( 2)i = , and so on. For every t only one particle moves and re-

compute its fitness function value. The index i of the moving particle and the time t satisfy the 

following relation: 

                                           
(mod  ),       (mod  ) 0

.
,              (mod  ) 0

t I if t I
i

i I if t I
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= =
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Here ,,,2,1),(
~

IitX i L= denote the position (vector) at time t ; ,,,2,1),(
~

IitX P

i L= the personal 

best position (vector) at time t ; ),10(    ),(
~

satisfiesifortVi  the moving particle’s velocity at time t  

and )(
~

tX
G

denotes the global best position at time t . We use t instead of r in (11) to (14) because 

the state changes with t increases. Every time only one particle moves according to (11) and (12). 

Then function evaluation is made to renew the position of the moving particle, the fitness 

function value is re-computed and the personal best position (of moving particle) and global best 

position (of whole swarm) are possibly changed ((13) and (14)). Note that every time only one 

particle is moved and the other particles inherit their previous values of positions and personal 

best positions ((12) and (13)). Also note that ,,,2,1)),(
~

( IitXf P

i L=  and ))(
~

( tXf
G

 are all non-

increasing functions of t  .  

 

Combine the formulas (11)-(14) and define the state at time t , as ),(
~

tW   
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G

I

P

I
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I LLL≡     (15)  

 

Note that in (15) the information needed for the future revolution is contained in the present state. 

Thus we have the following memory-less property of the state.  

 

3.2. The memory-less property of the PSO state 
 

As mentioned at the end of previous paragraph, a theorem on the memory-less property of the 

PSO state is given. 
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Theorem 3.1. The states of the PSO, as defined in (15), are memory-less, i.e. the conditional 

distribution function of the next state )1(
~

+tW , given the present and historical 

states, ),1(
~

,),1(
~

),(
~

WtWtW L− is the same as the conditional distribution function of )1(
~

+tW , 

given only the present state )(
~

tW , i.e.   

                                                                

                    )).(
~

|)1(
~

())1(
~

,),1(
~

),(
~

|)1(
~

( tWtWDFWtWtWtWDF +=−+ L                    (16)   

 

Proof. Without loss of generality we assume that at present time t only particle i moves and re-

compute its fitness function, while at future time ( 1)t + only particle ( 1)i + moves and re-compute 

its fitness function. We discuss the change of the components from that in )(
~

tW to that 

in )1(
~

+tW in the following. Firstly, the future velocity of particle will be set to be zero, i.e.  

0)1(
~

=+tVi since particle will not move at time ( 1)t + . The other components of )1(
~

+tW  inherit 

their previous values in )(
~

tW except only four components: 

)1(
~

),1(
~

,0)1(
~

111 ++=+ +++ tXtXtV P

iii ,and )1(
~

+tX
G

. Among them 0)1(
~

1 =++ tVi depends only 

on the present state )(
~

tW by (11).The other three also depend only on the present state )(
~

tW by 

(12), (13) and (14) respectively. Thus )1(
~

+tW depends only on )(
~

tW . This completes the proof. 

 

3.3. The Concept of  α _Dominating 
 

With the memory-less property, the fate of PSOs depends only on the present state while not on 

the past history. Therefore what is the most important is “what the state is now” instead of “what 

the state used to be.” Therefore we can investigate the influence of the present state on the future 

state regardless of the historical state. Also, the future states of the PSOs do not depend directly 

on the time t . This paper will give the result that the state of PSOs constitutes a stationary Markov 

chain and therefore depend on t at most through the present state. We explain this phenomenon in 

details in the following. As t increases, the state may gain considerably better achievement, but it 

is not definite. If for a specific sample process, as t increases while the state may gain no 

significant achievement, then the future state distribution will not be favored even t is very large. 

Hence it seems better to consider different parameters portfolio during different state stage 

instead of time stage as the previous research did.     

 

To evaluate the achievement (goodness) of a state, we define an index for the state to represent 

the present achievement of PSO. This index is based on the concept of probability. Since the 

achievement is position-dependent, firstly we define an index relevant to the positions. 

 

Definition3.1.( α _Dominating of positions) A position (vector) 0Y S∈ is said to be 

α _Dominating, 0 1α≤ ≤ , with respect to f and its domain S , if the probability that a uniform 

distributed random vector  is better than 0Y  isα , i.e. 1 0Pr( ( ) ( ))f Y f Y α< = .  

