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ABSTRACT

This work considers the multi-objective optimization problem constrained by a system of bipolar fuzzy
relational equations with max-product composition. An integer optimization based technique for order of
preference by similarity to the ideal solution is proposed for solving such a problem. Some critical features
associated with the feasible domain and optimal solutions of the bipolar max-T, equation constrained
optimization problem are studied. An illustrative example verifying the idea of this paper is included. This
is the first attempt to study the bipolar max-T equation constrained multi-objective optimization problems
from an integer programming viewpoint.
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1. INTRODUCTION

Fuzzy relational equations have played an important role in many applications of fuzzy sets and
systems [10], [18]. Sanchez was the first to study fuzzy relational equations in terms of max-min
composition for simulating cause and effect connections in medical diagnosis problems [19].
Since then, fuzzy relational equations based on various compositions, e.g., max-min, max-
product, and max-bukasiewicz t-norm compositions have been investigated and applied
extensively[15], [16], [17]. The resolution of a system of fuzzy relational equations with max-T
composition is to determine the unknown vector x for a given coefficient matrix A and a right

hand side vector b such that Ao X =b; where "o " stands for the specific max-T composition with
T being a continuous triangular norm. The set of all solutions, when it is non-empty, is a finitely
generated root system which can be fully determined by a unique maximum solution and a finite
number of minimal solutions [10]. For a finite system of fuzzy relational equations with max-T
composition, its consistency can be verified by constructing and checking a potential maximum
solution. However, the detection of all minimal solutions is closely related to the set covering
problem and remains a challenging problem. Overviews of fuzzy relational equations and their
applications can be found in [10] and [18].
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The system of bipolar fuzzy relational equations with max-T composition has been considered as
a generalization of the system of fuzzy relational equations, which can be expressed in the matrix
form as

AT oxv A ox=b,

(1)

where x = (ry. a9, -+, x,)" € [0,1]",% denotes the logical negation of x, ie., X =
(1—z1.1 = x9.- -+, 1 — 2)" AT = (@ Jimsen € [0, ]]™ " A7 = (@ )mun € [0, ™" b =
(b1, b, -+ b )T € [0,1]™, and “ o " stands for the max-7 composition with T being a
continuous triangular norm. The most frequently used triangular norm in applications of
fuzzy relational equations is the minimum operator Ty, ie., Tz, v) = min(z, y). Another
two important triangular norms are the product operator Tp(z, y) = -y and the Lukasiewicz
t-norm 7z (z, y) = max(x +y— 1,0). It is clear that A* o x v A~ ox = b would degenerate
into A”ox = b or AT ox = b ifeither A* or A~ is the zero matrix, respectively. Therefore.
a system of max-7 bipolar equations can be viewed as a generalization of fuzzy relational

equations, containing the decision variables and their logical negations simultaneously.

The system of bipolar max-Tyj equations and the associated linear optimization problem with
a potential application of product public awareness in revenue management were first
introduced by Freson et al. [2]. It was shown that the solution set of a system of bipolar max-

Twm equations, whenever nonempty, can be characterized by a finite set of maximal and
minimal solution pairs. However, as indicated by Li and Jin [12], determining the consistency

of a system of bipolar max- Ty equations is NP-complete. Consequently, solving the bipolar

max- Ty equation constrained linear optimization problem is inevitably NP-hard. Recently
Li and Liu [11] showed that the problem of minimizing an linear objective function subject to

a system of bipolar max-T[ equations can be reduced to a 0-1 integer programming problem
in polynomial time.

Motivated by the recent research, this work considers the bipolar max-Tp equation
constrained multi-objective optimization problem which can be expressed as

Max/Min  Fi(x) = [fi(x), -, fe(x). -+, fr(x)]
s.L. AToxv A ox=b, 2)
where fr: [0,1]" - R.k =1,2,--- K, is a real-valued function, and “ o ” stands for the

max-product composition.
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Multi-objective decision making (MODM) techniques have attracted a great deal of interest due
to their adaptability to real-life decision making problems. Wang [21] firstly explored the fuzzy
multi-objective linear programming subject to max-t norm composition fuzzy relation equations
for medical applications. Guu et al. [3] proposed a two-phase method to solve a multiple
objective optimization problem under a max-Archimedean t-norm fuzzy relational equation
constraint. Loetamonphong et al. [14] provided a genetic algorithm to find the Pareto optimal
solutions for a nonlinear multi-objective optimization problem with fuzzy relation equation
constraints. Khorram and Zarei [9] considered a multiple objective optimization model subject to
a system of fuzzy relation equations with max-average composition. It is well known that many
decision making problems have multiple objectives which cannot be optimized simultaneously
due to the inherent incommensurability and conflict among these objectives. Thus, making a trade
off between these objectives becomes a major subject of finding the “best compromise” solution.

