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Abstract

Funded by the German Ministry for Education and Research (BMBF) a major research
project called MiKlip (Mittelfristige Klimaprognose, Decadal Climate Prediction) was
launched and global as well as regional predictive ensemble hindcasts have been gen-
erated. The aim of the project is to demonstrate for past climate change whether pre-
dictive models have the capability of predicting climate on time scales of decades. This
includes the development of a decadal forecast system, on the one hand to support
decision making for economy, politics and society for decadal time spans. On the other
hand, the scientific aspect is to explore the feasibility and prospects of global and re-
gional forecasts on decadal time scales. The focus of this paper lies on the description
of the regional hindcast ensemble for Europe generated by COSMO-CLM and on the
assessment of the decadal variability and predictability against observations. To mea-
sure decadal variability we remove the long term bias as well as the long term linear
trend from the data. Further, we applied low pass filters to the original data to separate
the decadal climate signal from high frequency noise. The decadal variability and pre-
dictability assessment is applied to temperature and precipitation data for the summer
and winter half-year averages/sums. The best results have been found for the predic-
tion of decadal temperature anomalies, i.e. we have detected a distinct predictive skill
and reasonable reliability. Hence it is possible to predict regional temperature variabil-
ity on decadal timescales, However, the situation is less satisfactory for precipitation.
Here we have found regions showing good predictability, but also regions without any
predictive skill.

1 Introduction

Interest in longer term climate predictions in the range of about 10 yr is growing. Such
predictions, as opposed to projections, would be very useful for all branches of public
life/activity and planning purposes, e.g. in agriculture, energy management, hydrology,
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and health. In the sense of seamless prediction (Palmer et al., 2008), a decadal predic-
tion system would well complement existing short range systems, as well as seasonal
predictions provided by ECMWF (http://www.ecmwf.int/products/changes/system4/)
and CPC (http://www.cpc.ncep.noaa.gov/products/predictions/90day/), for instance.
Decadal climate predictions present a major scientific challenge and it is not known
to what extent useful predictions are possible in terms of lead time, geographical posi-
tion, spatial resolution, meteorological variable and statistics like means or extremes.
There is, however, widespread agreement about some necessary requirements for
such predictions to be successful: (i) decadal predictions need to be produced by cou-
pled atmosphere-ocean models, (ii) predictability lies mainly in the slow components of
the climate system, i.e. the oceans and the soil. Skillful modeling and good initialization
of these components is essential (Keenlyside et al., 2008), (iii) predictability must come
from the large scale processes and interactions (like AMO, ENSO, quasi-biennial oscil-
lation), who must be captured by the global models, and (iv) assuming that the models
capture the effects of external forcing (especially concentration changes of greenhouse
gases), prediction means essentially prediction of long term (decadal) internal variabil-
ity. This is a mixed dynamical, in the sense of deterministic chaos (Lorenz, 1963), and
stochastic quantity, so therefore ensembles of simulations are required. The effects
of initialization have been discussed e.g. by Keenlyside et al. (2008); Pohimann et al.
(2009); Mdiller et al. (2012); Smith et al. (2012).

For practical applications, the information provided by global models is much too
coarse, so that regional downscaling to resolutions in the order of 10 km will be neces-
sary; for climate projections and climate assessment, this has been shown to provide
in many cases added value (Feldmann et al., 2013; Wagner et al., 2013; Berg et al.,
2013; Trail et al., 2013); if such added value can also be found in regionally downscaled
predictions is presently an open question. It is also an open question which metrics
to use to measure the skill of the predictions and which metrics are useful for ap-
plications. Whereas science is interested in variability and ensemble metrics (Goddard
et al., 2013; Gangstg et al., 2013), practitioners require above/below climatology, return
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values, frequency and duration of extremes (which is difficult due to bias) with high spa-
tial resolution. The German Ministry for Education and Research (BMBF) has launched
a major program called MiKlip (Mittelfristige Klimaprognosen, Decadal Climate Predic-
tion, http://www.fona-miklip.de/en/index.php) with the aim to establish an operational
decadal climate prediction system for Europe based on the MPI-ESM (Stevens et al.,
2013) and the regional climate models COSMO-CLM (Rockel et al., 2008; Panitz et al.,
2013) and REMO (Jacob, 2001) for regional downscaling. The project consists of five
modules dealing with the different aspects of predictability described above: initializa-
tion, relevant processes, regionalisation, validation and synthesis. The skill of the pre-
dictions will be assessed from an ensemble of decadal hindcasts which are compared
to observations, mainly of temperature and precipitation.

The focus of this paper is on the description and the assessment of regional predic-
tions with COSMO-CLM. Section 2 briefly describes the setup of the MPI-ESM sim-
ulations and gives an overview over the setup of the COSMO-CLM simulations, the
construction of the ensemble and the data used for validation. Section 3 describes the
detrending and debiasing and the validation framework including the basic set of met-
rics used. In Sect. 4 we present results and ensemble statistics for Europe. A summary
of the results is given in Sect. 5, conclusions and an outlook are given in Sect. 6.