 

We discuss two extreme cases in the following: 

(i) When 0α = , 0Y is a best position. 

(ii) When 1α = , 0Y is a worst position. 
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Withα smaller, the position (fitness function) is better achieved, but it is not to be assured that the 

position is geographically nearer the global optimum. Maybe it is only nearer to one local 

optimum. In the following, we discuss a concept similar to that in Definition 3.1 with respect to 

the state space. 

 

Definition3.2. (α _Dominating of states) A stateW
~

is said to beα _Dominating, or withα value 

(in dominating), with respect to f and its domain S, if its global best position is α _Dominating.  

 

    According to Definition 3.2, the immediate result in Lemma 3.1 follows. 

 

Lemma 3.1. Theα value (in dominating) of a state depends only on its global best position. 

 

Furthermore, we define one relation between two states in Definition 3.3.  

 

Definition 3.3. (Equal_Dominating relation) Two state
1

~
W and

2

~
W are said to be 

Equal_Dominating to each other, if they are bothα _Dominating for the sameα .  

 

Note that a state is better if itsα value is smaller and two states are of little difference in view of 

achievement if they are Equal_Dominating. Lemma 3.2 gives the result that it’s an equivalent 

relation.  

 

Lemma 3.2. The relation of Equal_Dominating is an equivalent relation. 

Proof. It’s rather intuitive that the Equal_Dominating relation is reflexive, symmetric and 

transitive. We omit the proof.   

 

According to Lemma 3.2, we can divide the whole state space of PSO into uncountable number 

of equivalent classes. Each class corresponds to one value. Within one class every pair of the 

states,
1

~
W and

2

~
W , are Equal_Dominating to each other. Whereas for any pair of states that are not 

in the same class, they are not Equal_Dominating. But the total number ofα values, or equivalent 

classes, is uncountable and thus very difficult for analysis. In the following, the equivalent classes 

will be merged into countable ones and the analysis tasks will thus be simplified. 

 

4. MARKOV CHAIN ON PSO LEVELS  
 

In this section we merge the equivalent classes into countable ones, as mentioned in the end of 

Section 3, to reduce the number of equivalent classes. We call the merged classes “levels”. The 

classification of levels will be according to (17) and Definition 4.1 in the following. 

 

                            0 1 2 0 1 2( , , , , , ),1 0n nα α α α α α α α α= = > > > > > >% L L L L
                          

 (17) 

 

Definition 4.1. Given a countable sequence{ , 0,1, }n nα = L as in (17), a state W
~

is said to be 

Level_ n _Dominating,  , (or simply “in Level n  ”), denote by ,)
~

( nWL =  with respect to f , S , 

and 0 1 2( , , , , , ),nα α α α α=% L L  if the stateW
~

is α _Dominating with 1n nα α α +≥ > . 

 

With Definition 4.1 the states are merged into countable number of classes, called levels, by 

taking into account the countable intervals ofα -value instead of uncountable singleα -value. 

Now a similar relation can be defined as that in Definition 4.2. 
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Definition 4.2. (Equal_Level relation) Two states and are said to be Equal_Level to each other, 

if nWLWL == )
~

()
~

( 21  for some {0,1, 2, }n ∈ L . 

 

    Just as in Lemma 3.2, a similar result of equivalent equation for Equal_Level is stated in the 

following without proof. 

 

Lemma 4.1. The relation of Equal_Level is an equivalent relation. 

 

Note that if two states are Equal_Dominating, then they must be Equal_Level, but not vice versa. 

To help the proof in the following theorem, define , 0,1,2,n nΩ = L , to be the classes of state 

space forW
~

such that })
~

(|
~

{ nWLWn ==Ω
.
    

Give an example by setting
0 1 2

10 , . . (10 ,10 ,10 , ),
n

n i eα α− − −
= =% L  then we have the 

sequence{ , 0,1,2, } n nΩ = L be a partition of the whole state space. In this example a state is in 

Level-n means that its global best position attains the10 n−
-percentile but not yet the

( 1)10 n− +
-

percentile. With the aid of Definition 4.2, a Markov chain can be established. 

  

Theorem 4.1.  In PSO, the stochastic process of the levels of the state },,2,1)),(
~

({ L=ttWL or 

simply denote by{ ( ), 1, 2, }L t t = L as defined in Definition 4.2, constitutes a Markov chain. 

