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Abstract

In the past decade, certain methods for empirical rainfall-runoff modeling have seen ex-
tensive development and been proposed as a useful complement to physical hydrologic
models, particularly in basins where data to support process-based models is limited.
However, the majority of research has focused on a small number of methods, such
as artificial neural networks, despite the development of multiple other approaches for
non-parametric regression in recent years. Furthermore, this work has generally eval-
uated model performance based on predictive accuracy alone, while not considering
broader objectives such as model interpretability and uncertainty that are important if
such methods are to be used for planning and management decisions. In this paper, we
use multiple regression and machine-learning approaches to simulate monthly stream-
flow in five highly-seasonal rivers in the highlands of Ethiopia and compare their perfor-
mance in terms of predictive accuracy, error structure and bias, model interpretability,
and uncertainty when faced with extreme climate conditions. While the relative pre-
dictive performance of models differed across basins, data-driven approaches were
able to achieve reduced errors when compared to physical models developed for the
region. Methods such as random forests and generalized additive models may have ad-
vantages in terms of visualization and interpretation of model structure, which can be
useful in providing insights into physical watershed function. However, the uncertainty
associated with model predictions under climate change should be carefully evaluated,
since certain models (especially generalized additive models and multivariate adaptive
regression splines) became highly variable when faced with high temperatures.

1 Introduction

Hydrologists and water managers have made use of observed relationships between
rainfall and runoff to predict streamflow ever since the creation of the rational method
in the 19th century (Beven, 2011). However, the development of increasingly so-
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phisticated machine learning techniques, combined with rapid increases in computa-
tional ability, has prompted extensive research into advanced methods for data-driven
streamflow prediction in the past decade. Artificial neural networks (ANNSs), regres-
sion trees, and genetic algorithms have been shown to be powerful tools for predictive
modeling and exploratory data analysis, particularly in systems that exhibit complex,
non-linear behavior (Solomatine and Ostfield, 2008; Abrahard and See, 2007). While
distributed physical models that accurately represent hydrologic processes can still
be considered the gold standard for rainfall runoff modeling, empirical models can be
a useful tool in contexts where there is limited data on physical watershed processes
but long time-series of precipitation and streamflow (lorgulescu and Beven, 2004).
While many criticize these approaches as “black boxes” with no relationship to un-
derlying physical processes (See et al., 2007), a number of studies have demonstrated
how empirical approaches can be used to gain insights about physical system func-
tion (e.g., Han et al., 2007; Galelli and Castelletti, 2013). Additionally, improvements in
interpretation and visualization methods can make complex models more easily inter-
pretable (Sudheer and Jain, 2004; Jain et al., 2004). Finally, data-driven models can
be useful in identifying situations where observed data disagree with what would be
predicted based on conceptual models, and thus identify assumptions regarding runoff
generation processes that may be incorrect (Beven, 2011).

While there have been some applications of alternative machine learning methods,
such as support vector machines (Asefa et al., 2006; Lin et al., 2006) and regression-
tree based approaches (lorgulescu and Beven, 2004; Galelli and Castelletti, 2013) for
streamflow simulation, the vast majority of research has focused on artificial neural
networks (Solomatine and Ostfield, 2008). While they have demonstrated impressive
predictive accuracy in a number of different contexts, excessive parameterization of
ANNSs can result in overfit models that are not generalizable to unseen data (lorgulescu
and Beven, 2004; Gaume and Gosset, 2003). This can lead to complex models that
only result in modest improvements (or no improvements at all) over much simpler ap-
proaches (Gaume and Gosset, 2003; Han et al., 2007). Even outside of a hydrology
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context, it has been argued that ANNs are better suited for problems aimed at predic-
tion without any need for model interpretation, rather than those where understanding
the process generating predictions and the role of input variables is important (Hastie
et al., 2009). Given the importance that this interpretation plays in understanding the
contexts in which a hydrologic model is appropriate and reliable, the strong opinions
surrounding the use of ANNSs for water resource management are perhaps not surpris-
ing.

While a number of comparison studies exist that apply multiple empirical models to
a given problem, finding generalizable insights from these studies is hindered because
of the limited number of models and datasets evaluated. Perhaps the most compre-
hensive comparison to date is that of Elshorbagy et al. (2010a, b), who compared six
methods for data-driven modeling of daily discharge in the Ourthe River in Belgium.
This work found that linear models were able to perform comparably to much more
complex methods when the data content of the models were limited, or when system
input—output behavior was close to linear. However, other studies have demonstrated
the value of using more complex approaches when modeling more complex rainfall—
runoff behavior (e.g., Abrahart and See, 2007; Asefa et al., 2006). The differing results
obtained across these studies indicate that no single method is likely to be suitable
for all basins, timescales, or applications. However, it is important to recognize that
predictive accuracy alone is not necessarily sufficient justification for applying a model
to a given problem. Models should not only be accurate, but also be fit-for-purpose
(Beven, 2011; Van Griensven et al., 2012). For instance, accurate representation of
low return period flows is more important in a flood forecasting model than one aimed
at predicting average amounts of water available for withdrawal and human consump-
tion. Similarly, the ability to provide insights into physical watershed function may be
more important in basins where land-use change could alter the hydrologic regime,
compared to a basin that is heavily urbanized and expected to remain so. This is par-
ticularly true for data-driven models; as pointed out by Solomatine and Ostfield (2008),
there is a need for additional research on making models more understandable and
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useful for water managers. More comprehensive consideration of model strengths and
limitations should be standard practice in model development and selection, rather than
simply evaluating global error metrics.