2 Experimental design — construction of the regional decadal ensemble

The intent of MiKlip is to develop and improve a decadal prediction system in sev-
eral development stages. In a first phase a so called “baseline ensemble” of decadal
predictions has been established. It encompasses the global decadal simulations per-
formed with the MPI-ESM (Stevens et al., 2013) for CMIP5 (Hurrell et al., 2011) with
an ensemble size of 10 members. This baseline ensemble is used as a starting point
and basis for further developments within MiKlip. With respect to the potential users
of such information, regional downscaling of these global predictions is — after vali-
dation of the GCM results — an important next step. Among the regions selected for
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this regional downscaling is Europe. Two regional climate models (RCMs) — namely
COSMO-CLM (Consortium of small scale modeling in climate mode; CCLM hereafter)
and REMO have been applied. The common simulation domain is chosen according to
the CORDEX-EU specifications (Jacob et al., 2013; Giorgi et al., 2009) with a grid res-
olution of 0.22° and a rotated pole at —162° longitude and 39.25° latitude. The model
configuration uses 40 vertical levels. The focus for this paper is on the simulations with
CCLM. This RCM is used in the same model version and as for CORDEX (Panitz et al.,
2013).

The global baseline ensemble with the MPI-ESM in low resolution (MPI-ESM-LR)
consists of 10 realizations with starting years every 5yr between 1960 until 2000 and
annual initialization after 2000 according to the CMIP5 protocol (Taylor et al., 2012,
decadal1960: 1 January 1961-31 December 1970; decadal1965: 1 January 1966—
31 December 1975; ...) and three ensemble members for the in-between-years. The
ensemble uses 1 day time-lagged initialization of the atmosphere and an anomaly ini-
tialization for the ocean (Miiller et al., 2012; Matei et al., 2012). The atmospheric res-
olution is T63 (~ 1.86°) horizontally with 47 vertical levels up to 0.1 hPa in the vertical.
The resolution of the ocean component is 1.5° on average.

For the first regional ensemble a larger ensemble size was preferred to a higher
number of starting dates. This is a reasonable choice to analyze the spread and re-
liability of the regional ensemble with respect to the global ensemble. On the other
hand a model climatology for the whole period 1961-2010 is necessary to calculate
the model anomalies. Therefore, all 10 available realizations of the MPI-ESM-LR for 5
starting dates (decadal1960—decadal2000) were downscaled covering the whole 50 yr
period.

A CCLM reference simulation is performed with re-analysis forcing. This simulation
starts in 1959 using ERA40 (Uppala et al., 2005) as initial and boundary conditions.
The first two years are used as spin-up time for the slowly varying lower boundary
of the model. From 1979 until 2010 ERA Interim-forcing (Dee et al., 2011) is applied.
The soil initial conditions for the GCM-driven CCLM simulations were derived from
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this reference simulation. This has the advantage that the soil variables are as con-
sistent as possible with observations, provided that the soil inventories and SVATs
(Soil-Vegetation—Atmosphere Transfer schemes) used in GCM and RCM are consis-
tent. This can be regarded as an anomaly initialization of the RCM, avoiding drifts and
inconsistent surface fluxes in the initial phase of the predictions (Khodayar et al., 2013).

The E-OBS v8.0 climatology (Haylock et al., 2008) for near-surface temperature and
precipitation was used to evaluate the model performance. E-OBS is a gridded obser-
vational dataset and available in daily resolution from 1 January 1950 until 31 Decem-
ber 2012. It comprises the variables precipitation, temperature and sea level pressure
in Europe at 25km over land and is based on ECA&D (European Climate Assessment
& Dataset; http://eca.knmi.nl/) information.

3 Data pre-processing and skill metrics

An important aspect of assessing predictability, such as skill (Goddard et al., 2013) and
reliability (Corti et al., 2012) of decadal hindcasts vs. observations is to decide which
data pre-processing and metrics to use to characterize decadal variability. Different
approaches of pre-processing are followed; Bellucci et al. (2013) for instance analyse
both, anomalies including the long term trends and anomalies where the long term
trend has been removed. Goddard et al. (2013) and Mdiller et al. (2012) use anomalies
including the long term trend, but confront initialized forecasts with uninitialized projec-
tions. Similar to Latif et al. (2010) (and in parts Bellucci et al., 2013) we decided to
remove the long term means and trends from the time series to analyse decadal vari-
ability to avoid the difficulties interpreting a mixture of long term and decadal changes.
Furthermore, also the long term trend (50yr) is just a snapshot on much larger time
scales such as centuries and millennia as e.g. modelled by Friedrich et al. (2010). To
address the problem of decadal variability, a single E-OBS anomaly time series of sum-
mer half-year temperature means near £6dz (Poland) is shown exemplarily in Fig. 1.
The detrended/unfiltered data are shown as a thin line. The long term mean and trend
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have been removed, thus the anomalies are centered around zero. We see high sum-
mer to summer variability and these high frequency fluctuations cannot be predicted
using decadal model initializations. To extract the potentially predictable signal we ap-
plied a 9yr moving average low pass filter to the data (just for visualization), which is
plotted as a thick line, where we have shaded the area enclosed with the curve and
the zero line in Fig. 1. This line represents what we understand by decadal variability,
it is the part of the climate varying on decadal time scales. Now we have separated the
decadal variability from the fast interannual fluctuations and filtering makes it easier to
identify anomalies on decadal time scales. The 60’s were an anomalous warm decade,
the 70’s were colder, whereas the 80’s and 90’s were more medium decades and fi-
nally the 00’s were a warmer than normal decade. It has to be kept in mind that the
long term trend has been removed, which amounts for this example (Fig. 1) to about
0.4°C decade’1, hence absolutely the 90’s were warmer than the 60’s, but not with re-
spect to the detrended temperature. After removing the long term means and trends
from the CCLM hindcasts and the E-OBS observations a second pre-processing step
is applied to both, the smoothing of the data with 5 and 9 yr moving average filters. It is
important to note that the filtering has been performed only within decades, i.e. without
shifting the moving filter window over decadal boundaries since no observations should
be used from a future decade to increase the predictability of the present decade. The
following table (Table 1) shows on which years the averaged points have been based
on.