Numerous MODM models have been proposed in the literature for reaching the best compromise
between conflicting objectives [5], [6], [20]. The technique for order of preference by similarity
to ideal solution (TOPSIS) method introduced by Hwang and Yoon [6] is a well-known MODM
approach. It provides the principle of compromise saying that the chosen solution should have
“the shortest distance from the positive ideal solution” and “the farthest distance from the
negative ideal solution.” A wide variety of TOPSIS applications has been reported in the
literature. Abo-Sinna and Abou-El-Enien [1] applied TOPSIS to large-scale multiple objective
programming problems involving fuzzy parameters. Jadidi et al. [7] extended the version of the
TOPSIS method proposed in [1] to solve the multi-objective supplier selection problem under
price breaks using multi-objective mixed integer linear programming. Lin and Yeh [13]
considered solving stochastic computer network optimization problems by employing the
TOPSIS and genetic algorithms. Khalili-Damghani et al. [8] used a TOPSIS method to confine
the objective dimension space of real-life large-scale multi-objective multi-period project
selection problems.

In this paper the basic principle of compromise of TOPSIS is applied for solving the bipolar max-

T} equation constrained multi-objective optimization problem. It shows that such a problem can
be reformulated into a 0-1 integer program and then solved taking advantage of well developed
techniques in integer optimization. The rest of this paper is organized as follows. In Section 2, the

compromise solution approach for solving the bipolar max-Tp equation constrained multi-
objective optimization problem (2) is presented. Some critical features associated with
the feasible domain and optimal solutions of the bipolar max-T, equation constrained
optimization problem are studied in Section 3. A numerical example is included in

Section 4 to illustrate the integer optimization based compromise solution procedure.
This paper is concluded in Section 5.

2. A COMPROMISE SOLUTION APPROACH

To solve the bipolar max-7, equation constrained multi-objective optimization problem (1),
we adopt the principle of compromise, i.e., the chosen solution should have *the shortest
distance from the positive ideal solution™ and “the farthest distance from the negative ideal
solution” Let X £ Ixe[0,1]" ]| AT ox WV A ox = b} be the feasible domain and 7, .J be
two index sets. For each j  .J, f;(x) is an objective function to be maximized. Similarly,
for each i € I, f;(x) is an objective function to be minimized. To define the positive ideal

solution and negative ideal solution of the problem (1), for each &£, & = 1,2, --- K, we
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consider
max fi(x) if ke .J
f: — xeX (3)
m_i? fr(x) ifkel,
and
min fr(x) if ke J
f.k._ — xeX (4)
max fi.(x) if kel
xeEX )
Let f* 2 (fr.f5.---, fz)7 € R* be the solution vector of equation (3) which consists of

individual best feasible solutions for all objectives. f* is then called the positive ideal solution
(PIS). Similarly. let f~ = (fi . fa.---. fx)" € R* be the solution vector of equation (4)
which consists of individual worst feasible solutions for all objectives. f— is then called the

negative ideal solution (NIS).

To measure the distances from PIS and NIS to all objectives, the Minkowski’s L,-meftric is
employed, i.e., the distance between two points fr(x) and f (or f. ).k = 1,2,--- K, is
defined by the Ly-norm with p > 1. Moreover, because of the incommensurability among
objectives, the component distance from PIS or NIS for each objective is normalized. The
following distance functions are then considered:
/e
a2 () {Z i fi = D) f;(x) +Z p[f=(x} f e }
PN, =i
and

/e
a5 () = {Z P[.IrJ[ x) f__; ]P"'Z f —_ff[i‘cl],,}

FEJ

where d''5 and d)Y/5 are the distances from the PIS and NIS to all objectives. respectively,

wy € [0,1],k=1,2,---. K, is the relative importance (weight) of objective function k. and

p=12+-- oc is the parameter of norm functions.