 

Proof. Given the history of the previous levels 

 
1 2 1( ) , ( 1) , ( 2) , , (1) ,t tL t m L t m L t m L m− −= − = − = =L 1 2 1, , , , {0,1, }t tm m m m− − ∈L L ,  

the conditional probability of },2,1,0{))1(
~

( L∈=+ ntWL is 

  

121

)1(
~

)1(
~

121

121

,,,,,],))(
~

(|))1(
~

(Pr[

)))(
~

(|)1(
~

(

)))1(
~

(,,))2(
~

(,))1(
~

(,))(
~

(|)1(
~

(

]))1(
~

(,,))2(
~

(,))1(
~

(,))(
~

(|))1(
~

(Pr[

mmmmnmtWLntWL

dmtWLtWDF

dmWLmtWLmtWLmtWLtWDF

mWLmtWLmtWLmtWLntWL

tt

tW

tW

tt

tt

n

n

L

L

L

−−

Ω∈+

Ω∈+

−−

−−

∀==+=

=+=

==−=−=+=

==−=−==+

∫∫∫

∫∫∫

µ

µ

 
 

Note that the second equality holds by the result in Theorem 3.1 (formula (16)).  

The theorem is proved.  

 

By the result of Theorem 4.1 the state (level) transition probability can be defined as  

 

,Pr[ ( 1) | ( ) ] ( ), , ,
m n

L t n L t m p t m n t+ = = ≡ ∀  .                                                                        (18) 

 

Observe the last equality in the proof of Theorem 4.1. Since the conditional probability in the 

formula is independent of t , i.e. the resulting conditional probability for different in (18) are all 

the same. Hence, we have the following further result. 

 

Theorem 4.2. The Markov chain defined in Theorem 4.1 is a stationary (time homogeneous) one, 

i.e. the formula in (18) is reduced to  
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,Pr[ ( 1) | ( ) ] , , ,m nL t n L t m p m n t+ = = ≡ ∀

                                            
                                    (19) 

 

In (19), the state (level) transition probability
,m np is independent of t . This justifies our argument 

that parameter selection should be a function of state (achievement) instead of a function of t  (or 

iteration). The transition probability matrix can be denoted by 

 

                                             

0,0 0,1 0,

1,0 1,1 1,

,

,0 ,1 ,

   

   

[ ]                .

   

              

n

n

m n

m m m n

p p p

p p p

P p

p p p

 
 
 
 ≡ ≡
 
 
 
 

K K

K K

M M L M L

K K

M M L M L

                                         (20) 

 

Note that
, 0,  ,m np m n= ∀ > i.e. P is an upper triangular matrix since the levels will at least stay 

the same comparing with previous state, if not increase. In (20)
 ,m np is one step transition 

probability and P is one step transition probability matrix. Besides the one step probability, l -step 

probability can also be established for general positive integer . Define the l -step transition 

probability and l -step transition probability matrix as 

 

                                              ,Pr[ ( ) | ( ) ] , 1, ,l

m n
L t l n L t m p l m n+ = = ≡ ∀ ≥

                                    
 (21) 

and  

                                                 

0,0 0,1 0,

1,0 1,1 1,

,

,0 ,1 ,

   

   

[ ]                .

   

              

l l l

n

l l l

n

l l

m n

l l l

m m m n

p p p

p p p

P p

p p p

 
 
 
 

≡ ≡  
 
 
  

K K

K K

M M L M L

K K

M M L M L

                                   (22) 

For the same reason as in (20), , 0,  ,l

m n
p m n= ∀ >  i.e. 

lP is an upper triangular matrix. By the 

theory of Markov chain,
lP can be easily computed by the matrix product of matrix P , i.e.

 
l

l

P PP P= L14243  . 

 

Take a closer look at Theorem 4.2. The PSO faces the common fate of a stationary Markov chain: 

the iteration number r (or equivalently, t ) may be very large, while the present achievement is 

poor (for example, just like a new beginner), then the efforts done before will be almost in vain. 

