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Abstract

Recent developments in hydrological modelling are based on a view of the interface
being a single continuum through which water flows. These coupled hydrological-
hydrogeological models, emphasising the importance of the stream—aquifer interface,
are more and more used in hydrological sciences for pluri-disciplinary studies aiming
at investigating environmental issues. This notion of a single continuum, which is ac-
cepted by the hydrological modellers, originates in the historical modelling of hydrosys-
tems based on the hypothesis of a homogeneous media that led to the Darcy law. There
is then a need to first bridge the gap between hydrological and eco-hydrological views
of the stream—aquifer interfaces, and, secondly, to rationalise the modelling of stream—
aquifer interface within a consistent framework that fully takes into account the multi-
dimensionality of the stream—aquifer interfaces. We first define the concept of nested
stream—aquifer interfaces as a key transitional component of continental hydrosystem.
Based on a literature review, we then demonstrate the usefulness of the concept for
the multi-dimensional study of the stream—aquifer interface, with a special emphasis on
the stream network, which is identified as the key component for scaling hydrological
processes occurring at the interface. Finally we focus on the stream—aquifer interface
modelling at different scales, with up-to-date methodologies and give some guidances
for the multi-dimensional modelling of the interface using the innovative methodology
MIM (Measurements-Interpolation-Modelling), which is graphically developed, scaling
in space the three pools of methods needed to fully understand stream—aquifer inter-
faces at various scales. The outcome of MIM is the localisation in space of the stream—
aquifer interface types that can be studied by a given approach. The efficiency of the
method is demonstrated with two approaches from the local (~ 1 m) to the continental
(< 10 Mkm?) scale.
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1 Introduction

The emergence of a systemic view of the hydrological cycle led to the concept of con-
tinental hydrosystem (Dooge, 1968; Kurtulus et al., 2011), which “is composed of stor-
age components where water flows slowly (e.g. aquifers) and conductive components,
where large quantities of water flow relatively quickly (e.g. surface water)” (Flipo et al.,
2012, p. 1). This concept merges surface and ground waters into the same hydro-
logical system through the stream—aquifer interface. As a key transitional component
characterised by a high spatio-temporal variability in terms of physical and biogeo-
chemical processes (Brunke and Gonser, 1997; Krause et al., 2009b), this interface re-
quires further consideration for characterising the hydrogeological behaviour of basins
(Hayashi and Rosenberry, 2002), and therefore continental hydrosystem functioning
(Saleh et al., 2011).

The dynamics of water exchanges at the stream—aquifer interface is complex and
mainly depends on geomorphological, hydrogeological, and climatological factors
(Sophocleous, 2002; Winter, 1998). Recent eco-hydrological publications, dedicated
to stream—aquifer interfaces claim the recognition of the multi-dimensionality and the
complexity of the processes taking place in the interface (Ellis et al., 2007; Hancock
et al., 2005; Poole et al., 2008; Stonedahl et al., 2012). Also modern landscape typolo-
gies, emerging from eco-hydrological concepts based on functionalities of morpholog-
ical units, highlight the multi-dimensionality of the stream—aquifer interfaces (Bertrand
et al., 2012; Dahl et al., 2007). Behind the multi-dimensionality is the notion of scales,
which structures the definition, the behaviour and the functionality of the stream—aquifer
interface.

Paradoxically, recent developments in hydrological modelling are based on a view
of the interface being a single continuum through which water flows (Jones et al.,
2006, 2008; Kollet and Maxwell, 2006; Panday and Huyakorn, 2004; VanderKwaak
and Loague, 2001; Werner et al., 2006). On the one hand, this notion of a single con-
tinuum, which is accepted by the hydrological modellers, originates in the historical
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modelling of hydrosystems based on the hypothesis of an homogeneous media that
led to the Darcy law. On the other hand, coupled hydrological-hydrogeological models,
emphasising the importance of the stream—aquifer interface, are more and more used
in hydrological sciences for pluri-disciplinary studies aiming at investigating environ-
mental issues (Ebel et al., 2009). However, these models do not explicitly consider the
multi-dimentionality of stream—aquifer interfaces, as formerly highlighted by the eco-
hydrological community. There is then a need to first bridge the gap between hydro-
logical and eco-hydrological views of the stream—aquifer interfaces, and, second, to
rationalise the modelling of stream—aquifer interface within a consistent framework that
fully accounts for the multi-dimensionality of the stream—aquifer interfaces (Marmonier
et al., 2012).

Following the attempt of Mouhri et al. (2013) aiming at rationalising the design
of stream—aquifer interfaces sampling system, we first define the concept of nested
stream—-aquifer interfaces as a key transitional component of continental hydrosys-
tem. Based on a literature review, we then demonstrate the usefulness of the con-
cept for the multi-dimensional study of the stream—aquifer interface, with a special
emphasis on the stream network which is identified as the key component for scal-
ing hydrological processes occurring at the interface. Finally the paper focuses on the
stream—aquifer interface modelling at various scales, with up-to-date methodologies,
and gives some guidance for the multi-dimensional modelling of the interface using
the MIM (Measurements-Interpolation-Modelling) methodology, which is illustrated with
two examples. The first one analyses stream—aquifer interface processes from the local
(~ 1m) to the watershed (~ 1000 km2) scale. The second one evaluates the potential
of the future space borne SWOT mission for further understanding of stream—aquifer
interfaces at the regional and continental scales, which are the scales of interest for
stakeholders and practitioners.
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2 The concept of nested stream-aquifer interfaces

Many hydrosystem models have been developed, and especially coupled surface—
subsurface hydro(geo)logical models (Loague and VanderKwaak, 2004), with no spe-
cial emphasis on stream—aquifer interfaces. Based on 171 references reviewed by
Flipo (2013), Table 1 synthesises practical applications of the most used Distributed
Physically-Based Models (DPBMs), with a special emphasis on their spatio-temporal
sizes.

During the 1970’s and 1980’s, the first sedimentary bassin’ DPBMs were developed
based on the finite differences numerical scheme (Abbott et al., 1986; Freeze, 1971;
Harbaugh et al., 2000; Ledoux et al., 1989; de Marsily et al., 1978; McDonald and
Harbaugh, 1988; Parkin et al., 1996; Refsgaard and Knudsen, 1996). In this type of
approach, the hydrosystem is divided into compartments, which exchange through in-
terfaces.