Smoothing of the data is beneficial in skill assessment due to reduction of the un-
predictable grid-scale noise (Raisénen and Ylhaisi, 2011). Goddard et al. (2013) advo-
cate a 5° latitude x 5° longitude spatial smoothing for precipitation and a 10° latitude x
10° longitude smoothing for temperature. Further they provide analyses on different
time scales, i.e. year 1, years 2-5, years 6-9 and years 2-9, which is “... somewhat
arbitrary, but it represents a small set of cases that can illustrate the quality of the in-
formation for different lead times and temporal averaging.” In contrast to Goddard et al.
(2013), who deal with global data, we focus on regionalized data and we analyse the
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data at their original 25km resolution without spatial smoothing. Similar to Goddard
et al. (2013) we use temporal smoothing, however as explained above, we use mov-
ing average filters instead of averaging over selected time ranges. The reason why we
prefer the moving average filter is that the number of data points is not decreased and
it is accounted for changes within an averaging range e.g. a decade. However, moving
average filtering introduces strong autocorrelations, which have to be considered when
performing significance analyses.

After the pre-processing the following metrics will be used to characterize the CCLM
ensemble vs. observations on decadal time scales:

- Skill:
To quantify the predictive skill of the regional CCLM ensemble against observa-
tions we explore the Pearson correlation coefficient o applied to anomalies (also
known as ACC (anomaly correlation coefficient); e.g. Bellucci et al., 2013). If we
denote the CCLM ensemble mean at a specific location i as m, ; and the corre-
sponding observations as o, ;, where t = 1,.. ., N represents the time index with in
total N = 50 data points (semi-annual means 1961-2010), the correlation coeffi-
cient is given by
1/N-2my;- 0y,
p;= ’ (1)

Om O,

where it has to be noted again that m;; and o;; are anomaly time series, which
have been bias and long term trend adjusted. The interpretation of the value of the
correlation coefficient is very individual and depends strongly on the underlying
experiment and data. A correlation coefficient of 0.8 can be very low regarding
e.g. high performance experiments to verify a physical constant. Otherwise 0.8
can be very large e.qg. in social sciences, where complicated factors interfere. For
our decadal predictions we stick to the common interpretation that a correlation
coefficient up to 0.3 is regarded as low, coefficients from 0.5 are good and a p
larger than 0.7 indicates a very strong dependence.
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As shown by Kharin and Zwiers (2003), the correlation coefficient can be used to
estimate the so called potential predictability, i.e. the ratio of the variance of the
potentially predictable signal and the total observed variance. It is called poten-
tial, because it represents the level of skill, which can be attained when the long
term means and trends have been removed (Murphy, 1988). Moreover, the corre-
lation coefficient is invariant to a change in the location and scale of a variable X,
i.e. a transform in the sense of a+ bX. Thus, p measures rather the tendencies of
the anomalies and not the actual agreement.

Further, we have estimated the statistical significance of the correlation coefficient
on grid point basis with the test statistic

t=— P )

\/ (1= 02)/ Neg

on a t-distribution with Ny degrees of freedom. Due to the low pass filtering strong
autocorrelations are introduced to the time series, thus the effective number of de-
grees of freedom is reduced. Therefore we account for autocorrelations according
to (Wilks, 2006)

1-¢
1+¢’

where ¢ is the autocorrelation at lag 1 of [m; ;- 0; ;]. Although only lag 1 is consid-
ered explicitely, further autocorrelations at higher lags are also considered implic-
itly, since the correction approach is based on autoregressive processes of order
1 (AR[1]) (Thiebaux and Zwiers, 1984), whose autocorrelation function decreases
exponentially, thus considering also higher lags than 1.