To be more precise, the future fate of the PSO depends only on the present achievement (state) 

but not directly on the iteration number or t . The theoretical results convince us that: different 

parameters may render different transition probability in different levels of achievements rather 

than in different number of iterations. As a result, unlike most of the methods in other papers, we 

propose a heuristic idea. When dynamically choosing (tuning) parameters, the present 

achievement (level) will be taken into consideration instead of the number of iterations as 

traditional papers did. For example, we can compare the transition probability between different 

parameter set (transition probability matrix is parameter dependent). During different level of 
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achievements, choose the parameter set which is most favorable and help to promote the levels to 

higher ones.  

 

The further application can be the investigation in the relationship between parameter set and 

transition probability for different optimizers. One reliable method is by using of computer 

simulation. For example, given a fixed fitness function, we can estimate the transition 

probability , 1n np + in different parameter set and choose the optimum parameter set in each level to 

maximize the value of 
, 1 max( ,  ,  )n n kp V cω+

 (a function of max,  ,  kV cω ) or minimize the value 

of , max( ,  ,  )n n kp V cω . Here for practical purpose we assume that the probability that PSO jumps 

more than or equals to two levels at one time is very small with respect to jumps one level, i.e.

 
.2,0

1,

,
≥∀→

+

+
l

p

p

nn

lnn
   

 

The method to find the percentile of the function value of each fitness function can be done by 

simulation according to the result of Lemma 1. For the example given before,
 

0 1 2(10 ,10 ,10 , ),α − −=% L  the percentile of the fitness function value , 0,1,2,nf n = L , satisfying the 

relation that Pr[ ( ) ] 10 , 0,1, 2,n

n
f X f n−< = = L , can be estimated by use of the minimum 

of10n
i.i.d. random function evaluations. 

 

5. CONCLUSION 

 

In this section we firstly propose some indexes to measure and compare the performance of 

different PSO algorithms, and then some steps of adaptive parameters selection are given based 

on the theoretical results in this work. 

 

5.1. Index for comparison 

 
Some fair measures to compare the different algorithms are given here. And they are divided into 

three groups. Among them Groups A and B are on effectiveness and Group C are on efficiency.  

 

A1. Error_Hit Ratio: the portion of number of simulations the algorithm success in reducing the 

function value below a specified threshold (error) using fewer than the maximum allocated 

number of function evaluations, it measures the “success” probability in the searching process.  

 

A2. α _Hit Ratio: the portion of number of simulations the algorithm successes in achieving the  

α _Dominating state using fewer than the maximum allocated number of function evaluations. 

 

A3. Level_ n _Hit Ratio: the portion of number of simulations the algorithm successes in 

achieving the Level_ n state using fewer than the maximum allocated number of function 

evaluations. 

 

B1. Best Value of Fitness Function: the smallest function value the algorithm can attain by using 

the same fixed number of function evaluations, it measure the extent of closeness to best value the 

algorithm can attain. 

 

B2. Best _α Dominating: the smallestα value of the state the algorithm can attain by using the 

same fixed number of function evaluations. 
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B3. Best Level_ n _Dominating: the largest n of the state the algorithm can attain by using the 

same fixed number of function evaluations. 

 

C1. Improving Ratio based on errors: to achieve the same accuracy (error), the ratio between the 

numbers of function evaluations needed by the non-cooperative i.i.d. random selection and that 

by PSOs, or between two PSOs, it measures the ratio of the times of function evaluations needed 

by two methods. 

 

C2. Improving Ratio based on α value: to achieve the same α value, the ratio between the 

numbers of function evaluations needed by the non-cooperative i.i.d. random selection and that 

by PSOs, or between two PSOs. 

 

C3. Improving Ratio based on level_ n: to achieve the same level, the ratio between the numbers 

of function evaluations needed by the non-cooperative i.i.d. random selection and that by PSOs, 

or between two PSOs. 

 

5.2. Adaptive parameters selection  
 

At the end of this work, we give some steps for practical adaptive parameters selection, which can 

be implemented by computer simulations.  

 

1. Set the values
0 1 2( , , , , )nα α α α α=% L , here for practical purpose we use finite dimensions.  

2. Find by simulation the function values
1 2, , , nf f fL such 

that Pr[ ( ) ] , 1, 2, ,i if X f i nα≤ = = L , the respective function values are the threshold of each 

level. 

3. Find by simulation the best portfolio of parameters (such that , 1m mp + is maximum) at different 

levels (dynamically parameters selection). 

4. The best portfolio of parameters at each level found in step 3 constitute the best level-

dependent parameter sets,{ ( ), 1,2, , }PS m m n= L . 
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