DOI QR코드

DOI QR Code

The role of macrophytes in wetland ecosystems

  • Rejmankova, Eliska (Department of Environmental Science and Policy, University of California Davis)
  • Received : 2011.10.24
  • Accepted : 2011.10.25
  • Published : 2011.12.01

Abstract

Aquatic macrophytes, often also called hydrophytes, are key components of aquatic and wetland ecosystems. This review is to briefly summarizes various macrophyte classifications, and covers numerous aspects of macrophytes' role in wetland ecosystems, namely in nutrient cycling. The most widely accepted macrophyte classification differentiates between freely floating macrophytes and those attached to the substrate, with the attached, or rooted macrophytes further divided into three categories: floating-leaved, submerged and emergent. Biogeochemical processes in the water column and sediments are to a large extent influenced by the type of macrophytes. Macrophytes vary in their biomass production, capability to recycle nutrients, and impacts on the rhizosphere by release of oxygen and organic carbon, as well as their capability to serve as a conduit for methane. With increasing eutrophication, the species diversity of wetland macrophytes generally declines, and the speciose communities are being replaced by monoculture-forming strong competitors. A similar situation often happens with invasive species. The roles of macrophytes and sediment microorganisms in wetland ecosystems are closely connected and should be studied simultaneously rather than in isolation.

Keywords

References

  1. Achee NL, Korves CT, Bangs MJ, Rejmankova E, Lege M, Curtin D, Lenares H, Alonzo Y, Andre RG, Roberts DR. 2000. Plasmodium vivax polymorphs and Plasmodium falciparum circumsporozoite proteins in Anopheles (Diptera: Culicidae) from Belize, Central America. J Vector Ecol 25: 203-211.
  2. Adam P. 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge.
  3. Aerts R. 1996. Nutrient resorption from senescing leaves of perennials: Are there general patterns? J Ecol 84: 597-608. https://doi.org/10.2307/2261481
  4. Aerts R, Chapin FS. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30: 1-67.
  5. Aerts R, de Caluwe H. 1997. Initial litter respiration as indicator for long-term leaf litter decomposition of Carex species. Oikos 80: 353-361. https://doi.org/10.2307/3546603
  6. Alvarez S, Guerrero MC. 2000. Enzymatic activities associated with decomposition of particulate organic matter in two shallow ponds. Soil Biol Biochem 32: 1941-1951. https://doi.org/10.1016/S0038-0717(00)00170-X
  7. Armstrong J, Armstrong W. 1991. A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud. Aquat Bot 39: 75-88. https://doi.org/10.1016/0304-3770(91)90023-X
  8. Armstrong W, Armstrong J, Beckett PM. 1996. Pressurised ventilation in emergent macrophytes: the mechanism and mathematical modelling of humidity-induced convection. Aquat Bot 54: 121-135. https://doi.org/10.1016/0304-3770(96)01040-6
  9. Armstrong W, Brandle R, Jackson MB. 1994. Mechanisms of flood tolerance in plants. Acta Bot Neerl 43: 307-358. https://doi.org/10.1111/j.1438-8677.1994.tb00756.x
  10. Ayyappan S, Olah J, Raghavan SL, Sinha VRP, Purushothaman CS. 1986. Macrophyte decomposition in two tropical lakes. Arch Hydrobiol 106: 219-231.