Neff =N- (3)

Fidelity:
DelSole and Shukla (2010) coined the term “fidelity” and defined it as a measure
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of the agreement between model and observational climatological distributions.
They exploited metrics from information theory (Shannon, 1948) such as the rel-
ative entropy to measure fidelity, which is quite appealing. However, because of
the simplicity and the greater acceptance we use the well known ,1/2 test to com-
pare model and observational distributions. The ,1’2 test requires the choice of
the number of bins used to estimate the distribution, which is somewhat subjec-
tive. For our study we chose the number of bins to be 6, because it is a good
compromise between the number of data points per time series (50) and the res-
olution of the distribution. The ,1/2 test statistic is estimated on grid pixel basis and
a p value is derived, which gives the probability of accepting the null hypothesis
of equal model and observational distributions. Since the p values are derived on
grid pixel basis for all 10 ensemble members, a total of 10 p values is gathered at
each grid point and then averaged for presentation.

Reliability:

Concerning the reliability of an ensemble forecast we follow Weigel et al. (2009)
who define reliability as a measure of “how consistent the forecast probabili-
ties are with the relative frequencies of the observed outcomes” (cf. also e.g.
Mason, 2008). As mentioned by Weigel et al. (2009) a normally distributed en-
semble is reliable if and only if the rmse of the ensemble mean and the obser-

vations is identical to the time-mean ensemble spread <0§ns>. The ensem-

ble is called underconfident if rmse(u, x) < <0§ns>, it is called overconfident if

rmse(u, x) > ‘/<o§ns>, and calibrated if rmse(u, x) = ‘/<0§ns>. Loosely speak-

ing, reliability measures if the ensemble spread covers the model errors. Hence,
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Weigel et al. (2009) define reliability as

2
rmse(uy , Xt ;) — <0,-,ens >t

REL, = : (4)

rmse (i j, X; ;)

where we use the index j to indicate a single grid point and ¢ to depict the time
index.

4 Decadal variability assessment

In Sect. 3 we have defined what we understand by decadal variability in this study
(cf. Fig. 1). To quantify the predictability of decadal variability we explore three charac-
teristics of the ensemble, which are the skill, the fidelity and the reliability. We measure
these characteristics using the correlation coefficient p (skill), the ¥ test (fidelity) and
a metric based on the rmse and ensemble spread (reliability) (cf. Sect. 3). We have
chosen these three measures because these are the simplest metrics to characterize
the most important aspects of a forecast ensemble. Another advantage of these simple
metrics is that results shown here are easily to understand and easily reproducible. The
findings for the predictability of summer temperature are the easiest ones to interpret,
thus we decided to discuss these results in detail and show the corresponding figures
below. The results for winter temperature and summer and winter precipitation are only
shortly discussed and the corresponding figures can be retrieved in the Supplement.
Before we analyse the CCLM ensemble for the whole of Europe we will exemplarily
show summer temperature results on three different locations in Europe in Fig. 2. The
top left panel of Fig. 2 depicts the data at a grid point near £.6dz in Poland. The yearly
unfiltered E-OBS (lilac) and CCLM ensemble mean (orange) anomalies are shown as
thin lines, whereas the thick lines represent 5 yr moving average filters. Additionally, the
CCLM ensemble spread, i.e. the standard deviation over the ensemble for each time
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step, is shown as a grey shaded area. Due to the decadal initialization of CCLM in 1961,
1971, 1981, 1991 and 2001 we have separated the decades from each other. The cor-
relation coefficient for the original yearly data in the top left panel in Fig. 2 is 0.33. This
correlation can be increased by applying the 5 yr moving average filter to 0.69 and even
further increased to 0.84 using a 9 yr moving average filter, as can be seen in the top
right panel of Fig. 2. Looking again at the results shown in the top right panel of Fig. 2
we observe a strong predictive skill and it is clear from visual inspection that the CCLM
ensemble mean is able to capture the tendency of the decadal variability. We will now
look at different periods within the decades, starting with decadal beginnings, i.e. 1961,
1971, 1981, 1991, 2001, which are the dates where the retrospective forecasts have
been carried out. The forecast from 1961 predicts an anomalous warm decade with
a decadal trend to the “normal” state at the end of the decade, which is in agreement
with the E-OBS data. Moving further on in time, the model has been initialized anew
in 1971 and CCLM predicts a further continuing decreasing decadal trend and the ten-
dency that the 70’s are an anomalous cold decade are well captured. The next two
decades can be characterized as normal without strong decadal variations (with re-
spect to the long term trend) and have been well forecasted by CCLM. Finally the 00
decade has been correctly forecasted as an anomalous warm period. If we look at the
thin curves in Fig. 2 we see that it is not possible to forecast single years, but applying
a low pass filter (thick curves) we can successfully predict the tendency on decadal
time scales. Most, but not all regions in Europe show such good decadal predictability
for summer temperature as observed in Poland. A slightly worse decadal predictability
has been found e.g. in Karlsruhe Germany, shown in the middle panels of Fig. 2. Here,
the correlation coefficient is increased with low pass filtering to 0.53 (5yr, left panel)
and 0.72 (9yr, right panel). Unsatisfactory results are found near Rome, Italy (Fig. 2
bottom panels). The correlation coefficient is negligible small at about 0.1, thus decadal
predictive skill is absent. To interpret the observed correlations, we will calculate, as an
example, the hit rate of a binary prediction of a decade being above or below the av-
erage (trend) in the sense of a categorical forecast. The hit rate (shown in Table 2) is
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given by the fraction of correctly forecasted decades (above/below zero) and the total
number of decades in percent. It has to be noted that for the here used anomalies a hit
rate of 50 % is expected simply by guessing. A detailed view on the whole of Europe
will be discussed in the following.