In this work, we compare six methods for empirical streamflow prediction (linear
models, generalized additive models, multivariate adaptive regression splines, random
forests, M5 model trees and ANNSs) in their ability to predict monthly streamflow in
five rivers in the Lake Tana basin in Ethiopia. This study region was selected to pro-
vide a counterpart to previous comparative studies that have largely focused on rivers
in temperate regions. Furthermore, physically-based hydrological process models are
a challenge in these basins due to data limitations — soil and vegetation parameters are
poorly characterized and high frequency, spatially-distributed precipitation estimates
are highly uncertain —and complex hydrodynamic processes, including lake backwater
effects, that are neglected by most watershed models. There are, however, relatively
long time series of streamflow available, and estimates of historical precipitation and
temperature are available at a monthly timescale. These data, combined with informa-
tion on relevant landscape change, can be leveraged to create reasonably accurate
empirical models. Models are compared not only in terms of their predictive accuracy,
but also in terms of model error structure and the implications that this structure may
have for water resource applications. Additionally, we evaluate the methods by which
model structure and predictor variable influence can be evaluated to gain insights into
physical system function for each model type. Finally, we assess the suitability of using
different model types for climate change impact assessment by comparing model un-
certainty in projections made for increasingly extreme climate conditions. The overall
objective of this research is not to identify a single “best” model, but rather to highlight
some of the strengths and limitations of different approaches, as well as demonstrate
important issues that should be kept in mind for model comparisons in the future.
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2 Methods
2.1 Study area

Lake Tana is located at an elevation of approximately 1800 m in the highlands of north-
west Ethiopia (Fig. 1). The catchment draining to the lake encompasses approximately
12000km?, and the four main tributaries providing water to the lake are the Gilgel
Abbay (including its tributary, the Koga River), Ribb, Gumara, and Megech Rivers. Col-
lectively, these rivers account for 93 % of the inflow to the lake (Alemayehu et al., 2010).
Ninety percent of rainfall in the basin occurs during the wet season from May until Oc-
tober, and there is significant interannual variability in precipitation with annual rainfall
levels ranging from below 1000 mm to over 1800 mm (Achenef et al., 2013). Population
growth and expansion of agricultural and pastoral land use in the region has resulted
in substantial deforestation and land degradation, with agricultural, pastoral and set-
tled land cover comprising over 70 % of the basin’s surface area (Rientjes et al., 2011;
Garede and Minale, 2014; Gebrehiwot et al., 2010). There is some evidence that this
has impacted the hydrology of the rivers draining into the lake (Gebrehiwot et al., 2010).
A summary of basin characteristics for the evaluation period of 1960-2004 is presented
in Table 1.

Approximately 2.6 million people live in the basin, and are largely settled in rural
areas and reliant on rainfed subsistence agriculture. This makes the region quite vul-
nerable to climate variability and change, and a number of water resources infrastruc-
ture projects are planned to better manage this vulnerability and support economic
development (Alemayehu, 2010). To better understand the potential implications of this
development, extensive effort has been put towards developing rainfall-runoff models
for the Lake Tana basin, as well as other areas of the Ethiopian highlands with similar
characteristics (van Griensven et al., 2012). Many of these studies rely on Soil and Wa-
ter Assessment Tool (SWAT) models, although there are some that use water balance
approaches (Van Griensven et al., 2012). While these models have in some cases
demonstrated reasonably high accuracy, previous evaluations were largely based on
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Nash—Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970) which can be a flawed perfor-
mance metric in highly seasonal watersheds (Schaefli and Gupta, 2007; Legates and
McCabe, 1999). More importantly, the limited data available for physical parameteriza-
tion of these models required a heavy reliance on model calibration, which sometimes
resulted in parameterization schemes that are inconsistent with physical understanding
of the region’s hydrology (Steenhuis et al., 2009; van Griensven et al., 2012). Further-
more, a number of studies relied on empirical relationships such as curve numbers and
the Hargreaves equation that were developed for temperate regions (e.g., Mekonnen
et al., 2009; Setegne et al., 2009). While these limitations are likely to introduce con-
siderable uncertainty into model projections, particularly in situations where climatic or
environmental conditions differ from those experienced in the calibration period, few
studies include any sort of uncertainty analysis in model predictions. Empirical mod-
els could provide a useful complement to physical models developed for the region by
providing insights into physical system function and allowing for more comprehensive
uncertainty analysis.