  11. Baar J, Paradi I, Lucassen ECHET, Hudson-Edwards KA, Redecker D, Roelofs JGM, Smolders AJP. 2011. Molecular analysis of AMF diversity in aquatic macrophytes: a comparison of oligotrophic and utra-oligotrophic lakes. Aquat Bot 94: 53-61. https://doi.org/10.1016/j.aquabot.2010.09.006
  12. Bedford BL, Walbridge MR, Aldous A. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80: 2151-2169. https://doi.org/10.1890/0012-9658(1999)080[2151:PINAAP]2.0.CO;2
  13. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20: 30-59. https://doi.org/10.1890/08-1140.1
  14. Bornette G, Puijalon S. 2011. Response of aquatic plants to abiotic factors: a review. Aquat Sci 73: 1-14. https://doi.org/10.1007/s00027-010-0162-7
  15. Bouchard V, Frey SD, Gilbert JM, Reed SE. 2007. Effects of macrophyte functional group richness on emergent freshwater wetland functions. Ecology 88: 2903-2914. https://doi.org/10.1890/06-1144.1
  16. Boutin C, Keddy PA. 1993. A functional classification of wet land plants. J Veg Sci 4: 591-600. https://doi.org/10.2307/3236124
  17. Brix H, Sorrell BK, Orr PT. 1992. Internal pressurization and convective gas-flow in some emergent freshwater macrophytes. Limnol Oceanogr 37: 1420-1433. https://doi.org/10.4319/lo.1992.37.7.1420
  18. Brock MA, Casanova MT. 1997. Plant life at the edges of wetlands: ecological responses to wetting and drying patterns. In: Frontiers in Ecology: Building the Links (Klomp NI, Lunt ID, eds). Elsevier Science, Oxford, pp 181-192.
  19. Brown AM, Bledsoe C. 1996. Spatial and temporal dynamics of mycorrhizas in Jaumea carnosa, a tidal saltmarsh halophyte. J Ecol 84: 703-715. https://doi.org/10.2307/2261333
  20. Bunemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A. 2004. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36: 889-901. https://doi.org/10.1016/j.soilbio.2004.02.002
  21. Cai ZQ, Bongers F. 2007. Contrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna, South-west China. J Trop Ecol 23: 115-118. https://doi.org/10.1017/S0266467406003750
  22. Caraco N, Cole J, Findlay S, Wigand C. 2006. Vascular plants as engineers of oxygen in aquatic systems. BioScience 56: 219-225. https://doi.org/10.1641/0006-3568(2006)056[0219:VPAEOO]2.0.CO;2
  23. Casanova MT. 2011. Using water plant functional groups to investigate environmental water requirements. Freshw Biol 56: 2637-2652. https://doi.org/10.1111/j.1365-2427.2011.02680.x
  24. Chambers PA, Lacoul P, Murphy KJ, Thomaz SM. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9-26. https://doi.org/10.1007/s10750-007-9154-6
  25. Chanton JP, Whiting GJ, Happell JD, Gerard G. 1993. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquat Bot 46: 111-128. https://doi.org/10.1016/0304-3770(93)90040-4
  26. Christensen TR, Friborg T, Sommerkorn M, Kaplan J, Illeris L, Soegaard H, Nordstroem C, Jonasson S. 2000. Trace gas exchange in a high-arctic valley. 1. Variations in $CO_2$ and $CH_4$ flux between tundra vegetation types. Global Biogeochem Cycles 14: 701-713. https://doi.org/10.1029/1999GB001134
  27. Cook CDK. 1996. Aquatic Plant Book. 2nd ed. SPB Academic Publishing, Amsterdam/New York.
  28. Costanza R, d'Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M. 1997. The value of the world's ecosystem services and natural capital. Nature 387: 253-260. https://doi.org/10.1038/387253a0
  29. Couteaux MM, Bottner P, Ber B. 1995. Litter decomposition, climate and litter quality. Trends Ecol Evol 10: 63-66. https://doi.org/10.1016/S0169-5347(00)88978-8
  30. Crow GE. 1993. Species diversity in aquatic angiosperms: latitudinal patterns. Aquat Bot 44: 229-258. https://doi.org/10.1016/0304-3770(93)90072-5
  31. Dacey JWH. 1980. Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210: 1017-1019. https://doi.org/10.1126/science.210.4473.1017
  32. Dakora FD, Drake BG. 2000. Elevated $CO_2$ stimulates associative $N_2$ fixation in a $C_3$ plant of the Chesapeake Bay wetland. Plant Cell Environ 23: 943-953. https://doi.org/10.1046/j.1365-3040.2000.00610.x
  33. Den Hartog C, Segal S. 1964. A new classification of the water- plant communities. Acta Bot Neerl 13: 367-393. https://doi.org/10.1111/j.1438-8677.1964.tb00163.x
  34. Denny P. 1985. The Ecology and Management of African Wetland Vegetation: A Botanical Account of African Swamps and Shallow Waterbodies. Dr. W. Junk, The Hague.