Since the late 1990’s, new models based on finite elements numerical schemes
have been developed (Bixio et al., 2002; Goderniaux et al., 2009; Kolditz et al., 2008;
Kollet and Maxwell, 2006; Li et al., 2008; Panday and Huyakorn, 2004; Therrien et al.,
2010; VanderKwaak and Loague, 2001; Weill et al., 2009). These models allow the
simulation of the pressure head in 3-D instead of the former pseudo 3-D modelling of
the piezometric head. However, it is not yet possible to straightforwardly simulate large
hydrosystems (> 10 000 km?) with a high spatio-temporal resolution for long periods of
time (a few decades) (Flipo et al., 2012). This is due to the large number of elements
required to simulate such hydrosystems (Gunduz and Aral, 2005), which imposes the
usage of heavily parallelised codes for simulating these systems with such a spatio-
temporal resolution. Only a proof of concept has recently been published by Kollet et al.
(2010), who have simulated a 1000 km? basin with a high spatio-temporal resolution.

Contrarily to the atmosphere—groundwater interface (mostly the soil and the vadose
zone), which was intensively studied through experimental (even with satellites facili-
ties) and modelling approaches up to a project of a 1km x 1km distributed modelling
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of the earth hydrological cycle (Beven and Cloke, 2012; Wood et al., 2011, 2012), the
stream—aquifer interfaces have only been intensively surveyed for broadly two decades
(Fleckenstein et al., 2006; Marmonier et al., 2012). Its study by the eco-hydrological
community led to a re-conceptualisation of its nature from the river being seen as an
impervious drain that collects the effective rainfall and transfers it to the ocean, toward
a more subtle view that integrates more spatio-temporal processes in the hydrosys-
tem functioning. Indeed, the stream—aquifer interface is now conceptualised as a filter
through which water flows many times over various spatial (from centimetres to kilo-
metres) and temporal scales (from seconds to months) before to reach the sea (Datry
et al., 2008). One of the main challenges is to understand the role of the stream-aquifer
interfaces in the hydro(geo)logical functioning of basins (Hayashi and Rosenberry,
2002). The multi-dimensionality of the problem at hand imposes to define the scales of
interest.

The five commonly recognised scales (scale is used here for the size of the studied
objects) are the local, the reach, the catchment, the regional, and the continental ones
(Bléschl and Sivapalan, 1995; Dahl et al., 2007; Gleeson and Paszkowski, 2013), being
defined as:

— local scale (or the experimental site scale) [10cm—~ 10 m]: this scale concerns
the riverbed or the hyporheic zone (HZ, see Sect. 3.2 for more details);

— intermediate or reach scale [100 m—~ 10 km]: it concerns the river reach, a pound
or a small lake;

— catchment-Watershed scale [1Okm2—~ 1000 km2]: this scale connects the
stream network to its surface watershed and more broadly to the hydrosystem.
This is the scale from which surface-ground water exchanges are linked with the
hydrological cycle and the hydrogeological processes;

— regional scale [10 000 km2—~ 1M km2]: this is the scale of water resources man-
agement, and the one for which the least is known about stream-—aquifer ex-
change dynamics. For a conceptual analysis of the stream-aquifer interfaces,
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the watershed and the regional scales can be merged into a single category re-
ferred to as the regional scale (Mouhri et al., 2013). Merging these two scales is
consistent with the fact that a regional basin is a collection of smaller watersheds.
The distinction between the two categories is only necessary to conceptualise the
scaling of processes as discussed in the final section of this paper;

— continental scale [> 10M km2]: this scale is a collection of regional scale basins.
The difference with the regional scale is that there is a broader range of hydro-
climatic conditions, which imposes to take into account climatic circulations.

From a conceptual point of view, stream—aquifer exchanges are driven by two main
factors: the hydraulic gradient and the geological structure. The hydraulic gradient de-
fines the water pathways (Winter, 1998), whereas the geological structure defines the
conductive properties of the stream—aquifer interface (White, 1993; Dahm et al., 2003).
These two factors are fundamental for hydrogeologists, who derive from those sub-
surface flow velocities and transfer times. The time scale to be considered also varies
depending on the studied object (HZ itself or a sedimentary basin functioning) (Harvey,
2002). Estimating the stream—aquifer exchanges at a sedimentary basin scale then re-
quires the combination of various processes with different characteristic times or pe-
riods covering a wide range of temporal orders of magnitude (Bléschl and Sivapalan,
1995; Flipo et al., 2012; Massei et al., 2010): hour-day for river flow, year-decade for
effective rainfall, decade-century for subsurface transit time. To address this, models
are used as spatio-temporal interpolators. The final choice of model, which can be ei-
ther conceptual, statistical, process-based or hybrid, is a trade off between a number
of factors, such as the required accuracy, type and availability of data, available com-
putational facilities, temporal and spatial scale. The rationale for selecting a particular
stream—aquifer modelling technique is a function of the application’s objective and of
the model’s suitability for modelling key aspects of the problem at hand (Saleh et al.,
2011).
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Moubhri et al. (2013) proposed a multi-scale framework to study stream-aquifer in-
terfaces. Their approach is based on the observation that the two main hydrosystem
components are the surface and groundwater components, which are connected by
nested interfaces (Fig. 1). Stream—aquifer interfaces consist in alluvial plain at the re-
gional and watershed scales (Fig. 1a and b), while within the alluvial plain, they consist
in riparian zone at the reach scale (Fig. 1d). Within the riparian zone, they consist in the
hyporheic zone at the local scale (Fig. 1c), and so on until the water column—benthos
interface within the river itself (Fig. 1f). Before further developing the multi-scale frame-
work, the various descriptions of stream—aquifer interfaces are outlined.

3 Multi-dimensionality of the stream-aquifer interface

A literature review of process-based modelling of stream—aquifer interfaces’ functioning
is presented in Table 2, which synthesises 42 references. The majority of them focuses
on the local scale (21), while only four consider the regional and continental scales.
The remaining mostly focuses on the local-intermediate (9) and intermediate scales

(7).
3.1 A multi-scale issue structured around the intermediate scale — the river

The river network is identified as being the location where flow paths mix at all scales,
and therefore the location of hydrological process scaling.