To consider the objectives of “minimize the distance from PIS or /%" and “maximize the

distance from NIS or d)/5” instead of the original K objectives in problem (1), we have the

following bi-objective programming problem:
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min  dI'¥(x)

NIS
max  d) 7 (x)

(3)
st. AToxwv A ox=b,
x € [0, 1]™.
Among all p values, the case of p = 1 is operationally and practically important, which

provides better credibility than others in the measuring concept and emphasizes the sum
of individual distances (regrets for d!/5 and rewards for //9) in the utility concept [4].
Our work adopts p = 1 for finding the compromise solution to the bipolar max-7, equation
constrained multi-objective optimization problem (2). For the rest of the paper, p = 1 is

chosen, although other values may be applicable.

Lemma 1. The compromise solution of problem (1) can be obtained by solving the following

bipolar max-7, equation constrained optimization problem:

min 7’5
st. AToxVv A ox =b, (6)
x € [0, 17,
or
max d'®
st. AToxV A ox=bh, (7N
x € [0,1]".
Proof: Since d}'® = 1—d)’'* for the case of p = 1, “min d{"*” and “max d}''*" are subjected

to the same system of max-7, equation constraints and have the same solution whether the
weights of the objectives are the same or not. Thus, solving the bi-objective programming
problem (5) is equivalent to solving either problem (6) or problem (7). Therefore, the
compromise solution of problem (1) can be obtained by solving a bipolar max-7, equation

constrained optimization problem.

In the implementation of TOPSIS for solving the bipolar max-Tp equation constrained multi-
objective optimization problem (2), we face the challenge of solving the bipolar max- T}, equation
constrained optimization problems (3), (4), (6) or (7). Some important properties associated with
the feasible domain and optimal solutions of the the bipolar max- Tp equation constrained
optimization problem are studied in Section 3. An integer optimization based technique is
applied to reformulated the bipolar max- T}, equation constrained optimization problem
into a 0-1 integer programming problem.
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3. BIPOLAR MAX-T, EQUATION CONSTRAINED OPTIMIZA-
TION PROBLEMS

Let M ={1,2,---,m}and N = {1,2,---,n} be two index sets. A system of bipolar max-T,

equations AT ox v A~ ox = b can be reformulated as
I}tl_tr‘quma}({’?;[a;;ﬁrj}.'?;{agf 11—z} =bi, i e M.

The system of bipolar max-7, equations A" o x v A~ o x = b is called consistent if
its solution set S(A1, A,b) is nonempty. Otherwise. it is said to be inconsistent. It is
clear that a vector x € S(A", A7, b) if and only if max{7T,(a};,=;), Tp(a;, 1 — =;)} =
b, for every i £ M and 7 € N, and there exists an index j; € N for each ¢ £ M such that
max{T,(a;, , x;), Tpla;..1 — x; )} = b;. To investigate the solution properties to the system
of bipolar max-7, equations, the inequality of the form max{7,(a™.2), Tela ,1 —x)} < b

for any a™,a .0 e [0,1] is studied in Lemma 2.
Lemma 2 For any a™,a™.,b € [0, 1], the inequality

max{7T,(a", z), Tola”,1 —z)} < b

holds if and only if
a —b

il

b
=Tr=s = (8)

Proof: Without restricting = < [0, 1], we have max{a*=. a (1 — =)} < b if and only if

-t <y < b Hence, we have
max{7T,(a”, ), Tpla™. 1 —x)} <b

if and only if
a  —b

e

b
< xr =< —.
==

Lemma 2 provides the information of lower and upper bounds on the solutions to a system

of max-7, equations. Denote x = (i, #a,---,3,)7 with

a; — b; , i
#; = max Ll t._"cf_}Ei\'.
e a‘ij
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and % = (&, $9,--,&,)7 with
T !alen"llfla._;gv j e N.

It is clear that if S(AT, A~ b) # 0, then £ < x. Moreover, if x € S(A"T, A~ b), then
X < x < X, Le., the vectors X and x serve the lower and upper bounds of the solutions to
At ox WV A” ox = b, respectively. It should be noticed that < and x may not necessarily be
solutions to ATt exV A~ ox = b when S(AT, A~,b) #@. Even if x,x € §(AT, A~,b), it
does not imply that S(AT, A=, b) = {x | %x < x < %} [11].

To characterize the properties of the solutions to bipolar max-7T, equations, we consider the
following characteristic matrix Q = (§is )mw«n, Which includes all the critical information for

the equality requirements in AT ox VvV A" oX =b:

{#i}, if Tplag;, 1 — ;) = by # Tpla;, %),
G — {#;}. if Tplay, 1 — %;) # b = Tplas, £;5),
i —

{535}, if Tplay, 1 — ;) = b = Tp(asf, %5),

@, otherwise.