2.2 Model development

Models were developed using monthly streamflow, climate, and land cover data for the
period from 1961 to 2004. In each of the five major rivers in the basin, we developed
empirical models that estimated monthly streamflow as a function of climate conditions
and agricultural land cover in each basin. Monthly streamflow data was taken from his-
toric stream gauge records for each basin, as reported in feasibility studies developed
for proposed irrigation projects (Alemayehu, 2010). Historic data for monthly daily aver-
age temperature, monthly total precipitation, and monthly wet days in each river basin
were derived from the University of East Anglia Climate Research Unit (CRU) TS3.10
gridded meterological fields (Harris et al., 2014), which are based on meteorological
station observations. Historic estimates of rainfall intensity were also calculated by di-
viding monthly total precipitation by CRU TS3.10 records of the number of wet days in
that month. However, this data was found to be highly correlated with monthly precipi-
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tation and did not result in significant improvements to the predictive accuracy of tested
models, and was thus not included in the final model formulations. Finally, to account for
historic increases in agricultural and pastoral land cover that have occurred in the basin,
the percentage of land cover used for any crop or grazing was estimated from historic
land cover analyses described by Rientjes et al. (2011), Gebrehiwot et al. (2010), and
Garede and Minale (2014). These studies used historic aerial photos and satellite im-
ages to estimate land cover changes in the Ribb, Gilgel Abbay, and Koga basins from
the periods of 1957 to 2011. The percentage of agricultural land cover was interpo-
lated for years when data wasn’t available, and the value of agricultural land cover
in the two basins without data was assumed to be equal to average agricultural land
cover in the basins with data. While this approach is prone to errors that could stem
from differing rates of land use change through time and between basins, it does pro-
vide a mechanism for capturing the long-term trend of expanding agricultural land cover
that has been observed throughout the Ethiopian highlands when detailed land-cover
data is unavailable. Including this data improved out-of-sample predictive accuracy of
the models, further suggesting that it was a valuable addition.

Two general formulations for the empirical models were evaluated. The first (referred
to below as the standard model formulation) was

109(Qp 1) = F(Ppt:Po -1, Pot-2:Tots Tot—1:Tpt-2:AQLCp 1) + Ep 1 (1)

where Q, ; is the monthly streamflow in river b at time period ¢, P, , and 7, ; are the
monthly total precipitation and average temperature in river basin b at time period ¢,
AgLC, ; is the total percentage of agricultural land cover in basin b at time ¢, and ¢,,;
is the model error. The subscripts { — 1 and f — 2 indicate lagged measurements from
one and two months prior, and were included to roughly account for storage times
longer than one month that could impact streamflow in each river. The function f rep-
resents a general function that differed between the specific models assessed and
is discussed in more detail below. The logarithm of monthly streamflow was used as
a response variable to keep model predictions positive and make the response variable
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better match a normal distribution, a requirement for the use of Gaussian linear models
and generalized additive models.

In the second formulation, streamflow and climate anomalies were used as the re-
sponse and predictor variables to better account for the highly seasonal nature of
streamflow and precipitation in the region. Streamflow anomalies were calculated for
each observation by subtracting the long-term average streamflow for that month (m)
from the observed value and dividing this number by the long-term standard deviation
of that month’s streamflow as in Eq. (2). This procedure was repeated for precipitation

and temperature, and these values were then used to fit models of the form described
in Eq. (3).
Qp:-Q
2[}] _ b,t b,m (2)
t SD(@p,m)
AN _ (pAN pAN pAN AN TAN TAN
Qo = P Pyt Pot—o Tot  Thot—1Tp 120 AQLCp) + 1t (3)

Seven different types of models were compared using each formulation in each basin:

1. A Gaussian linear regression model (GLM) using the basic stats package in the
R statistical computing software (R Development Core Team, 2014).

2. Gaussian generalized additive model (GAM): GAMs are a semi-parametric re-
gression approach where the response variable is estimated as the sum of
smoothing functions applied over predictor variables. These functions allow the
model to capture non-linear relationships between the predictor and response
variables without a priori assumptions about the form (e.g., quadratic, logarithmic)
of these functions, and are fit using penalized likelihood maximization to prevent
model overfitting (Hastie and Tibshirani, 1990). GAMs were fit using the mgcv
package in R (Wood, 2011).

3. Multivariate adaptive regression splines (MARS): MARS are a non-parametric re-
gression approach where the response variable is estimated as the sum of basis
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functions fit to recursively partitioned segments of the data (Friedman, 1991).
MARS models were fit using the earth package in R (Milborrow, 2015).

4. Artificial neural network (ANN): ANNs are a non-parametric regression approach
represented by a network of nodes and links that connects predictor variables to
the response variable. Each link in the network represents a function that maps
the input nodes into the output node (Ripley, 1996). ANN models were fit using
the nnet package in R (Venables and Ripley, 2013).

5. Random forest (RF): random forests are a rule-based, non-parametric regression
approach where the model prediction is created by averaging the predicted value
from multiple regression trees which are trained on separate bootstrapped resam-
ples of the data. Each tree is fit using a small, randomly selected subset of pre-
dictor variables, resulting in reduced correlation between trees (Breiman, 2001).
Random forest models were fit using the randomForest package in R (Liaw and
Wiener, 2002).