  35. Diaz S, Cabido M. 1997. Plant functional types and ecosystem function in relation to global change. J Veg Sci 8: 463-474. https://doi.org/10.1111/j.1654-1103.1997.tb00842.x
  36. Downing JA, McClain M, Twilley R, Melack JM, Elser J, Rabalais NN, Lewis WM Jr, Turner RE, Corredor J, Soto D, Yanez-Arancibia A, Kopaska JA, Howarth RW. 1999. The impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry 46: 109-148.
  37. Duff SMG, Sarath G, Plaxton WC. 1994. The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90: 791-800. https://doi.org/10.1111/j.1399-3054.1994.tb02539.x
  38. Dvorak J. 1996. An example of relationships between macrophytes, macroinvertebrates and their food resources in a shallow eutrophic lake. Hydrobiologia 339: 27-36. https://doi.org/10.1007/BF00008910
  39. Dvorak J, Best EPH. 1982. Macro-invertebrate communities associated with the macrophytes Of Lake Vechten: structural and functional relationships. Hydrobiologia 95: 115-126. https://doi.org/10.1007/BF00044479
  40. Egertson CJ, Kopaska JA, Downing JA. 2004. A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia 524: 145-156. https://doi.org/10.1023/B:HYDR.0000036129.40386.ce
  41. Elliott GN, Chou JH, Chen WM, Bloemberg GV, Bontemps C, Martínez-Romero E, Velazquez E, Young JPW, Sprent JI, James EK. 2009. Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ Microbiol 11: 762-778. https://doi.org/10.1111/j.1462-2920.2008.01799.x
  42. Engelhardt KAM, Ritchie ME. 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411: 687-689. https://doi.org/10.1038/35079573
  43. Ervin G, Smothers M, Holly C, Anderson C, Linville J. 2006. Relative importance of wetland type versus anthropogenic activities in determining site invasibility. Biol Invasions 8: 1425-1432. https://doi.org/10.1007/s10530-006-0006-5
  44. Feller IC, McKee KL, Whigham DF, O'Neill JP. 2002. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62: 145-175.
  45. Feller IC, Whigham DE, O'Neill JP, McKee KL. 1999. Effects of nutrient enrichment on within-stand cycling in a mangrove forest. Ecology 80: 2193-2205. https://doi.org/10.1890/0012-9658(1999)080[2193:EONEOW]2.0.CO;2
  46. Foulds W. 1993. Nutrient concentrations of foliage and soil in South-Western Australia. New Phytol 125: 529-546. https://doi.org/10.1111/j.1469-8137.1993.tb03901.x
  47. Gessner F. 1955. Hydrobotanik. Die physiologischen Grundlagen der Pflanzen-verrbreitung im Wasser. VEB Deutscher Verlag der Wissenschaften, Berlin.
  48. Gonzalez Sagrario MDLA, Balseiro E. 2010. The role of macroinvertebrates and fish in regulating the provision by macrophytes of refugia for zooplankton in a warm temperate shallow lake. Freshw Biol 55: 2153-2166. https://doi.org/10.1111/j.1365-2427.2010.02475.x
  49. Grieco JP, Achee NL, Andre RG, Roberts DR. 2000. A comparison study of house entering and exiting behavior of Anopheles vestitipennis (Diptera: Culicidae) using experimental huts sprayed with DDT or deltamethrin in the southern district of Toledo, Belize, C.A. J Vector Ecol 25: 62-73.