4.1 Summer temperature
411 Bias and trend

The long term means from 1961 to 2010 of average summer temperatures are shown
for E-OBS in Fig. 3 in the top left panel. The temperature averages for the CCLM
ensemble mean are shown in the top middle panel and the difference CCLM minus
E-OBS is shown in the top right panel of Fig. 3. The three bottom panels of Fig. 3 show
the long term trends (1961-2010) of E-OBS and CCLM (ensemble mean) summer
temperatures as well as the trend differences (bottom right panel).

With respect to the pre-processing, our analysis of the decadal predictability is inde-
pendent of the long term means and trends. However, for completeness we will briefly
discuss the long term performance of the CCLM decadal hindcasts without judging
too much on the quality of reproducing long term means and trends, which would be
the subject to another analysis. Regarding the summer temperature means (top row of
Fig. 3) of E-OBS and CCLM we see that the patterns agree well. A known cold bias
of -2 to 0°C exists (Berg et al., 2013), which is quite homogeneously distributed yet
slightly larger in the alpine region. The grainy structure seen in mountainous regions,
especially the Alps, the Pyrenees, and the northern coast of Norway, can be attributed
to orographic differences between E-OBS and CCLM. Thus, for a thorough analysis
of the bias a simple orography correction applied to CCLM would remove the grainy
structures.

The CCLM long term trends (bottom middle panel of Fig. 3) are very weak, however
the general gradient from smaller trends in northern Europe to larger trends in southern
Europe is captured. The bottom right panel of Fig. 3 shows a few very localized spots of
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large differences, e.g. in the region Auvergne (France), Romania and Moldavia, which
are most probably artefacts in the E-OBS data.

4.1.2 Skill

Figure 4 shows the results of the correlation coefficient for Europe. The left panel of
Fig. 4 presents the correlation for the original unfiltered anomalies of temperature sum-
mer half-year means. Most of the regions show a positive correlation with a pronounced
maximum at the Iberian Peninsula and eastern Europe of up to 0.4. Significant corre-
lation (cf. Eq. 2) is indicated by stippling, which means that the probability (p value) of
obtaining such large correlations, assuming that the null hypothesis of zero correlation
is true, is < 0.05.

However, also regions of very low or even negative correlations are found, e.g. in Italy,
Southwest France, Sweden, Norway and the Balkan region. To extract the predictable
signal from the high frequency year to year fluctuations of the anomalies we have ap-
plied centered moving average filters of window size 5 and 9 yr to the CCLM ensemble
mean and the E-OBS observations as described in Sect. 3. The application of the mov-
ing average low pass filter increases the correlation coefficient, which is shown in Fig. 4,
but simultaneously smears out the temporal resolution. That means that statements on
predictability can only be made on the basis of larger temporal periods. Nevertheless,
the weak correlation of the unfiltered time series indicates clearly that the claim on pre-
dicting single temperature anomaly summers is too ambitious. Thus averaging seems
to make sense. The middle panel of Fig. 4 shows the correlation coefficient for the 5yr
moving average filter and large parts of the former negative correlated regions become
positively correlated (France, Sweden) and additionally significant (stippling). However,
the correlation coefficient at the Iberian peninsula is only slightly increased and the sig-
nificance is lost due to the strong autocorrelations introduced by filtering. That means,
filtering is not always advantageous. Further, the results in parts of Italy, a small area in
Sweden and the Balkan have not been improved. Increasing the moving average filter
window size to 9yr (right panel of Fig. 4) increases also the correlation coefficient and
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the significance in most European regions. However, there is no clear improvement at
the Iberian Peninsula, Italy and the Balkan. Thus, filtering can crucially improve the pre-
dictability like e.g. in Poland and eastern Europe, but it can also be effectless or even
decrease the predictability. This can be understood for instance if there is such a weak
potentially predictable signal that it cannot be extracted from the high frequency noise.
In such a case filtering is effectless or could even yield a worse situation.

4.1.3 Fidelity

As described in Sect. 3 the fidelity is measured using the ,1/2 test and a p value, which
gives the probability of accepting the null hypothesis of equal model and observational
distributions, is plotted in Fig. 5. As can be seen from Fig. 5 the averaged p values
are mostly large, which is an indication to accept the null hypothesis of equal model
and observational distributions. The application of moving average filter improves the
situation and the p values are getting larger. Thus, it can be concluded that the summer
CCLM and E-OBS climatological distributions are not significantly different.