Based on the similar argument in [11], we have the following result.

Theorem 1 [11] Let AT oxV A~ ox = b be a system of bipolar max-7, equations. A vector
x € [0, 1]™ is a solution to AT oxV A~ ox = b if and only if x < x < x and the induced
binary matrix Q)% = (qu}mm has no zero rows where

1, if Tj € Q;;_;.

%G = .
0. otherwise.

Theorem 1 characterizes the properties of solutions to a system of bipolar max-7, equations.
Consider the problem of minimizing a linear objective function «x subject to a system of

bipolar max-7, equations

min 'x

(9
st. Atoexv A ex=h.

Suppose that x* is an optimal solution to the bipolar max-7, equation constrained linear

optimization problem (9) and there exists an index & € N such that &, < z} < ;. By
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Theorem 1. the resulting vector remains feasible if the value of xj is increased to z; or
decreased to ;. Consequently, such a modification can be conducted without increasing the
objective value according to the sign of ¢ in the objective function. Therefore, such an
optimal solution x* must exist with =7 = &#; or x; = x; for each j € N. We then have the

following result.

Lemma 3 Consider a consistent system of bipolar max-7, equations A" oxV A~ ox = bh.
There exists an optimal solution x* = (x7, x5, ---.z3)" to the optimization problem (9) such

that for each j € N either x; = &; or =] = ;.

According to Lemma 3. we consider seeking the optimal solution among those assuming the
component values contained only in x and x. Let the associated binary variable u; for each

x; is defined as

U.]f Ij = j’fj.‘ B -
u; = 7 N = N.
1.1f Irj = j:j..

The decision vector x of AT ox Vv A~ oXx = b can then be represented by
x =%+ Vu

where V' = diag(x — x).

For the characteristic matrix Q we define

q-+- _ 1, if .i‘_ii Eéfj.
Y 0, otherwise,
and
B 1., if I e éfj-.
i = .
0, otherwise.

It is clear that x < %X+ Vu < x for any u € {0,1}". By Theorem 1, x + Vu induces a
binary matrix ) *diag(u) + ¢} diag(e — u),where ¢ is a vector of all ones. As long as this

matrix has no zero rows, i.e.,

Qu+Q (e—u)=(Q"T-—Q Jut+Q e=e,

18
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% + Vu is a solution to A" ox v A~ o x = b. We then have the following result.

Lemma 4 Let AT ox Vv A~ o x = b be a system of bipolar max-7, equations. A binary
vector u € {0, 1}™ induces a solution x = %+ Vu to AT oxVv A ox = b if and only if

(QT—Q Ju+Q e > e where e is the vector of all ones, Q" = (g} )mxn and Q@ = (g;; Jmsxn-

Consequently, the bipolar max-7, equation constrained optimization problem (9) can be

reformulated to the 0-1 integer optimization problem
min % +cVu
s.t. (QF —Q " m+Q e>=e (10)
ue {0,1}m
Based on the above discussion, an integer programming based TOPSIS algorithm for

finding the compromise solution of the bipolar max-T, equation constrained multi-
objective opti-mization problem (2) can be organized as below.

An Algorithm
Step 1. Decision maker provides the relative importance w; of the K objective functions.
(There are various methods including the eigenvector, weighted least square, entropy
and LINMAP methods for assessing wy [6].)
Step 2. Determine the positive ideal solution (f*) by solving equation (3).
Step 2.1. Construct the associated 0-1 integer programming problem of (3) by
Lemma 4 and set C = 1.
Step 2.2. Solve the associated 0-1 integer programming problem using a commer-
cial solver, e.g. CPLEX.
Step 3. If C = 1. then go to Step 4: else if C = 2. then go to Step 5. Otherwise. output
the obtained solution as the compromise solution of (1) and go to Step 6.
Step 4. Determine the negative ideal solution (f~) by solving equation (4).
Step 4.1. Construct the associated 0-1 integer programming problem of (4) by
Lemma 4 and set C = 2.
Step 4.2. Go to Step 2.2.
Step 5. Substitute the positive ideal solution and the negative ideal solution obtained in

Steps 2 and 4 into problem (6). construct its associated 0-1 integer programming

problem by Lemma 4 and set C = 3. Go to Step 2.2
Step 6. If the compromise solution of (1) obtained by the integer programming based
TOPSIS is satisfied, stop. Otherwise, the decision maker may like to change w;.
Then, go back to Step 1. The solution procedure is then repeated.
19



International Journal on Soft Computing (IJSC) Vol.7, No. 4, November 2016

4. ANUMERICAL EXAMPLE

In this section, a numerical example is provided to illustrate the proposed integer

programming based TOPSIS for solving the system of bipolar max-T, equation

constrained multi-objective optimization problem.