  50. Grieco JP, Rejmánková E, Achee NL, Klein CN, Andre R, Roberts D. 2007. Habitat suitability for three species of Anopheles mosquitoes: larval growth and survival in reciprocal placement experiments. J Vector Ecol 32: 176-187. https://doi.org/10.3376/1081-1710(2007)32[176:HSFTSO]2.0.CO;2
  51. Grosse W, Frick HJ. 1999. Gas transfer in wetland plants controlled by Graham's law of diffusion. Hydrobiologia 415: 55-58. https://doi.org/10.1023/A:1003885701458
  52. Gusewell S. 2004. N : P ratios in terrestrial plants: variation and functional significance. New Phytol 164: 243-266. https://doi.org/10.1111/j.1469-8137.2004.01192.x
  53. Gusewell S. 2005. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Funct Ecol 19: 344-354. https://doi.org/10.1111/j.0269-8463.2005.00967.x
  54. Gusewell S, Koerselman W. 2002. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Plant Ecol Evol Syst 5: 37-61. https://doi.org/10.1078/1433-8319-0000022
  55. Hagerthey SE, Cole JJ, Kilbane D. 2010. Aquatic metabolism in the Everglades: dominance of water column heterotrophy. Limnol Oceanogr 55: 653-666. https://doi.org/10.4319/lo.2009.55.2.0653
  56. Hart MM, Reader RJ, Klironomos JN. 2003. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol 18: 418-423. https://doi.org/10.1016/S0169-5347(03)00127-7
  57. Hejny S. 1960. Okologische Charakteristik der Wasser-und Sumpfpflanzen in der Slowakischen Tiefebenen. Slowakische Akademie der Wissenschaften, Bratislava.
  58. Herbert RA. 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23: 563-590. https://doi.org/10.1111/j.1574-6976.1999.tb00414.x
  59. Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H. 2001. Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10: 175-183. https://doi.org/10.1007/s005720000074
  60. Hill BH, Elonen CM, Jicha TM, Cotter AM, Trebitz AS, Danz NP. 2006. Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands. Freshw Biol 51: 1670-1683. https://doi.org/10.1111/j.1365-2427.2006.01606.x
  61. Holdredge C, Bertness MD, von Wettberg E, Silliman BR. 2010. Nutrient enrichment enhances hidden differences in phenotype to drive a cryptic plant invasion. Oikos 119: 1776-1784. https://doi.org/10.1111/j.1600-0706.2010.18647.x
  62. Hoorens B, Aerts R, Stroetenga M. 2003. Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia 137: 578-586. https://doi.org/10.1007/s00442-003-1365-6
  63. Hutchinson GE. 1975. A Treatise on Limnology. III. Limnological Botany. John Wiley, New York.
  64. Ipsilantis I, Sylvia DM. 2007. Interactions of assemblages of mycorrhizal fungi with two Florida wetland plants. Appl Soil Ecol 35: 261-271. https://doi.org/10.1016/j.apsoil.2006.09.003
  65. Jonasson S, Shaver GR. 1999. Within-stand nutrient cycling in arctic and boreal wetlands. Ecology 80: 2139-2150. https://doi.org/10.1890/0012-9658(1999)080[2139:WSNCIA]2.0.CO;2
  66. Junk WJ. 1997. Structure and function of the large central Amazonian River floodplains: synthesis and discussion. In: The Central Amazon Floodplain: Ecology of a Pulsing System (Junk WJ, ed). Springer, Berlin, pp 455-473.
  67. Juutinen S, Larmola T, Remus R, Mirus E, Merbach W, Silvola J, Augustin J. 2003. The contribution of Phragmites australis litter to methane ($CH_4$) emission in planted and non-planted fen microcosms. Biol Fertil Soils 38: 10-14. https://doi.org/10.1007/s00374-003-0618-1
  68. Kandalepas D, Stevens KJ, Shaffer GP, Platt WJ. 2010. How abundant are root-colonizing fungi in Southeastern Louisiana's degraded marshes? Wetlands 30: 189-199. https://doi.org/10.1007/s13157-010-0017-y
  69. Kao-Kniffin J, Freyre DS, Balser TC. 2010. Methane dynamics across wetland plant species. Aquat Bot 93: 107-113. https://doi.org/10.1016/j.aquabot.2010.03.009
  70. Kerdchoechuen O. 2005. Methane emission in four rice varieties as related to sugars and organic acids of roots and root exudates and biomass yield. Agric Ecosyst Environ 108: 155-163. https://doi.org/10.1016/j.agee.2005.01.004
  71. Killingbeck KT. 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77: 1716-1727. https://doi.org/10.2307/2265777
  72. Kim JG, Rejmankova E. 2004. Decomposition of macrophytes and dynamics of enzyme activities in subalpine marshes in Lake Tahoe basin, U.S.A. Plant Soil 266: 303-313.