Near river groundwater flow paths are mainly controlled by regional flow paths in
aquifer systems (Malard et al., 2002). Indeed, the groundwater component of hy-
drosystem controls the regional flows towards the alluvial plains and the rivers. Such
flow paths define the total amount of water that flows in the stream—aquifer interface
(Cardenas and Wilson, 2007b; Frei et al., 2009; Kalbus et al., 2009; Rushton, 2007;
Storey et al., 2003). This is not a new concept as the river network corresponds
to drains collecting regional groundwater (Fig. 1a), which sustain the network during
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low flow period (Ellis et al., 2007; Pinder and Jones, 1969; Téth, 1963). These large
scale structural heterogeneities can also generate local conditions that favour local
re-infiltration of river water towards the aquifer system (Boano et al., 2010; Cardenas,
2009a, b; Fleckenstein et al., 2006). These re-infiltrations (Fig. 1b and c) can even con-
stitute the main recharge of some peculiar local aquifer systems, as for instance some
alluvial plain (Krause and Bronstert, 2007; Krause et al., 2007).

In second instance, the spatial distribution of the stream bed permeabilities controls
the dynamics of stream—aquifer exchanges within the alluvial plain, and therefore the
near-river piezometric head distribution (Calver, 2001; Fleckenstein et al., 2006; Frei
et al., 2009; Genereux et al., 2008; Hester and Doyle, 2008; Kalbus et al., 2009; Kaser
et al., 2009; Rosenberry and Pitlick, 2009). Finally the longitudinal morphology of the
river and the topography of the river bed, consisting in a pluri-metric succession of
pools and riffles (Fig. 1e), also impact the stream—aquifer exchanges (Cardenas et al.,
2004; Crispell and Endreny, 2009; Frei et al., 2010; Gooseff et al., 2006; Harvey and
Bencala, 1993; Kasahara and Wondzell, 2003; Kasahara and Hill, 2006; Krause et al.,
2012a; Stonedahl et al., 2010; Storey et al., 2003; Tonina and Buffington, 2007), as well
as the depth of the alluvial aquifer (Koch et al., 2011; Marzadri et al., 2010; Whiting and
Pomeranets, 1997) and the river hydraulic regime (Cardenas and Wilson, 2007a; Munz
et al., 2011; Saenger et al., 2005). Ultimately a very fine scale process (~ cm—dm), due
to the in-stream non hydrostatic flow induced by bedform micro-topography (Fig. 1f),
also increases the absolute value of the total stream—aquifer exchanges (Cardenas
and Wilson, 2007a; Cardenas and Wilson, 2007b; Endreny et al., 2011; Janssen et al.,
2012; Kéaser et al., 2013; Krause et al., 2012b; Sawyer and Cardenas, 2009; Stonedahl
et al., 2010).

It is therefore important to study the stream—aquifer exchanges in the dual perspec-
tive of regional and local exchanges; the former being controlled by regional recharge
and structural heterogeneities, the later by the longitudinal distribution of stream bed
heterogeneities and the river morphology (Schmidt et al., 2006). These two types of
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controlling factors may also generate water loops within the stream—aquifer interfaces,
the river corridor being the location where these processes merge.

Ellis et al. (2007) confirmed this statement with the investigation of the spatio-
temporal relevance of both data sampling density and models from the intermediate
scale to the local one. They concluded that stream—aquifer exchange distributions are
submitted to multi-scale controls, which influence the thickness of the HZ and the pat-
terns of groundwater flow through the riverbed.

3.2 The stream-aquifer interface at the local scale — the hyporheic zone

At the local scale (plot, river cross section), the stream—aquifer interface consists in
a hyporheic zone (HZ), which corresponds to an ecotone, whose extent varies dy-
namically in space and time. This ecotone is at the interface between two more uni-
form, yet contrasted ecological systems (Brunke and Gonser, 1997): the river and the
aquifer. In a broad sense, the HZ is “the saturated transition zone between surface wa-
ter and groundwater bodies that derives its specific physical (e.g. water temperature)
and biogeochemical (e.g. steep chemical gradients) characteristics from active mixing
of surface and groundwater to provide a habitat and refugia for obligate and facultative
species” (Krause et al., 2009a, p. 2103). White (1993) also indicates that the HZ is
located beneath the stream bed and in the stream banks that contain infiltrated stream
water. Furthermore, Malard et al. (2002) identified five generic HZ configurations, that
depend on the structure of the subsurface media, and especially on the location of the
impervious substratum:

1. No HZ: the stream flows directly on the impervious substratum. A perennial lateral
HZ can appear in the zone of significant longitudinal curvature of the stream, for
instance in the case of meanders (Boano et al., 2009; Cardenas, 2009a; Revelli
et al., 2008).
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2. No aquifer unit: a HZ can appear due to the infiltration of the stream water towards
the substratum or through the stream banks. In the former case, the substratum
is located near to the stream bed sediments.

3. Existence of a HZ in a connected stream—aquifer system: the HZ is created by
advective water from both the stream and the aquifer unit. The impervious sub-
stratum is located beneath the aquifer unit.

4. Existence of a HZ in a disconnected stream-aquifer system: a distinct porous
media lies in between the stream bed and the aquifer unit. This porous media
would not be saturated if the stream bed were impervious. In this configuration,
two subcategories are to be found:

a. the vertical infiltration of stream water towards the top of the aquifer unit gen-
erates a zone of mixing waters at the top of the aquifer unit, far enough below
the stream bed to be disconnected from it,

b. a perched HZ is formed below the stream bed due to the infiltration of stream
water. In this particular case, the porous media below the stream bed is either
very thick or its conductive properties are so poor that the surface water may
not reach the aquifer unit.

The extent of the HZ, which depends on the hydrological settings, varies from cen-
timetres to hundreds of meters (Brunke and Gonser, 1997; Woessner, 2000; Wroblicky
et al., 1998). Even in a specific configuration, the extent and the nature of the stream—
aquifer interface vary through time, depending on the hydro(geo)logical context. For
instance, Conant (2004) and Storey et al. (2003) reported that the HZ is affected by the
regional flow of the aquifer system, whereas Wroblicky et al. (1998) indicate that the
variation of the head difference between aquifer and stream modifies the extent of the
HZ.
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3.3 The stream—aquifer interfaces at the regional and continental scales —
the alluvial plains

The interaction between surface and subsurface waters has also been identified at the
basin scale, where geological heterogeneities control the stream—aquifer exchanges,
which in return can control the near river piezometric head distribution in the case of
an alluvial aquifer (Boano et al., 2010; Cardenas, 2009a, b; Fleckenstein et al., 2006).