6. M5 model: M5 models are a rule-based, non-parametric regression approach that
fits a linear regression model to each terminal node of a regression tree (Quinlan,
1992). M5 models were fit using the Cubist package in R (Kuhn et al., 2014).

7. Climatology model: a climatology model that simply predicted each month’s
streamflow as equivalent to the long-term average streamflow for that month was
included for comparison purposes.

2.3 Model evaluation

When using non-parametric regression approaches, it is important to avoid overfitting

a model to a given dataset because this can result in large errors in out-of-sample

predictions (Hastie et al., 2009). To avoid model overfit, the caret package in R (Kuhn,

2015) was used to determine model parameters for the MARS, ANN, RF and M5 mod-

els. This package uses resampling to evaluate the effect that model parameters have
11092
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on the model’s predictive performance and chooses the set of parameters that mini-
mizes out-of-sample error (Kuhn, 2015). In this evaluation, 25 bootstrap resamples of
the training dataset were generated for each parameter value to be assessed. A model
was fit using each bootstrap sample and used to predict the remaining observations,
and the parameter values that minimized average RMSE across all resamples. Details
on the specific parameters evaluated for each model are presented in Table 1. While
the development of more complex structures are possible for some models, this pro-
cess can result in over-parameterization and poor model performance (Gaume and
Gosset, 2003; Han et al., 2007). Additionally, the use of a standardized parameteriza-
tion procedure allows for a more even comparison between different model types.

The predictive ability of each model was assessed using 50 random holdout cross-
validation samples. In each sample, a random selection of years were selected, and
observations from these years were removed (“held-out”) from the dataset. The size of
the held-out sample ranged from 1 to 9 years. Each model was then fit to the remain-
ing portion of the data, using the caret package described above to determine model
parameters for the MARS, ANN, RF and M5 models. These models were then used
to predict streamflow for the held-out portion of the data, and both the mean absolute
error (MAE) and NSE were calculated after transforming model predictions after back
to the original streamflow units. While NSE values are acknowledged to be a flawed
performance metric in highly seasonal watersheds (Schaefli and Gupta, 2007; Legates
and McCabe, 1999), this metric was included to provide a rough comparison of how
empirical model performance compared to the performance of physical models devel-
oped for the region. Mean MAE and NSE were calculated for each model across the
50 cross-validation samples and used to choose the model with the highest predic-
tive accuracy in each basin. This cross-validation procedure provides a mechanism for
evaluating how well a model will generalize to an unseen set of data while avoiding
some of the problems that can arise from the use of a single calibration and validation
dataset (Elshorbagy et al., 2010a; Han et al., 2007).

11093

Jladed uoissnosiq | Jadeq uoissnosiq | Jedeq uoissnosiq | Jaded uoissnosiqg

HESSD
12, 11083-11127, 2015

Empirical streamflow
simulation for water
resource
management

J. E. Shortridge et al.

: III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/11083/2015/hessd-12-11083-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/11083/2015/hessd-12-11083-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

As a rough point of comparison for the statistical models developed in this research,
we also evaluated discharge estimates derived from a process-based hydrological
model. The model used in this application is the Noah Land Surface Model version
3.2 (Noah LSM; Ek et al., 2003; Chen et al., 1996). Noah LSM was implemented for
offline simulations of the Lake Tana basin at a gridded spatial resolution of 5 km for the
period 1979-2010 using a time step of 30 min. Meteorological forcing was drawn from
the Princeton 50 year reanalysis dataset (Sheffield et al., 2006), downscaled to account
for Ethiopia’s steep terrain using MicroMet elevation correction equations (Liston and
Elder, 2006). The Princeton reanalysis was selected because it provides relatively high
resolution meteorological fields, including all variables required to run a water and en-
ergy balance LSM like Noah, for the period 1948—present. While higher resolution and
possibly higher quality datasets are available for recent years, this longer dataset was
utilized to compare the process-based model to statistical models developed for a long
historical period. Soil parameters for the Noah simulation were drawn from the FAO
global soil database, land use was defined according to the United States Geological
Survey (USGS) global 1 km land cover product, and vegetation fraction was derived
from MODerate Imaging Spectroradiometer (MODIS) imagery. Land cover was treated
as a static parameter over the full length of the simulation, as spatially complete esti-
mates of historical land use were not available at the required resolution and specificity.

The highest performing model in each basin based on MAE was retained for more
detailed evaluation of model error structure, covariate influence, and uncertainty in cli-
mate change sensitivity analysis. To generate a complete time-series of out-of-sample
model predictions for error analysis, the holdout cross validation procedure was re-
peated for the highest performing standard-formulation and anomaly-formulation mod-
els for each basin, but this time holding out a single year of observations in each iter-
ation. The predictions from this cross validation were used to evaluate the how model
error structure might impact model predictions used for water resource applications.
The influence of different predictor variables on model predictions was also assessed
for the highest performing model in each basin after being fit to the complete dataset.
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Each predictor variable was assessed using metrics for covariate importance and in-
fluence that are unique to that model type, demonstrating how models could be used
to gain physical insights about data-scarce regions and the mechanisms for generating
these insights for each type of model. Partial dependence plots (Hastie et al., 2009)
were also generated for each covariate for the highest performing model in each basin
to provide insights about how covariate influence compared across different basins and
model types.