  73. Koerselman W, Meuleman AFM. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33: 1441-1450. https://doi.org/10.2307/2404783
  74. Laanbroek HJ. 2010. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann Bot 105: 141-153. https://doi.org/10.1093/aob/mcp201
  75. Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H. 2011. New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57: 21-28. https://doi.org/10.1139/W10-096
  76. Lambers H, Chapin FS 3rd, Pons TL. 1998. Plant Physiological Ecology. Springer, Berlin.
  77. Lavoie C. 2010. Should we care about purple loosestrife? The history of an invasive plant in North America. Biol Invasions 12: 1967-1999. https://doi.org/10.1007/s10530-009-9600-7
  78. Lavorel S, McIntyre S, Landsberg J, Forbes TDA. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12: 474-478. https://doi.org/10.1016/S0169-5347(97)01219-6
  79. Liski J, Nissinen A, Erhard M, Taskinen O. 2003. Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Glob Change Biol 9: 575-584. https://doi.org/10.1046/j.1365-2486.2003.00605.x
  80. Mitsch WJ, Gosselink JG, Anderson CJ, Zhang L. 2009. Wetland Ecosystems. John Wiley & Sons, Hoboken.
  81. Morris JT, Bradley PM. 1999. Effects of nutrient loading on the carbon balance of coastal wetland sediments. Limnol Oceanogr 44: 699-702. https://doi.org/10.4319/lo.1999.44.3.0699
  82. Nausch M, Nausch G. 2000. Stimulation of peptidase activity in nutrient gradients in the Baltic Sea. Soil Biol Biochem 32: 1973-1983. https://doi.org/10.1016/S0038-0717(00)00173-5
  83. Nygaard B, Ejrnæs R. 2004. A new approach to functional interpretation of vegetation data. J Veg Sci 15: 49-56. https://doi.org/10.1111/j.1654-1103.2004.tb02236.x
  84. Peat HJ, Fitter AH. 1993. The distribution of arbuscular mycorrhizas in the British Flora. New Phytol 125: 845-854. https://doi.org/10.1111/j.1469-8137.1993.tb03933.x
  85. Pettit NE, Bayliss P, Davies PM, Hamilton SK, Warfe DM, Bunn SE, Douglas MM. 2011. Seasonal contrasts in carbon resources and ecological processes on a tropical floodplain. Freshw Biol 56: 1047-1064. https://doi.org/10.1111/j.1365-2427.2010.02544.x
  86. Phoenix GK, Booth RE, Leake JR, Read DJ, Grime JP, Lee JA. 2004. Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland. New Phytol 161: 279-290.
  87. Pope K, Masuoka P, Rejmankova E, Grieco J, Johnson S, Roberts D. 2005. Mosquito habitats, land use, and malaria risk in Belize from satellite imagery. Ecol Appl 15: 1223-1232. https://doi.org/10.1890/04-0934
  88. Raab TK, Lipson DA, Monson RK. 1999. Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology 80: 2408-2419. https://doi.org/10.1890/0012-9658(1999)080[2408:SAAUAS]2.0.CO;2
  89. Raghothama KG. 1999. Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50: 665-693. https://doi.org/10.1146/annurev.arplant.50.1.665
  90. Reinhold-Hurek B, Hurek T. 1998. Life in grasses: diazotrophic endophytes. Trends Microbiol 6: 139-144. https://doi.org/10.1016/S0966-842X(98)01229-3
  91. Rejmankova E. 1992. Ecology of creeping macrophytes with special reference to Ludwigia peploides (H.B.K) Raven. Aquat Bot 43: 283-299. https://doi.org/10.1016/0304-3770(92)90073-R
  92. Rejmankova E. 2005. Nutrient resorption in wetland macrophytes: comparison across several regions of different Philadelnutrient status. New Phytol 167: 471-482. https://doi.org/10.1111/j.1469-8137.2005.01449.x
  93. Rejmankova E, Grieco J, Achee N, Masuoka P, Pope K, Roberts D, Higashi RM. 2006. Freshwater community interactions and malaria. In: Disease Ecology: Community Structure and Pathogen Dynamics (Collinge SK, Ray C, eds). Oxford University Press, Cary, NC, pp 90-105.