4.1.4 Reliability

Figure 6 shows the reliability results for Europe for the original unfiltered data in the left
panel. Over most regions, the reliability is very satisfactory and the ensemble spread
covers about 80% to 120 % of the rmse, i.e. —0.2 < REL < 0.2 (a calibrated ensemble
would yield REL = 0). It is interesting to see that the British Isles, Scandinavia and the
northern part of Europe, along the coast yield slightly overconfident reliability, whereas
the rest of Europe show more underconfident results. This observation is most proba-
bly connected to the maritime influence in North Europe. Slightly more underconfident
results have been observed in eastern Europe. The application of moving average filter
do not improve the situation, and the reliability covers the range of —0.4 < REL < 0.4 for
the 9yr filter. Further a change in the observed reliability pattern has been observed
due to the filtering. It is interesting to see that for the 5 and 9yr filters northern and
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middle Europe become underconfident, whereas southern Europe becomes overcon-
fident. Remembering the correlation results (Fig. 4), which have been improved by
filtering, we observed the contrary here, i.e. a worsening of the reliability utilising the
moving average filters. Thus, with respect to the effect of the moving average filter,
the correlation and reliability seem to act in opposite directions. Finally if one thinks
about a real future forecast, a decision in the form of a compromise cannot be avoided,
i.e. the compromise between good correlation and good reliability.

4.2 Winter temperature

Similar to the good results found for summer temperature, decadal variability can be
forecasted well for winter temperatures for a large part of Europe. The Fig. S1 shows
the results of the analysis of the decadal CCLM winter temperature ensemble vs. E-
OBS observations. The bias looks similar to the summer temperature bias (Fig. 3) and
ranges from -2 to 0°C, which is known (Berg et al., 2013). The observed long term
trend patterns of CCLM and E-OBS agree well with large positive trends in northern
Europe and weak positive trends in southern Europe. However, the CCLM long term
trends are too weak and a difference in the order of -2 to 0 K(50yr)_1 has been found.

The correlation coefficient of the decadal variability can be improved significantly by
filtering out the year to year fluctuations. Without filtering the correlation coefficient is
very small, about —-0.2 to 0.2. The moving average filter of window size 5yr reveals an
increase in the correlation coefficient for a large part of Europe to up to 0.6. Applying
the 9 yr moving average filters further increases the correlation coefficient especially in
south east Europe. These correlations are significant in a statistical sense (stippling).
However, the correlation coefficient has not been improved at the Iberian Peninsula,
Scandinavia, the Baltic states, Belarus and Ukraine. The pattern of the increase of p
due to the filtering covers Europe like a large swath from northwest to southeast. This
could be a hint to the causes of the decadal predictability observed here, arising from
a north-atlantic large scale low frequency variability.
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The fidelity of CCLM winter temperature anomaly ensemble members and E-OBS
indicates no significant differences between the distributions. Filtering improves the
situation and very high p values have been observed. Thus the null hypothesis of equal
distributions between model and observations has to be accepted.

The reliability shows quite reasonable results and lies inbetween -0.2 to 0.2. The
northern part of Europe is slightly overconfident, i.e. the ensemble spread is too small,
whereas the southern part shows slightly underconfident covering of the uncertainty.
It seems that the reliability of winter temperatures is not so susceptible to the filtering
and changes only very slightly.

4.3 Summer precipitation

Forecasting precipitation is more challenging than forecasting temperature, because
of the stochastic dynamics of rain. Precipitation events can locally be very different,
extreme, intermittent and stochastic. Therefore regarding decadal forecasts, it is ex-
pected that the influence of large scale processes is weaker on precipitation than on
temperature. Obviously, internal dynamics dominate short term precipitation, but as for
the decadal analysis of temperature, we will assess the predictive skill and reliability
of precipitation on summer and winter sums and filtered time series to reduce the in-
fluence of short term fluctuations. Figure S2 in the Supplement shows the results of
the decadal variability assessment on summer precipitation. The wet bias mostly in the
order of 60 mm (more than 200mm in the alpine region) is large, but a known issue of
CCLM (Berg et al., 2013). However, the wet bias is unproblematic for our approach,
because it is removed for subsequent analyses. The precipitation trends are patchy for
E-OBS and the significance of these trends is questionable. However, the trend pat-
terns of CCLM and E-OBS largely agree, showing positive trends in northern Europe
and negative trends in the southern parts.

The correlation shows a patchy structure, which is expected for precipitation. For the
unfiltered time series, positive, yet non-significant correlations are found in Scandinavia
and eastern Europe. However, about 7 significant spots can be seen in eastern Europe
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and one significant spot in Scandinavia. The causes of good correlation at these spots
are not clear. Significant negative correlations are found in south east France. Filter-
ing improves the situation slightly in most regions. The effect is stronger e.g. in Great
Britain and Norway. However the correlations remain weak and decadal forecasts for
precipitation should be taken with care.

The distributions of summer precipitation of CCLM and E-OBS are not significantly
different, as indicated by large p values in the fidelity plots.

Regarding the reliability, the CCLM ensemble is underconfident in most cases. How-
ever, the reliability is still reasonable around —-0.2. This effect of underconfidence in-
creases with low pass filtering.