Example 1 Consider the bipolar max-T, equation constrained multi-objective

optimization problem.

min  fi(x) =z + z9 + 223 + 14

min  fa(x) = 21 + 12 — Az — 14

0.6 048 048 0.56 0.56 0.6 0625 06 0.42

048 06 05 0.64 0.6 086 06 096 _ 0.48 (1D
St ox V aoxX = s

006 1 072 08 006 08 096 1 0.72

0.56 0.64 0625 05 0625 1 064 08 0.5

z; € [0,1], j=1,2,3,4.

0.6 0.48 0.48 0.56

oy A T 1 048 06 0.5 064
Letxe_.\:{xe_(].l'w s
L 1 i 072 0.8
056 0.64 0.625 05

Applying the basic principle of compromise of TOPSIS, problem (11) can be reduced to

the following bipolar max-Tp equation constrained optimization problem:

min
xeX

dP1S (x) = w, _fl'lf,'l — ff} Sty [lelii," — fﬁ']
L fi — 17 fa — 12

where

[ = mi (x),
fi =mip h(x)
f3 = mip o).
fi = max fi(x),

xeX
fa = max fa(x),
- xeX

Consider the bipolar max-T} equation constrained optimization problem (16):
max 2x; + o — dry — 1y
xEX

The lower and upper bounds can be calculated as
% = (0.25,0.5,0.25,0.5)", % = (0.7,0.72, 0.8, 0.75)7,

Respectively, and its characteristic matrix is

(12)

(13)

(14)

(13)

(16)
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{0.25,0.7} @ ] {0.75}
] (05 0 {05,075}
{025} {0.72} {0.25} ]
] {05} {08} )

Subsequently, the two 0-1 characteristic matrices can be constructed, respectively, as

1001 1 000

0001 0101
Q= Q=

0100 1 010

0010 0100

According to Lemma 4, the constrained bipolar max-T, equation constrained optimization
problem (16) is equivalent to the problem:

max z, = —0.5 4+ 09u; + 0.22us — 2.2uy — 0.25uy

0 0 01 w 0
0 -1 00 s 1

s.t. >
1 1 -1 0 ug 1
0 -1 10 " 0

u; € {0,1}, j=1,2,3,4.

This O-1 integer linear optimization problem has the optimal solution

*

with the optimal objective value z;; = 0.62. The corresponding optimal solution to the
problem (16) is
x* = (0.7,0.72,0.25,0.5)7
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with the optimal objective value f, = 0.62.

The solutions of problems (13)-(16) can be obtained in an analogous manner and are shown

in Table 1.

Table 1: The solutions of problems (13)-(16).

h fa xy | wa | x3 | 24
mingex f1(x) | ff = 1.75 0o |oslo7| o3
min- x fo(x) fo——205 |07 0708|075
maxeey f1(x) | fi = 377 0|08 |os| o
max,e y f(x) =062 0|08 |o5| 0

Substituting the results in Table 1 into the problem (12) with w; = wy = 5, we have the

problem:

min 0.5276x; + 0.3876x9 — 0.0582x3 + 0.1075z4 — 0.0200

xeX

Solving the above problem by Lemma 4, a compromise solution of the bipolar max-T,

equation constrained multi-objective optimization problem (11) can be obtained as
x* = (0.25,0.5,0.75,0.5)7.

S. CONCLUSIONS

This paper studies the compromise solution to the bipolar max-T, equation constrained multi-
objective optimization problem. Some important properties associated with the bipolar max-T,
equation constrained optimization problem are studied. Since the feasible domain of the bipolar
max-T, equation constrained optimization problem is non-convex, traditional mathe-matical
programming techniques may have difficulty in yielding efficient solutions for such an
optimization problem. An integer optimization based TOPSIS is proposed to reformulated the
bipolar max-T, equation constrained optimization problem into a 0-1 integer programming
problem. Such optimization problems can be practically solved using a commercial solver, e.g.
CPLEX. Taking advantage of the well developed techniques in integer optimization, it is
expected that wider applications of the proposed method for solving the bipolar max-T equation
constrained multi-objective optimization problems are foreseeable in the future.
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