  94. Rejmankova E, Houdkova K. 2006. Wetland macrophyte decomposition under different nutrient conditions: what is more important, litter quality or site quality? Biogeochemistry 80: 245-262. https://doi.org/10.1007/s10533-006-9021-y
  95. Rejmankova E, Sirova D, Carlson E. 2011. Patterns of activities of root phosphomonoesterase and phosphodiesterase in wetland plants as a function of macrophyte species and ambient phosphorus regime. New Phytol 190: 968-976. https://doi.org/10.1111/j.1469-8137.2011.03652.x
  96. Rejmankova E, Snyder JM. 2008. Emergent macrophytes in phosphorus limited marshes: Do phosphorus usage strategies change after nutrient addition? Plant Soil 313: 141-153. https://doi.org/10.1007/s11104-008-9687-0
  97. Rejmankova E, Macek P, Epps K. 2008. Wetland ecosystem changes after three years of phosphorus addition. Wetlands 28: 914-927. https://doi.org/10.1672/07-150.1
  98. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321: 305-339. https://doi.org/10.1007/s11104-009-9895-2
  99. Richardson CJ. 2008. The Everglades Experiment : Lessons for Ecosystem Restoration. Ecological Studies, Vol. 201. Springer, New York.
  100. Santruckova H, Rejmankova E, Pivnickova B, Snyder JM. 2010. Nutrient enrichment in tropical wetlands: shifts from autotrophic to heterotrophic nitrogen fixation. Biogeochemistry 101: 295-310. https://doi.org/10.1007/s10533-010-9479-5
  101. Schimel JP. 1995. Plant transport and methane production as controls on methane flux from arctic wet meadow tundra. Biogeochemistry 28: 183-200. https://doi.org/10.1007/BF02186458
  102. Scott JT, Doyle RD, Back JA, Dworkin SI. 2007. The role of $N_2$ fixation in alleviating N limitation in wetland metaphyton: enzymatic, isotopic, and elemental evidence. Biogeochemistry 84: 207-218. https://doi.org/10.1007/s10533-007-9119-x
  103. Sculthorpe CD. 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London.
  104. Shaver GR, Melillo JM. 1984. Nutrient budgets of marsh plants: efficiency concepts and relation to availability. Ecology 65: 1491-1510. https://doi.org/10.2307/1939129
  105. Sieben EJJ, Morris CD, Kotze DC, Muasya AM. 2010. Changes in plant form and function across altitudinal and wetness gradients in the wetlands of the Maloti-Drakensberg, South Africa. Plant Ecol 207: 107-119. https://doi.org/10.1007/s11258-009-9657-5
  106. Sorrell BK, Chague-Goff C, Basher LM, Partridge TR. 2011. N:P ratios, delta(15)N fractionation and nutrient resorption along a nitrogen to phosphorus limitation gradient in an oligotrophic wetland complex. Aquat Bot 94: 93-101. https://doi.org/10.1016/j.aquabot.2010.11.006
  107. Sterner RW, Elser JJ. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Prinston, NJ.
  108. Stevens KJ, Peterson RL. 2007. Relationships among three pathways for resource acquisition and their contribution to plant performance in the emergent aquatic plant Lythrum salicaria (L.). Plant Biol 9: 758-765. https://doi.org/10.1055/s-2007-965079
  109. Strom L, Ekberg A, Mastepanov M, Christensen TR. 2003. The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Change Biol 9: 1185-1192. https://doi.org/10.1046/j.1365-2486.2003.00655.x
  110. Strom L, Mastepanov M, Christensen TR. 2005. Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75: 65-82. https://doi.org/10.1007/s10533-004-6124-1
  111. Tessier JT, Raynal DJ. 2003. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J App Ecol 40: 523-534. https://doi.org/10.1046/j.1365-2664.2003.00820.x
  112. Ticconi CA, Abel S. 2004. Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9: 548-555. https://doi.org/10.1016/j.tplants.2004.09.003
  113. Timms RM, Moss B. 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol Oceanogr 29: 472-486. https://doi.org/10.4319/lo.1984.29.3.0472
  114. Vance CP, Uhde-Stone C, Allan DL. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157: 423-447. https://doi.org/10.1046/j.1469-8137.2003.00695.x
  115. Venterink HO, Wassen MJ, Verkroost AWM, de Ruiter PC. 2003. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84: 2191-2199. https://doi.org/10.1890/01-0639
  116. Verhoeven JTA, Koerselman W, Meuleman AFM. 1996. Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends Ecol Evol 11: 494-497. https://doi.org/10.1016/S0169-5347(96)10055-0
  117. Vitousek PM. 2004. Nutrient Cycling and Limitation: Hawai'i as a Model System. Princeton University Press, Princeton, NJ.