4.4 Winter precipitation

Similar to summer precipitation, a known winter precipitation (Fig. S3) wet bias exists
(Berg et al., 2013). This bias is stronger in south Europe than in the northern parts,
except Norway. Consistent with the above observations, the CCLM long term trends
are too weak. However the patterns agree with E-OBS with negative trends in southern
Europe and positive trends in northern Europe.

The correlation coefficient is small for all regions. A large part of Europe shows small
negative correlations for the unfiltered data. Only on the Iberian Peninsula and in south
east Europe larger areas of positive correlations are retrieved. With low pass filtering,
the positive correlations in the south eastern parts of Europe are increased, but also
negative trends e.g. in northern Germany are amplified. Thus, it is questionable if low
pass filtering is an advantage here.

Finally, the reliability is mostly underconfident as in the case for summer precipitation,
however reasonable small (~ —0.2), except some very localised spots.
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5 Summary

In this study we have assessed the predictive skill of decadal variability of summer and
winter temperatures and precipitation in Europe. For this purpose we generated a 10
member ensemble of climate simulations (1961-2010) with the regional model CCLM
at 25km resolution, driven by decadal predictions from the global model MPI-ESM.
These model runs have been initialised every 10 yr from 1961 to 2001.

A successful prediction of decadal variability could be very useful for society and
all fields of human activity. It is also a scientific challenge to investigate the potential
of decadal predictions, hence the initiation of the MiKlip program, which aims at the
development of a decadal prediction system.

Decadal potential predictability has been found for summer temperatures in most
regions in Europe. Here, low pass filtering is beneficial and increases the predictability
at the expense of the temporal resolution of the forecast. On decadal time scales, for
the 9 yr moving average filter, we found significant correlations between CCLM temper-
atures and observations above 0.6 in northern Europe and up to 0.6 in the southern
part (non-significant).

The fidelity of individual summer temperatures ensemble members forecasted by the
CCLM and E-OBS observations indicates no significant differences between their cli-
matological distributions. In contrast, large p values have been retrieved by the ,{/2 test,
which definitely supports the acceptance of the null hypothesis of equal distributions.
This effect is enhanced for most regions in Europe by low pass filtering.

The reliability of summer temperatures is reasonable (-0.2 < REL < 0.2) and the en-
semble spread covers 80 % of the rmse between ensemble mean and observations in
the case of overconfidence. In the case of underconfidence the ensemble spread is
only slightly too large (20 % larger than the rmse). However, low pass filtering worses
the reliability to about —0.6 < REL < 0.6 with positive values (overconfident) in southern
Europe and negative values (underconfident) in northern Europe. Thus, a kind of con-
flict emerges regarding the low pass filtering between the correlation coefficient and the
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reliability. The correlation coefficient can be increased by low pass filtering, which on
the other hand degrades the reliability. Therefore any pre-processing of the data, such
as filtering, depends on the application and intention of the forecast. In the sense of cat-
egorical forecasts, e.g. below/above the mean, averaging over whole decades (which
is essentially low pass filtering) is the basis of such an analysis. If we were interested
in the distribution of extremes, low pass filtering would be the wrong pre-processing,
because it would smear out any extreme values.

The assessment of decadal variability of winter temperature reveals that a predictive
skill of the regional ensemble exists here as well. Low pass filtering increases the
correlation coefficient up to 0.5-0.7, which shows an interesting pattern like a large
swath over Europe from the northwest to the southeast except for the Iberian Peninsula
and Scandinavia. The reason for such a pattern could be e.g. a large scale atmospheric
teleconnection.

The prediction of total precipitation is generally a challenge and much harder than
temperature forecasts. As a starting point we followed the approach applied to temper-
ature and analysed summer and winter precipitation sums. Although precipitation is far
away from being normally distributed on short time scales, by virtue of the central limit
theorem, sums over half a year are nearly normally distributed. Thus, our methods can
be applied to the precipitation sums. Nevertheless, the distributions of the correlation
coefficients for summer and winter precipitation are more patchy than for temperature.
Low pass filtering increases the correlation coefficient locally up to 0.6 and generally
better results are found in eastern Europe and the Iberian Peninsula than in the rest of
Europe. However, most of the p’s are non-significant; thus decadal predictions of total
precipitation sums should be regarded carefully.

As regards fidelity, no differences exist between model and observational climatolog-
ical distributions for both summer and winter.

Over most European regions the ensemble is underconfident, i.e. the ensemble
spread is too large. Furthermore, the patchiness of the observed patterns hampers
the understanding and interpretation of the results.
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6 Conclusions and outlook

Finally, we can conclude that our analysis of the predictability of decadal variability on
the regional scale is a large step to a better understanding of decadal climate pro-
cesses. Several aspects of the feasability and prospects of regional decadal prediction
have been investigated, but various questions still remain open. This includes e.g. the
finding that the predictive skill of decadal precipitation anomalies is quite limited. This
opens up the perspective and challenge to find better ways of describing the model per-
formance on decadal precipitation in the sense of e.g. looking at finer temporal/spatial
scales, other metrics or quantities like rain duration or drought indices and extreme
values.