Although the usage of DPBM covers a broad range of spatial scales, only 19
publications among 183 (Tables 1 and 3) concern large river basins (> 10000 km2)
(Abu-El-Sha’s and Rihani, 2007; Andersen et al., 2001; Bauer et al., 2006; Boukerma,
1987; Christiaens et al., 1995; Etchevers et al., 2001; Golaz-Cavazzi et al., 2001;
Gomez et al., 2003; Habets et al., 1999; Hanson et al., 2010; Henriksen et al., 2008;
Kolditz et al., 2012; Ledoux et al., 2007; Lemieux and Sudicky, 2010; Monteil, 2011;
Park et al., 2009; Saleh et al., 2011; Scibek et al., 2007) and except Monteil (2011),
Pryet et al. (2013) and Saleh et al. (2011), none of them focuses on stream—aquifer ex-
changed water flux. Moreover, among DPBMs dedicated to stream—aquifer exchanges,
no application was carried out at the regional scale (Table 3).

At this scale, most of the hydro(geo)logical models are limited to take into account lo-
cal processes as the effect of near river pumping, or storage in the hyporheic zone, be-
cause they require a very fine spatial discretisation, which can be incompatible with the
resolution of the model or, at most, drastically decreases the efficiency and precision
of the model. Moreover, the usage of regional models to solve local issues, as well as
the reverse, leads to equifinality problems (Beven, 1989; Beven et al., 2011; Ebel and
Loague, 2006; Klemes, 1983; Polus et al., 2011), boundary conditions inconsistencies
(Noto et al., 2008), or computational burdens (Jolly and Rassam, 2009). The usage of
local models to solve regional issues also leads to the same effects (Aral and Gunduz,
2003, 2006; Wondzell et al., 2009). Moreover, neither a too simple model, nor a too
complex one can provide relevant answers (Hill, 2006; Smith et al., 2004; Wondzell
et al., 2009). Therefore alternative ways of modelling are needed to properly simulate
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the behaviour of stream—aquifer interfaces at the regional scale (Werner et al., 2006),
especially that for a given reach of river the direction of stream—aquifer exchanges can
vary longitudinally (Bencala et al., 2011).

According to Krause et al. (2011) the knowledge on processes occurring in the
stream—-aquifer interface and the need for knowledge by water resources managers
is first inversely correlated, and second not much is known about the role of stream—
aquifer interfaces at the regional scale, which is the scale of interest for practitioners.
There is therefore is a crucial need to develop inovative methodologies for assessing
stream—aquifer exchanges at the regional scale.

4 Modelling stream—-aquifer exchanges
4.1 Models to simulate stream—aquifer interface

Surface water groundwater exchanges, mostly through the soil or the stream—aquifer
interface, are simulated with two different models (Ebel et al., 2009; Kollet and Maxwell,
2006; LaBolle et al., 2003; Furman, 2008), whatever the number of simulated spatial
dimensions (Tables 2 and 3):

— A conductance model or first order exchange coefficient, for which the interface is
described with a water conductivity value. The exchanged water flux is then cal-
culated as the product of the conductivity by the difference of piezometric heads
between the aquifer and the surface water body. Depending on the model, the
difference of pressures can also be used. This model implicitly formulates the hy-
pothesis of a vertical water flux between surface water and groundwater whatever
the mesh size. This is the most common model for simulating stream—aquifer ex-
changes. There are diverse conductance’s formulations, especially in the case
of disconnected aquifers and streams (Osman and Bruen, 2002). Irvine et al.
(2012) advocate for the usage of the conductance model if the stream bed het-
erogeneities are well described, which is usually critical (Genereux et al., 2008).
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However the conductance coefficient depends on the temperature because it im-
plicitly integrates the fluid viscosity (Engeler et al., 2011). Moreover, the validity
of the first order law is critical in case of a flood when water expends in the flood
plain (Engeler et al., 2011).

— Continuity of pressures and fluxes at the interface. This boundary condition re-
quires an iterative or a sequential computation, although the iterative one is more
precise (Sulis et al., 2010). Sometimes the iterative process also leads to a dis-
continuity of the tangential component of the water velocity at the interface with
the stream bed (Discacciati et al., 2002; Miglio et al., 2003; Urquiza et al., 2008).
This is not a problem as this discontinuity can be interpreted as representative of
the stream bed load.

Recent numerical developments allow for solving the coupled surface and subsurface
equations at once with a matricial system. This method is called coupled in Tables 2
and 3, and can be used with whatever selected stream—aquifer interface model. One of
the main drawbacks of this method is that it is computationally demanding and usually
requires a parallelised model in order to simulate real hydrosystem.

From a conceptual point of view, the conductance model permits to better under-
stand the hydrological processes occurring at the stream—aquifer interface (Delfs et al.,
2012; Ebel et al., 2009; Liggett et al., 2012; Nemeth and Solo-Gabriele, 2003) and is
equivalent to the continuity one in the case of a highly conductive interface.

4.2 Temperature as a tracer of the flow — the local scale

The study of heat propagation is a powerful tool for assessing stream—aquifer ex-
changes (Anderson, 2005; Constantz, 2008; Moubhri et al., 2013) based on the tem-
perature used as a tracer of the flow. Coupled with in situ measurements, two meth-
ods, based on heat transport governing equations, are used to quantify stream—aquifer
exchanges (Anderson, 2005):
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1. Analytical models (Stallman, 1965; Anderson, 2005) are widely used to inverse
temperature measurements solving the 1-D heat transport equation analytically
under simplifying assumptions (sinusoidal or steady boundary conditions and ho-
mogeneity of hydraulic and thermal properties) (Anibas et al., 2009; Anibas et al.,
2012; Becker et al., 2004; Hatch et al., 2006; Jensen and Engesgaard, 2011;
Keery et al., 2007; Lautz et al., 2010; Luce et al., 2013; Rau et al., 2010; Schmidt
et al., 2007; Swanson and Cardenas, 2011).

2. Numerical models which couple water flow equation in porous media with the
heat transport equation in 2-D or 3-D. These models are divided in two cate-
gories based on the numerical scheme: finite differences (Anderson et al., 2011;
Anibas et al., 2009; Constantz et al., 2002, 2013; Constantz, 2008; Ebrahim et al.,
2013; Lewandowski et al., 2011; Mutiti and Levy, 2010; Rihaak et al., 2008;
Schornberg et al., 2010) or finite elements (Kalbus et al., 2009; Mouhri et al.,
2013). These models have the advantage of calculating spatio-temporal stream—
aquifer exchanges with the capability of accounting for the heterogeneities under
transient hydrodynamical and thermal conditions.