  118. Weiher E, Clarke GDP, Keddy PA. 1998. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81: 309-322. https://doi.org/10.2307/3547051
  119. Weishampel PA, Bedford BL. 2006. Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 16: 495-502. https://doi.org/10.1007/s00572-006-0064-7
  120. Wetzel RG. 1975. Limnology. W. B. Saunders Co., Philadelphia, PA.
  121. Willby NJ, Pulford ID, Flowers TH. 2001. Tissue nutrient signatures predict herbaceous-wetland community responses to nutrient availability. New Phytol 152: 463-481 https://doi.org/10.1046/j.0028-646X.2001.00274.x
  122. Zedler JB. 2011. Wetlands. In: Encyclopedia of Biological Invasions (Simberloff D, Rejmanek M, eds). University of California Press. Betrkeley, pp 698-704.

Cited by

  1. Growth Characteristics of Cutting Culms Sectioned at Different Positions from Three Reed Populations vol.15, pp.1, 2012, https://doi.org/10.13087/kosert.2012.15.1.053
  2. Occupational strategy of Persicaria thunbergii in riparian area: Rapid recovery after harsh flooding disturbance vol.55, pp.3, 2012, https://doi.org/10.1007/s12374-011-0298-6
  3. Relationship between early development of plant community and environmental condition in abandoned paddy terraces at mountainous valleys in Korea vol.36, pp.2, 2013, https://doi.org/10.5141/ecoenv.2013.017
  4. Effects of floating vegetation on denitrification, nitrogen retention, and greenhouse gas production in wetland microcosms vol.119, pp.1-3, 2014, https://doi.org/10.1007/s10533-013-9947-9
  5. Effects of interspecific competition on the growth and competitiveness of five emergent macrophytes in a constructed lentic wetland vol.12, pp.S1, 2014, https://doi.org/10.1007/s10333-014-0441-3
  6. Role and effects of winter buds and rhizome morphology on the survival and growth of common reed (Phragmites australis) vol.12, pp.S1, 2014, https://doi.org/10.1007/s10333-014-0445-z
  7. Increasing canopy shading reduces growth but not establishment of Elodea nuttallii and Myriophyllum spicatum in stream channels vol.734, pp.1, 2014, https://doi.org/10.1007/s10750-014-1877-6
  8. Floating mat as a habitat of Cicuta virosa, a vulnerable hydrophyte vol.11, pp.1, 2015, https://doi.org/10.1007/s11355-013-0241-8
  9. Adaptive phenotypic plasticity of Avicennia officinalis L. across the salinity gradient in the Sundarbans of Bangladesh pp.1573-5117, 2017, https://doi.org/10.1007/s10750-017-3420-z
  10. Characteristics of Bacterial Communities in Cyanobacteria-Blooming Aquaculture Wastewater Influenced by the Phytoremediation with Water Hyacinth vol.9, pp.12, 2017, https://doi.org/10.3390/w9120956
  11. A Gateway to Successful River Restorations: A Pre-Assessment Framework on the River Ecosystem in Northeast China vol.10, pp.4, 2018, https://doi.org/10.3390/su10041029
  12. on phosphorus fluxes and recovery from former agricultural lands in wetland microcosms pp.1747-0765, 2018, https://doi.org/10.1080/00380768.2018.1536387
  13. CNP Ratio and Dose Regulated Production of Water Chestnut Trapa: Social and Environmental Implications vol.44, pp.4, 2018, https://doi.org/10.3103/S1068367418040134
  14. A New in Situ Rhizosphere Sediment Sampling Method for Emergent Aquatic Plants vol.394, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/394/5/052023