Finally, two evaluations were conducted to assess uncertainty in model projections
of streamflow under increasingly extreme climate conditions to better understand the
implications of using different model formulations for climate change impact studies.
Model projections of streamflow in different climate conditions are likely to be accom-
panied by considerable uncertainty, particularly when climate conditions exceed those
experienced historically. To assess this uncertainty, the best performing model in each
basin was used to generate streamflow predictions for (1) changes in temperature from
0 to 5°C, (2) changes in precipitation from —30 to +30 %, (3) an increase in tempera-
ture to 5°C combined with a decrease in precipitation to —30 %, and (4) an increase in
temperature to 5°C combined with an increase in precipitation to +30 %. For each of
the four assessments, the models generated predictions for the 45 year historic climate
record adjusted for a given degree of climate change using the delta-change method
(Gleick, 1986), while holding agricultural land cover constant at 60 %. Model predic-
tions for the altered climate record were then used to calculate the average annual
streamflow in each river. These should not be interpreted as a prediction of actual cli-
mate change impacts, but rather a measurement of the sensitivity of streamflow in the
basin to different climate conditions. This process was repeated 100 times for models fit
on random bootstrap resamples of the historic dataset to generate uncertainty bounds
surrounding model predictions and evaluate how the uncertainty in these predictions
increased as climate conditions became more extreme.
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3 Results
3.1 Model accuracy and error structure

Table 2 shows the out-of-sample cross validation errors for each model assessed in
each basin. The random forest model had the lowest mean absolute error for the
standard-formulation model in four of the five basins, with the M5 model performing
best for the Koga basin. These models outperformed the Noah LSM simulations in
all basins assessed. The Noah LSM errors are for a single period of analysis and
thus don’t present an exact corollary to the cross validation performed for the empiri-
cal models. Nevertheless, the significant increases in errors associated with the Noah
LSM model demonstrates the difficulty associated with the use of process-based mod-
els in the region, particularly when relying on global datasets that may be unreliable
at the spatial and temporal resolutions required for physical modeling. Physical mod-
els developed for monthly streamflow prediction in other basins within the Ethiopian
highlands have reported NSE values ranging from 0.53 to 0.92 (van Griensven et al.,
2012), compared to values ranging from 0.71 to 0.87 for the random forest models
developed here. If this measure alone was used for model evaluation, these empirical
models would generally be classified as having good performance based on the guide-
lines suggested by Moraisi et al. (2007). However, the climatology model outperforms
the best standard formulation models in all basins except Megech, indicating that in
the majority of basins the errors from the fitted empirical models are higher than those
that result from simply using the long-term monthly average for each month’s predic-
tion. This demonstrates how high NSE values can be quite easy to obtain in seasonal
basins.

Evaluation of anomaly model errors indicates that the models using this formulation
achieve better predictive accuracy than those using the standard formulation, and are
able to outperform the climatology model based on both NSE and MAE in all basins.
However, the highest performing models in each basin varies more when the anomaly
formulation is used, with the GLM, GAM, random forest, and M5 models all minimizing
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MAE in different basins. In all basins except Koga, the highest performing model signif-
icantly outperformed the climatology model based on paired Wilcoxon rank-sum tests
(Bonferroni-corrected p value < 0.01).

Further exploration of model residuals indicates another important advantage of us-
ing the anomaly model formulation. In the standard model formulation, model residuals
appear to be non-random. Example autocorrelation plots are shown for the Gilgel Ab-
bay and Ribb Rivers in Fig. 2, and demonstrate that a positive autocorrelation exists at
the 12 month time lag. For brevity, only plots for two rivers are shown, although this au-
tocorrelation existed in the standard-formulation models for all basins except Megech
(Table 3). This autocorrelation occurs because the standard-formulation models con-
sistently underestimate wet-season streamflow while overestimating dry-season flows,
as is apparent in hydrographs of observed and predicted streamflow (Fig. 3). Because
wet-season flows contribute such a large portion of the total annual flow volume, this
results in regular underestimation of aggregate values such as mean annual flow (Ta-
ble 3). This autocorrelation is reduced in the anomaly-formulation models, meaning
that they are better able to capture the peak flow volumes experienced in the wet sea-
son and do not underestimate mean annual flow to the same degree that the standard
formulation models do.

3.2 Model structure and covariate influence

Evaluating the relationship between predictor covariates and streamflow response can
lend insight into the physical processes underlying runoff generation in each basin.
There are two components of this relationship that can be evaluated: how much each
covariate contributes to model accuracy (covariate importance), and the direction and
nature of the relationship between covariate values and model response (covariate
influence). In many machine-learning models, complete description of the all of the
mathematical relationships within the model (for instance, through description of each
tree comprising a random forest model) is infeasible, requiring the use of other mecha-
nisms for understanding covariate importance and influence. However, because each
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model type is structured in a different way, these mechanisms differ. This section first
describes the mechanisms available for obtaining insights about covariate influence in
each of the highest performing models. To provide a mechanism for comparing results
across different basins, each basin model is then assessed using the general approach
of partial dependence plots.