Eventually the two approaches provide estimates of the conductance coefficient that
best represents the stream—aquifer interface at the local scale.

4.3 The conductance model at the regional scale

To the authors’ knowledge, very few DPBMs have been applied to assess stream—
aquifer exchanges at the regional scale (> 10000 km2) (see Sect. 3.3). These appli-
cations exclusively use the conductance model, for which the longitudinal distribution
of the conductance along the stream network has to be calibrated (Pryet et al., 2013).
To provide accurate estimates, the conductance model has to be constrained by the
piezometric head below the river and the surface water elevation. Former applications
used a fixed water level throughout the simulation period (Flipo et al., 2007; Gomez
et al., 2003; Monteil, 2011; Thierion et al., 2012). Saleh et al. (2011) showed that this
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methodology not only leads to biased assessments of stream—aquifer exchanges, but
also to biased estimates of the near river piezometric head distributions.

The simulation of surface water levels is therefore of primary importance for the es-
timation of distributed stream—aquifer exchanges along the stream network at regional
scale (Pryet et al., 2013; Saleh et al., 2011). Saleh et al. (2013) recommend the us-
age of local 1-D Saint-Venant based hydraulic models to build rating curves for every
cell of a coarser regional model (Saleh et al., 2011) that uses simpler in-stream water
routing models as RAPID (David et al., 2011). Such models are then coupled with the
conductance model to simulate stream—aquifer exchanges at the regional scale along
thousands of kilometres of river networks with a 1 km spatial discretisation (see for in-
stance Pryet et al., 2013 for such an application along 4000 km of the Paris basin river
network).

4.4 Conceptual needs at the continental scale

Russell and Miller (1990) achieved the first runoff calculation based on a 4° x 5° grid
mesh coupled with a Land Surface Model (LSM) and an Atmospheric Global Circulation
Model (AGCM). It appears that even at this scale the river networks play an important
role in the circulation models and water transfer time. Since then, few models have been
developed to simulate the main river basins in the AGCMs with a grid mesh of ~ 1°x 1°,
which roughly corresponds to a 100km x 100km resolution (Oki and Sud, 1998). Ge-
ographical Information Systems (GISs) were used to derive the river networks from
Digital Elevation Models (Oki and Sud, 1998). Jointly RRMs (River Routing Models)
have been developed with simple transfer approaches, assuming either a steady uni-
form water velocity at the global scale or a variable water velocity based on simple
geomorphological laws and the Manning Formula (Arora and Boer, 1999).

Decharme and Douville (2007) implemented the approach with a constant in-river
water velocity (assumed to be 0.5 ms'1) within the LSM, today referred to as SURFEX
(Masson et al., 2013). Step by step the description of stream—aquifer exchanges was
improved with:
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— The introduction of a variable in-river water velocity (Decharme et al., 2008).
— A transfer time delay due to the stream—aquifer interface (Decharme et al., 2012).

— The explicit simulation with a DPBM of the worldwide largest aquifer systems
coupled with the explicit simulation the river networks draining surface basins
larger than 50 000—100 000 km? (Vergnes and Decharme, 2012).

— The explicit simulation of stream—aquifer exchanges based on the conductance
model on a 0.5° x 0.5° grid mesh (Vergnes et al., 2012; Vergnes and Decharme,
2012) in agreement with the continental scale transfer time delay of 30 days intro-
duced by Decharme et al. (2012).

As expected given the numerical experiments of Maxwell and Miller (2005), account-
ing for groundwater kinetics improves the global hydrological mass balance (Decharme
et al., 2010; Alkama et al., 2010; Yeh and Eltahir, 2005). Although the explicit simulation
of stream—aquifer exchanges with the conductance model slightly improves the mod-
els’ performances in terms of spatio-temporal discharge and real evapotranspiration
assessments (Vergnes et al., 2012; Vergnes and Decharme, 2012), the global calibra-
tion of the conductance parameter has to take into account the multi-scale structure
of the stream—aquifer interfaces, which means that a better assessment, not only of
simple DEM derived river networks, but also of the transfer time in the stream—aquifer
interfaces is required as well as the subgrid definition of dendritic river networks. Cou-
pled with proper scaling procedures (see next section) these approaches seem to be
less computationally demanding than the one proposed by Wood et al. (2011) and
slightly less over parametrised, which should permit to better resolve the estimation of
stream—aquifer exchanges at the continental scale.

4.5 Up and downscaling stream—-aquifer exchanges

The conductance model historically assumes vertical fluxes at the stream—aquifer in-
terface (Krause et al., 2012a; Sophocleous, 2002), so that it seems to be a proper
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framework for determining up and down scaling properties of stream—aquifer interfaces
(Boano et al., 2009; Engdahl et al., 2010). However this hypothese becomes less valid
at regional scale when the grid mesh is getting coarser (Mehl and Hill, 2010; Rushton,
2007). Indeed, in heterogeneous media modelling, the transmissivity field and the as-
sociated piezometric heads are highly mesh size dependent (Renard, 1997). Further-
more, in many models the calculated piezometric head corresponds to a volumetric
average on the grid cells (Bear, 1972; de Marsily, 1986; Ledoux et al., 1989). In the
case of a coarse grid, the calculated piezometric head at the stream—aquifer interface
does not represent the piezometric head beneath the river itself (Fig. 2). The averaging
process can then induce uncertainties in the assessment of the conductance parame-
ter, which becomes scale dependent (Vermeulen et al., 2006).

The hypothesis of vertical fluxes is discussed by Rushton (2007) based on numer-
ical experiments that showed its limit. Indeed, at the regional scale, stream—aquifer
exchanges seem to be more controlled by the horizontal permeability of the aquifer
unit than by the equivalent vertical permeabilities of both the river bed and the aquifer
unit. Recently, this new formulation of the drivers of stream—aquifer exchanges proved
to be suitable for the calibration of a regional modelling of stream—aquifer exchanges
(Pryet et al., 2013).