To grasp the meaning of the good correlations of CCLM and E-OBS temperatures
it could e.g. be helpful to forecast special events like temperature above/below the
mean. For our next work it is planned to assess the observed decadal predictability
from the viewpoint of an end user. Figure 7 for instance shows the hit rate of forecasting
a decade being rather a warm or cold anomaly, i.e. a binary decision of above/below the
mean (trend). That means, for each grid pixel we simply counted the decades for which
both the ensemble mean and the observational mean lie above/below zero. From the
viewpoint of an enduser several other presentations of the forecast quality are possible,
e.g. a finer partition of the forecasts into terciles or metrics based on contingency tables
such as the hit rate as shown above, or scores like the Heidke skill score a.o.

Yet another question remains open, which is the potential added value of the down-
scaling or at least the maintenance of the forecast skill from the large scale to the
regional scale. Similar to our study on decadal variability, the crucial points to investi-
gate the added value are to choose the appropriate temporal and spatial scales of the
data as well as the suitable pre-processing and metrics to tackle the problem.
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Supplementary material related to this article is available online at
http://www.geosci-model-dev-discuss.net/6/5711/2013/
gmdd-6-5711-2013-supplement.zip.
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Table 1. Number of years for the moving average filter. Example for the decade 1970 and the

5yr moving average filter. Details see text.

Averaged point

Basis for averaging Number of years

1971
1972
1973
1974
1975
1976
1977
1978
1979
1980

1971-1973
1971-1974
1971-1975
1972-1976
1973-1977
1974-1978
1975-1979
1976-1980
1977-1980
1978-1980

WOl AW
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Table 2. Hit rate of a binary forecast. Details see text.
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Fig. 1. Summer half-year observational (E-OBS) temperature anomalies at a single grid point
near £48dz in Poland shown as a thin line. The long term mean and trend have been removed by
a linear regression. Additionally a moving average filter of 9yr is applied to extract the potential

1971 1981 1991 2001 2011
time

predictable decadal signal depicted as a thick line.
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Fig. 2. Summer half-year temperatures of E-OBS (lilac) and CCLM (orange) at three different
sites in Europe. The original data are shown as thin lines, whereas the 5 (left panels) and
9 (right panels) year moving average filters are plotted as thick lines. The grey shaded area
depicts the CCLM ensemble spread, i.e. the standard deviation over the ensemble. Additionally,
because of the decadal initialization, the decades have been separated from each other for
visual inspection. Top: Time series near £6dz (Poland), high correlations have been observed
of 0.69 and 0.84 for the 5 and 9 yr filters. Middle: E-OBS and CCLM at Karlsruhe (Germany)
medium correlation coefficients have been estimated here of 0.53 and 0.72 for the two filters.
Bottom: No decadal predictability was found near Rome (ltaly) with correlation coefficients in
the order of only 0.1 even for the filtered time series.
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Bias(CLM E-OBS) T_2M 1961-2010 summer half-year mean [°C]
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Fig. 3. Top: E-OBS and CCLM (ensemble mean) summer temperatures from 1961-2010 to-
gether with the bias. The patterns agree well, however a cold bias in the order of -2 to 0°C
exists, which however is known (Berg et al., 2013). Bottom: E-OBS and CCLM linear trends
(1961-2010). The CCLM trends are generally too weak and with respect to E-OBS much
smoother distributed. However, in a wide sense, the patterns agree with stronger trends in
the south and weaker trends in northern Europe.
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Fig. 4. Here, the summer half-year temperature correlation between E-OBS anomalies and the
CCLM ensemble mean anomalies is shown. Significant correlation coefficients are represented
by stippling. Left: correlation coefficients for the original unfiltered data are shown. Middle: The
application of a 5 yr moving average filter is beneficial and increases the correlation coefficient.
Right: A 9yr moving average filter further increases the correlation in northern Europe, but is
more or less ineffective in southern Europe.
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Fig. 5. To depict the fidelity, i.e. the agreement between model and observational climatological
distributions, measured here with a ,1'2 test, we plotted the derived p values on the European
maps. A p value near zero indicates differing distributions, whilst a p value near unity supports
the hypothesis of equal distributions. Shown are the results for the original data (left) and for
the 5 and 9 yr filtered data (middle, right).
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Fig. 6. The reliability of the summer temperature CCLM ensemble is a measure how well the en-
semble spread covers the model error (rmse). A perfect reliability is zero, an overconfident en-
semble has positive reliability and an underconfident ensemble has negative reliability. Shown
are the results for the original data (left) and for the 5 and 9 yr filtered data (middle, right).
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Fig. 7. Hit rate of decadal binary forecasts for summer temperature. Details see text.

5745

Jaded uoissnosiq

| Jadeq uoissnosiqg | Jaded uoissnasiq

Jaded uoissnosiq

GMDD
6, 5711-5745, 2013

Decadal forecast

S. Mieruch et al.

(8
K ()


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/5711/2013/gmdd-6-5711-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/5711/2013/gmdd-6-5711-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