In the Gilgel Abbay and Koga basins, the highest performing model was a simple
linear regression model. These models can be evaluated by reviewing model coeffi-
cients and associated p values, as shown in Table 4. In a standard linear regression,
model coefficients can be interpreted as the mean change in the response variable that
results from a unit change in that covariate when all others are held constant. These
coefficients are for streamflow anomalies rather than raw values, making their imme-
diate interpretation less intuitive. For instance, in the Gilgel Abbay model an increase
of one standard deviation in precipitation results in an increase of 0.22 standard devi-
ations in flow. The associated p value for each coefficient evaluates a null hypothesis
that the true coefficient value is equal to zero given the other covariates in the model,
and thus has no influence on the response variable.

Evaluating model structure based on regression coefficients is appealing due to their
simplicity and familiarity. However, it is important to keep in mind that the above inter-
pretations rely on specific assumptions regarding model error distributions. Examina-
tion of fitted model residuals from both basins indicate that errors are autocorrelated
in the Koga basin and not normally distributed due to the presence of outliers in both
basins. Non-normality and autocorrelation both impact the t statistics and f statistics
used to test for the significance of model coefficients, and thus the p values for these
models are likely biased (Montgomery et al., 2012).

Interpretation of variable influence in GAMs is based on the estimated degrees of
freedom (EDF) a covariate’s smoothing function s(X;) uses within a model (Hastie and
Tibushini, 1986). An EDF value of one or below indicates a linear function relating the
response variable to that covariate, while values greater than one represent a non-
linear smoothing function. An EDF value of zero indicates that the covariate smoothing
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function is penalized to zero (meaning it has no influence on model predictions). In the
model for the Megech River, the terms for lagged temperature at one and two months,
as well as precipitation lagged at two months were all smoothed to zero. Of the remain-
ing covariates, lagged precipitation has a linear impacts on model response, while pre-
cipitation, temperature and land cover have non-linear impacts. Smoothing functions
can be plotted to gain more insight about these relationships (Fig. 4). The functions for
precipitation anomaly, lagged (one month) precipitation anomaly, and agricultural land
cover show a positive relationships with streamflow, while the function for temperature
anomaly predicts low streamflow at both high and low anomalies.

p values test the null hypothesis that a covariate’s smoothing function is equal to
zero, but rest on the assumption that model residuals are homoscedastic and indepen-
dent (Wood, 2012). Similar to the linear models, residuals in the Megech GAM model
appear to be both autocorrelated and heteroscedastic, meaning that a formal statistical
interpretation of this value may be inappropriate and that confidence bounds around
smoothing functions might be misleading.

The M5 cubist model fit for the Gumara basin is an ensemble of 100 small M5 regres-
sion trees. In each tree, the model splits observations based on logical rules related
to one or more covariates and fits a linear regression model to each set of observa-
tions. The final model prediction is the average across all of the individual trees. Using
this sort of ensemble approach can reduce model variance and improve accuracy if
the individual trees are unbiased, uncorrelated predictors (Breiman, 1996). This can
be useful in avoiding models that are overfit to the data, but can reduce model in-
terpretability since direct visualization of model structure becomes impractical as the
number of trees increases. However, the frequency with which individual covariates are
used as splitting points within trees and as regression coefficients can provide some
insights about covariate importance (Table 4; note that because multiple covariates
can be used for rules and linear models, these don’t necessarily add to 100 %). Model
rules were largely based on land cover, with some rules based on precipitation. These
two covariates were also used most frequently in linear regressions at model nodes,
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followed by temperature (current and 1 month lag) and 1 month lagged precipitation.
Notably, climate data from 2 months lagged was not used at all. While this can be use-
ful in identifying which covariates have the largest impact on model predictions, it does
not provide any information regarding the nature or direction of that influence.

Similarly, the random forest model developed for the Ribb basin is an ensemble of
regression trees in which the final model prediction is the average of the predictions
from each individual tree. However, random forests use standard regression trees that
do not incorporate linear regression models at terminal nodes. Variable importance
within the final model is measured by recording the increase in out-of-sample MSE
that results when a covariate is randomly permuted for each tree in the ensemble. This
increase in error is then averaged across all trees in the ensemble. In our model, the
largest increases in error resulted from permutation of land cover and temperature,
followed by 2 month lagged temperature and precipitation. Covariate influence can be
evaluated through the use of partial dependence plots, which measure the change in
model predictions that result from changing the value of one parameter while leaving
all other covariates constant (Hastie et al., 2009). Partial dependence plots indicate
that model predictions of streamflow are higher when the percent of agricultural land
cover is greater than approximately 75 %, when temperatures anomalies are low, and
when precipitation anomalies are high. However, it appears that the plot for lagged
temperature might be sensitive to outliers at high temperature anomalies as evidenced
by the large increase that occurs above an anomaly of +2, in a region where very few
data points are present.