As formulated by Rushton (2007), Pryet et al. (2013) calibrated a correction factor.
To properly scale the conductance model, the correction factor should be defined ana-
lytically by linking the conductance to the vertical permeabilities of the stream bed and
the aquifer unit (through the anisotropy of the near stream aquifer unit) (Morel-Seytoux,
2009). Coupled to the scaling of the conductance, proper distribution of piezometric
heads has to be estimated (Vermeulen et al., 2006). A potential methodology could
consist in a near stream interpolation of the regional piezometric head, which should
consider the local variability of the transmissivity field (Chen and Durlofsky, 2006), ver-
ify the integrity of the regional flux (Mehl and Hill, 2002) and take into account the
geometrical change of boundary conditions (Panday and Langevin, 2012).
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Coupling these up and downscaling procedures of both parameters and state vari-
ables is critical for the explicit formulation of the nested stream—aquifer interface con-
cept in a modelling framework structured around the river network, where the compu-
tational power needs to be concentrated.

5 The MIM methodology: from concepts to practice

The methodology of Mouhri et al. (2013) is hereby graphically developed, scaling in
space the three pools of methods (measurements-interpolation-modelling) needed to
fully understand stream—aquifer interfaces at various scales. The outcome is the MIM
(Measurement-Interpolation-Modelling) methodological tool, which localises in space
the type of stream—aquifer interface that can be studied by a given approach (see
the five scales of interest in Fig. 3: local, reach, watershed, regional and continental
scales).

5.1 Coupled in situ-modelling approaches: from local to watershed scale

Figure 4 displays the types of stream—aquifer interfaces that can be studied by the
multi-scale sampling system developed by Moubhri et al. (2013), based on LOcal MOn-
itoring Stations (LOMOS) distributed along a 6 km river network covering a 40 km? wa-
tershed. As illustrated in Fig. 4, a single LOMOS allows the monitoring, based on water
pressure and temperature measurements, of stream cross-sections ranging from 0.1—
~10m. LOMOS data are used with coupled thermo-hydro models to determine the
properties of the aquifer units and the river beds (Mouhri et al., 2013), which can be
used to assess the value of the conductance at the watershed scale (Mehl and Hill,
2002; Morel-Seytoux, 2009; Vermeulen et al., 2006; Rushton, 2007). Assuming that it
is possible to distribute multiple LOMOS data, and the associated conductance values,
along a stream network (for instance using FO-DTS — Fiber Optic Distributed Ther-
mal Sensors), local in situ data become the basis of a broader surface—subsurface
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modelling at the watershed scale (Table 1). It thus appears in the MIM space that the
upscaling is structured around stream cross-sections of ~ 1-10m (Fig. 4).

5.2 Space borne approaches: regional and continental scales

At the regional and continental scales, stream—aquifer interfaces can be observed, at
least partially, using satellite measurements (Fig. 4). Current satellite platforms do not
allow for accurate observation of stream—aquifer exchanges, but they should be able to
provide valuable information in the near future (Alsdorf et al., 2007). Indeed, total wa-
ter storage (e.g. surface waters and ground waters) variations can be estimated from
the Gravity Recovery and Climate Experiment (GRACE) mission, launched in 2002
(Tapley et al., 2004). Ramillien et al. (2008) present an extensive review of large-scale
hydrological use of the first years of GRACE data. However, these data have low spa-
tial (300—400 km) and temporal resolution (from 10 days to 1 month) (Ramillien et al.,
2012), limiting their use for continental scales. Moreover, these data have to be cou-
pled with ancillary information to distinguish between surface waters and ground waters
variations. For instance, surface water variations can be estimated by combining multi
sensors measurements. Optical or Radar images are used to compute water extent
(Cretaux et al., 2011) and can be combined with Digital Elevation Model (DEM) or with
water elevation measurements from NADIR altimeters (Calmant et al., 2008) to derive
storage changes and fluxes (Neal et al., 2009; Gao et al., 2012). The mismatch be-
tween acquisition time, repeatability, and spatial coverage of such data implies that it is
difficult to use them for the assessment of stream—aquifer exchanges at the continental
scale.

To overcome these issues a new space-borne mission, the Surface Water and Ocean
Topograpy (SWOT) mission, is currently being developed by NASA, CNES (French
Spatial Agency) and CSA (Canadian Space Agency), for a planned launch around
2020. SWOT will provide maps of distributed water elevations, water extents and wa-
ter slopes on two swaths of 50 km coverage each. It will enable the observation of
rivers wider than 100 m and surface areas larger than 250 mx250m (Rodriguez, 2012).
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Accuracies on water elevation and water slope will be around 10cm and 1cm km‘1,

respectively, after averaging over 1 km? water area (Rodriguez, 2012). From these re-
quirements, Biancamaria et al. (2010) estimated that SWOT should be able to pro-
vide useful information to compute discharge for river reaches with drainage areas
above 70000km?. This preliminary assessment was recently refined by Andreadis
et al. (2013), who estimate that rivers with a bank full width of 100 m have drainage
area ranging from 1050 to 50 000 km?. Although the database contains errors (reported
errors on river width range from 8 to 62 %), it provides the order of magnitude of mini-
mum drainage area that should be sampled by SWOT. Thanks to the two swaths and its
~ 20 day repeat orbit, the instrument will observe almost all continental surfaces in be-
tween 78° S and 78° N, allowing the sampling of all drainage areas above 50 000 km?.
Therefore SWOT is a valuable tool to localise in the MIM space (Fig. 4). SWOT data
consist of raw cloud data, which appear on the measurement axis, and reach averaged
data to reduce uncertainties (see the Interpolation axis in Fig. 4). Both products can be
coupled with regional or continental hydrosystem models. To achieve such coupled ap-
plications, it will be necessary to use downscaling methods (Aires et al., 2013) and/or
assimilate SWOT observations in stream—aquifer interface models like the one used by
Pryet et al. (2013), Saleh et al. (2011) and Vergnes and Decharme (2012).

5.3 Further challenges

Albeit being a breakthrough in terms of surface coverage SWOT requirements impose
restrictions on observable stream—aquifer interfaces, which can be visualised in the
MIM space (Fig. 4). Unfortunately, it appears in the MIM space that SWOT applications
do not completely overlap other methodologies as the one proposed to scale processes
between the local and the watershed scales. To overcome this issue, an incoming
airborne campaign, called AirSWOT, with a main payload similar to the one of SWOT,
but with higher spatial resolution (metric), will (i) help to determine whether regular
airborne campaigns can provide a valuable tool to connect the watershed scale to the

471

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

HESSD
11, 451-500, 2014

Nested
stream-aquifer
interfaces

N. Flipo et al.

' II“ III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/451/2014/hessd-11-451-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/451/2014/hessd-11-451-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

regional/continental one with the help of multi-scale modelling tools (cf. Sect. 4.5) and
(i) permit to design new in situ monitoring stations derived from the LOMOS defined
by Moubhri et al. (2013) but dedicated to the watershed/regional scale, which means for
river cross-sections larger than a few decametres.