Many of the measures used to evaluate covariate importance and influence are
model specific, making inter-basin and inter-model comparisons difficult. However, the
partial dependence plots used in the randomForest R package can be developed for
any model and provide a mechanism for comparing the influence that covariates have
in the different models and basins (Shortridge et al., 2015). Partial dependence plots
were generated for each basin’s best performing model and results are shown for cli-
matic variables in Fig. 6. As expected, models generally respond positively to increases
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in precipitation and negatively to increases in temperature, with the greatest influence
in the current month and decreasing influence at one and two months prior. The influ-
ence of the current month’s precipitation is linear in three of the five basins; while this
is constrained to the be the case in the Gilgel Abbay and Koga basins due to the use of
a linear model, the linear response in Gumara is not required from the M5 model struc-
ture. Interestingly, both Megech and Ribb demonstrate a linear response to negative
precipitation anomalies, but little response to positive anomalies. Streamflow response
to temperature is strongest in the Gumara basin; interestingly, this is the basin with the
smallest response to precipitation.

The partial dependence plots for the percentage of the basin classified as agricul-
tural land cover indicates a positive relationship between agricultural land cover and
streamflow in all basins except for the Gilgel Abbay (Fig. 7). This would be expected
if deforestation had contributed to a decrease in evapotranspiration in the contributing
watersheds. The exact nature of this response differs across the different rivers, with
the relatively minor responses in Koga and Ribb, and much stronger responses in the
Gumara and Megech basins. However, this plot also demonstrates some of the limita-
tions associated with different model structures. The plot for Gumara is highly erratic,
indicating that the M5 model might be overfit to the training dataset, despite the use of
model averaging to reduce model variance. Additionally, the GAM used in the Megech
basin was only trained on agricultural land cover values up to 77 %; while this model
may be accurately representing the impact of land cover changes within this range,
extrapolating this relationship to higher values leads to predictions that may not be
physically realistic.

3.3 Climate change sensitivity and uncertainty assessment

Figure 8 shows the results of the climate change sensitivity analysis for total flow from
all five tributaries, with dashed lines representing 95 % confidence intervals obtained
through 100 bootstrapped resamples of the data set. As would be expected, increas-
ing temperature independently of precipitation results in decreasing total flows while
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increasing precipitation results in higher flows. However, the uncertainty surrounding
temperature sensitivity increases at higher changes in temperature, while the uncer-
tainty surrounding precipitation sensitivity remains relatively constant, even at extreme
changes in annual precipitation. The bottom panels of the figure show the sensitivity of
total inflows to concurrent changes in temperature and precipitation. Unsurprisingly, de-
creasing precipitation combined with higher temperatures results in greater decreases
in total flow than when temperature and precipitation are varied independently. How-
ever, even if temperature increases are combined with higher precipitation, total flows
decline in the majority of bootstrap resamples.

The uncertainty surrounding temperature sensitivity is a key limitation to using data-
driven approaches for climate impact assessment. To better understand which models
and basins are contributing to this uncertainty, Fig. 9 shows how the coefficient of vari-
ation (the standard deviation of predictions from all bootstrap samples divided by the
mean of these predictions) varies as a function of temperature change in each basin.
From this figure, it is apparent that the Megech model is by far the largest contributor
to model uncertainty; however, it is not clear whether this contribution is due to model
structure (the GAM model used for the Megech River) or characteristics associated
with the basin itself. To investigate how different model structures contributed to this
uncertainty, the bootstrap resampling procedure was used to assess uncertainty in
streamflow predictions in the Gumara River from all model types. This basin was cho-
sen because all six models were able to outperform the climatology model, and thus
could be considered good choices for model selection based on predictive accuracy
alone. The results indicate that the increase in uncertainty is highest, and increases
non-linearly, in the GLM, GAM, and MARS models. Uncertainty increases more slowly
in the ANN and M5 models, and no noticeable increase in uncertainty is apparent in
the random forest model.
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4 Discussion

The objective of this study was not to identify the “best” approach for empirical rainfall-
runoff modeling, as this is likely to be highly specific to the basin and problem to which
a model is applied. However, we hope that the comparison conducted here can high-
light some of the strengths and limitations of different approaches, as well as demon-
strate some important issues that should be kept in mind for model comparisons in
the future. One important finding was the limitation with using NSE as an error metric.
Our results confirm previous studies that found that even uninformative models able
to capture basic seasonality are able to achieve high NSE values (Legates and Mc-
Cabe, 1999; Schaefli and Gupta, 2007), and provide further evidence indicating that
high NSE values should be considered a necessary but not sufficient requirement for
model usage in planning situations. In particular, understanding error structure can be
valuable in evaluating whether model biases might undermine the model’s suitability
for management activities. In our example, the autocorrelation present in the standard-
formulation models meant that these models were consistently underestimating wet-
season flows, resulting in low estimates of the total annual flow in the rivers. Since
multiple reservoirs are planned for construction on these rivers to support irrigation
activities, this bias could lead to poor estimates of how much water is available for agri-
cultural use in the short term (i.e., seasonal forecasting) and long-term (due to climate
change). Interestingly, difficulties in accurately capturing high flows has been observed
in physical hydrologic models for Ethiopia (e.g., Setegne et al., 2011; Mekonnen et al.,
2009) and more generally (e.g., Wilby, 2005). The implications of this limitation should
be carefully evaluated before using models for water resource planning or (more im-
portantly) flood risk evaluation.