6 Conclusions

The systemic view of hydrosystems makes us reformulate the stream—aquifer interface
as a cascade of nested objects. These nested objects depend on the scale of interest.
At the watershed, regional and continental scales, they consist in alluvial plains, while
within the alluvial plan itself (intermediate-reach scale), they consist in riparian zones.
Within the riparian zone (local scale), they consist in HZ, and so on until the water
column—benthos interface within the river itself.

Estimating stream—aquifer exchanges therefore requires to combine the modelling
of various processes with different characteristic times. Depending on the refinement
of the modelling at the regional scale (i.e. number of processes taken into account),
the estimation of stream—aquifer exchanges may vary significantly. As stakeholders
need more detailed information at the regional scale, which is the scale of water re-
sources management, it is crucial to develop modelling tools which can precisely sim-
ulate stream—aquifer exchanges at the reach scale within a regional basin. These in-
novative modelling tools should be multi-scale modelling platforms, which implement
the concept of nested stream—aquifer interfaces as the core of the coupling between
regional and local models: the former simulating the basin, the latter the alluvial plains.
To achieve this, it was shown that processes scaling should be performed around the
river network.

To fully estimate stream—aquifer exchanges, this multi-scale modelling tool has to be
coupled with observation devices. The MIM methodology provides a powerful frame-
work to jointly develop observation infrastructures and modelling tools, allowing the lo-
calisation of the global structure in the scale space. The main result of the first analysis
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is that airborne campaigns, as well as regional in situ systems, will have to be ratio-
nalised to connect the watershed to the regional and continental scales, which will be
sampled by the SWOT mission.
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Table 1. Coupled surface—subsurface hydrological DPBM. References to be found in Flipo

(2013).

Model SwW GW Cg Ax At
CATHY Muskingum-Cunge RE P 0.01ha- hours—
1-D FD 3-DFE 690 km? decades
CaWaQS sy DE K 2500km? decades
1-DFD pseudo 3-D FD
EauDyssée” Muskingum DE K 1000km?-  days—
RC + 1-D FD pseudo 3-D FD 100000km?  century
HydroGeoSphere*  DW & RE K 1m*- hours—
2-D FE 3-DFE 25 M km? 300000 yr
InHM DW™ RE K 15m’- hours—
2-DFE 3-DFE 100 km? century
MIKE SHE 1\ BE K  10km?— hours—
1-D FD 3-DFD 375000km?  decades
MODCOU isochronism DE K 100km*- days—
pseudo 3-D FD 100000km?  century
MODFLOW Coupling BE K 0.02ha- hours—
dependent pseudo 3-D FD 30000km®  century
MODHMS pw RE K 0.8km’- hours—
2-DFD 3-DVF 3200 km? decades
OpenGeoSys® 5\ BE K 3ha- hours—
1-D FD 3-DFE 20000km?  century
ParFlow? KW™ RE P 3ha— hours—
2-DFE 3-DFE 13000km?  decades
SHE SV BE K 5ha- days—
1-DFD 3-DFD 16000km?  years
SHETRAN DW BE K 3ha- hours—
1-D FD 3-DFD 2000 km? millenium

SW: Surface water; GW: Groundwater; Cg: Coupling DE: Diffusivity Equation; BE: Boussinesq Equation; RE: Richards
Equations SV: Saint-Venant; DW: Diffusive Wave; KW: Kinematic Wave; RC: Rating Curves FD: Finite Differences; FE:
Finite Elements; K: Conductance model; P: Pressure continuity,

2 Parallelised code,

b Can be parallelised by tasks,

™ Friction is calculated with the Manning formulae,

4 Friction is calculated with the Darcy—Weisbach formulae.
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Table 2. Physically-based modelling of stream—aquifer exchanges.

HESSD
11, 451-500, 2014

Ref exch Spec Resolution Scale
Ax At

(9]
(2]
Jaded uoissnosiq

Brunner et al. (2009a, b) K 2-DVLAT [1-100]m-[< 0.05]m perm loc-int S

Brunner et al. (2010) K 2-DVLAT [1-10]m-[0.1-10]m perm loc-int S

Cardenas et al. (2004) K 3-D 0.25m-0.25m-0.04m perm loc S Nested
Cardenas and Wilson (2007b); Cardenas and Wilson (2007c) P 2-DVLON 0.01m-0.01m? perm loc S ;
Cardenas (2009a) P 2-DH NS (80m-45m) perm loc S strea m—aq u |fe r
Chen and Chen (2003) K 3-D [3-6]m-[3-6]m-[6.7-7.6] m min loc-int R S R

Discacciati et al. (2002) P 3-D [0.5-5]m-[0.5-5]m-[0.3—-1.5]m ? perm loc S Interfaces
Ebel et al. (2009) K 3-D [1-20]m-[1-20] m-[0.05-0.25] m adapt loc-int R O

Engeler et al. (2011) K 3-D [1-50]m-[1-50]m-[1.6—40]m 900s int R n

Fleckenstein et al. (2006) K 3-D 200m-100m-[5-40]m 3h  int R @] N. Flipo et al.
Frei et al. (2009) P 3-D 20mx50m x 0.5m min  int S %

Frei et al. (2010) K 3-D 0.1mx0.1mx0.1m adapt loc S 7]

Gooseff et al. (2006) K 2-DVLON 0.20m-[0.3-0.5]m perm loc S o

Hester and Doyle (2008) K 2-DVLON 3m-[0.1-0.25]m perm loc S =

Irvine et al. (2012) K 3-D 0.5m-[0.5-2.6]m-[0.03-0.7]m perm loc S o)

Kalbus et al. (2009) K 2-DVLON 1m-[0.05-0.2]m perm loc S Q

Kasahara and Wondzell (2003) K 3-D [0.3-0.5]m-[0.3-0.5]m-[0.15-0.3]m perm loc-int R ©

Kasahara and Hill (2006) K 3D [0.6-3.5]m-[0.2-0.5]m-0.15m perm loc R @

Koch et al. (2011) K 3-D NS (1.7km-200m-0.5m) 1h int R

Krause and Bronstert (2007) K 2-DH [25-50] m - [25-50]m 1h int R

Krause et al. (2007) K 2-DH [25-250] m - [25-250] m 1h int-rég R o

Lautz and Siegel (2006) K 3-D 0.5m-0.5m-[0.6-2]m perm loc-int R

Marzadri et al. (2010) K 3-D [0.19-1.88]m-[0.06—0.5]m-[0.1]m perm loc-int S O

Marzadri et al. (2011) K 3-D NS (16.9m-2.6m-1.6m) perm loc S )

Miglio et al. (2003) P 3-D [0.2-0.5]m-[0.2-0.5]m-[0.05-0.15]m * 600s loc S (@]

Moubhri et al. (2013) P 2-DV [0.01-0.1]m-[0.01-0.1]m min loc R %

Munz et al. (2011) K 3-D 0.5m-0.5m-[0.1-2.48]m 1ht loc R (28

Osman and Bruen (2002) K 2-DVLAT NS (360m-21m) perm loc S (o)

Peyrard et al. (2008) P 2-DH [10-40]m-[10-40]m adapt int R =]

Pryet et al. (2013) K 2-DH 1km-1km 1d reg R U

Revelli et al. (2008) K 2-DH NS ([0.22—4.4] km-[0.19-3.8] km) perm int S Q

Rushton (2007) K 2-DVLAT 20m-0.2m perm loc-int S 8

Saenger et al. (2005) K V LON 0.1m-0.02m perm loc R =

Saleh et al. (2011) K 2-DH [1-41km-[1-4]km-[-]m 1j reg R

Sawyer and Cardenas (2009) P 2-DVLON 0.01m-0.005m? perm loc L —

Storey et al. (2003) K 3-D [1-8]m-[1-8]m-[0.25-0.42] m perm loc R

Sulis et al. (2010) KP 3D [1-80]m-[1-80]m-[0.0125-0.5] m adapt loc-int S

Tonina and Buffington (2007) P 3-D 0.083m-0.03m-0.083m perm loc L 9

Urquiza et al. (2008) P 2DVLON 1m-1m perm loc S 192}

Vergnes et al. (2012) K 2-DVLON 0.5°-0.5°-[-]m 1d reg R 8

Vergnes and Decharme (2012) K 2-DVLON 0.5°-0.5°-[-]m 1d con R n

Wondzell et al. (2009) K 3-D [0.125-2]m-[0.125-2] m-[0.16—0.4] m perm loc R g

Exch (stream—aquifer exchanges’ model): K: conductance model; P: Pressure continuity; V: vertical; LAT: lateral; LON: longitudinal; H: horizontal. S

Resolution: NS: not specified (total extension between parenthesis); 2 cell size not specified in the paper. U _
Spec (Specificities) Ax (spatial); At (temporal): perm: steady state; adapt: adaptative time step. Q
Scale: loc: local; int: intermediate; reg: regional; con: continental. e
CS (Case Study): S: synthetical; L: lab experiment; R: real. "2
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Table 3. Other DPBMS for intermediate and watershed scales — complementary with Table 1.

Reference Model Spatial Time
Sw GW Cg Sg Size Period

Bitteli et al. (2010) DW RE K seq 3ha 1yr
2-DFD 3-DFD

Dawson (2008) NS RE P seq 2-Dvertical 30min
1-DFE 2-DFE

Gunduz and Aral (2005) sV DE L sim 1800km? 3 months
1-DFD 2-DFE

Hussein and Schwartz (2003) KW DE P seq 256km? 100yr
1-DFD 3-DFD

Kim et al. (2012) S\ DE K seq 64km? 200h
2-DFV 3-DFE

Liang et al. (2007) NS BE L sim 8-40ha 2-3min
2-D 2-D

Peyrard et al. (2008) SV BE P sim 36km? 5yr
2-DFE 2-DFE

Qu and Duffy (2007) DW RE K sim 0.2ha 1 month
2-DFV 2-DFV

Spanoudaki et al. (2009) NS RE K sim 25ha- 30h
3-DFD 3-DFD 25 km?

Shen and Phanikumar (2010) DW DE K seq 12ha- 5h-7yr
2-DFV 3-DFD? 1169 km?

Singh and Bhallamudi (1998) SV RE P seq 0.6 m? 15min
1-DFD 2-DFD

Yuan et al. (2008) NS BE P sim 160km? 30min

2-DFD 2-DFD

SW: Surface water; GW: Groundwater; Cg: Coupling; Sg: Solving; DW: Diffusive Wave; KW: Kinematic Wave; NS:
Navier—Stokes; SV: Saint-Venant; RE: Richards Equations; BE: Boussinesq Equation; DE: Diffusivity Equation; FD:
Finite Differences; FE: Finite Elements; FV: Finite Volumes; K: conductance model; P: Pressure continuity; L:
Horizontal Darcy law; sim/seq: The system of equations is solved simultaneously/sequentially; %: pseudo 3-D.
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Groundwater

Groundwater discharge/
[ surface watershed recharge (a-c)

[711] unsaturated zone Alluvial plain-aquifer
l:l Aquifer exchanges (a-d)

i — Alluvial plain-river
: Floodplain exchanges (a-d)
Surficial alluvial "o, Meander driven exchanges (b,e)
Alluvial plain ' Riffle-pool driven exchanges (b,e)
|| Riparian buffer Micro topography eddy based

driven exchanges (f)

Hyporheic zone (HZ) -~ Sediment erosion (f)

Fig. 1. Nested stream-aquifer interfaces: (a) watershed-basin scale (b) intermediate-reach
scale in an alluvial plain (c) cross section of the stream—aquifer interface (d) meandered
reach scale (e) longitudinal river-HZ exchanges (f) water column-sediment scale. Inspired by
Stonedahl et al. (2010).
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Fine grid mesh

Stream bed
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Legend :

—— Real piezometric head
— —  Calculated piezometric head on fine grid mesh

—— Calculated piezometric head on coarse grid mesh

Fig. 2. Scaling effects on averaged near river piezometric heads.
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Fig. 3. MIM methodological space. Axis in logarithmic scale.
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Fig. 4. Localisation of two approaches in the MIM methodological space. In yellow: upscaling
methodology from the local to the watershed scale based on LOMOS coupled with DPBM.
In blue: regional to continental scales covered by the SWOT space borne approach. Axis in
logarithmic scale.

Jaded uoissnosiq

500 N


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/451/2014/hessd-11-451-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/451/2014/hessd-11-451-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