Depending on the model type used, different mechanisms are available to evaluate
covariate importance and influence within the model. This evaluation can be useful in
both confirming that the model is replicating physically realistic relationships between
input and output variables, and in characterizing watershed behavior in a manner that
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could shed light on underlying physical processes. The easy manner in which covari-
ate relationships within the GAM and random forest models can be visualized using
a single command within their respective R packages is a strong advantage to these
approaches compared to methods such as M5 model trees and artificial neural net-
works. Of course, partial dependence plots can be developed for any model type (as
was done in this research), but code must be written by the user and thus requires
a higher degree of effort than is necessary for in-package functions. A downside to
most machine-learning models is that they do not support the statistical formalism in
assessing variable importance that is possible when linear models and GAMs are used.
However, this formalism often rests on assumptions regarding model residuals that are
unlikely to be met in many hydrologic models (Sorooshian and Dracup, 1980).

Within the Lake Tana basin, evaluation of covariate influence indicates that each
basin’s model is performing in a physically realistic manner, with a runoff increasing
with higher precipitation levels and decreasing with higher temperatures. The influence
of precipitation and temperature is greatest in the current month, and progressively de-
clines to a very small influence after two months. This suggests that long-term (multi-
month) storage does not significantly contribute to variability in flow volumes. One inter-
esting finding is the non-linear relationship between concurrent month precipitation and
runoff that exists in the Megech and Ribb basins, which suggests that above a certain
point increasing rainfall does not result in a commiserate increase in streamflow. Other
studies have noted the dampening effect that wetlands and floodplains have had on
river flows in the region (Dessie et al., 2014; Gebrehiwot et al., 2010); this phenomenon
could explain the non-linear relationship identified in this work. The clearly negative re-
lationship between temperature and runoff demonstrates the degree to which upstream
evapotranspiration impacts streamflow and suggests that evapotranspiration is largely
energy-limited, rather than water-limited. Increasing agricultural land-use appears to
be associated with higher runoff in all rivers except for Gilgel Abbay (where no clear re-
lationship between land cover and runoff was observed), and suggests that agricultural
expansion at the expense of forest cover has reduced the evaporative component of
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the water balance in these basins. Finally, the relative performance of different model
formulations themselves can also be informative. For instance, the improved perfor-
mance of the anomaly-formulation models indicates that the relationship between pre-
cipitation and runoff varies throughout the year and could point towards differences in
runoff-generating mechanisms in the wet and dry seasons that have been observed in
other case studies (Wilby, 2005).

One limitation with data-driven approaches for streamflow prediction is that the re-
lationships they model can only generate reliable predictions for conditions that are
comparable to those experienced historically. Using these models to generate predic-
tions for conditions that exceed historic variability is likely to introduce considerable
uncertainty into their projections. Our results indicate that uncertainty in projections
of streamflow under changing precipitation is relatively constant, whereas uncertainty
increases markedly in projections of streamflow under increasing temperature. This re-
sult is not surprising when one considers the basin’s climate, which is characterized
by highly variable rainfall but fairly consistent temperatures (Table 5). A temperature
increase of 3°C equates to almost two standard deviations beyond historic variability,
whereas a change in precipitation of 30 % is well within the range of conditions expe-
rienced historically. One would expect that in other climates (for example, temperate
watersheds with only minor changes in rainfall throughout the year), this relationship
could be reversed. Despite the uncertainty that exists in projections of streamflow un-
der changing temperature, total annual flow appears to be quite sensitive to increasing
temperatures. In fact, the decreases in streamflow due to increasing temperature ap-
pears likely to be more than enough to counteract any increases in streamflow resulting
from higher precipitation that is projected for the region in some global circulation mod-
els (GCMs). This is consistent with the work of Setegne et al. (2011), who used pro-
jections from multiple GCMs as input for a SWAT model developed for the region and
found that streamflow decreased in the majority of emissions scenarios and models,
even when precipitation increased. Unfortunately, this suggests that any hopes for a
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“windfall” of additional water to support agriculture and hydropower in the region under
climate change may be unfounded.

Repeating the climate change sensitivity experiment with multiple models fit to the
Gumara watershed indicated that the MARS, GAM, and linear models all result in the
largest increase in uncertainty at high temperatures. This indicates that when models
are fit to slightly different bootstrap resamples of the historic dataset, the projected
changes in streamflow at high temperature changes can be highly erratic. This is likely
due to the fact that extrapolating the relationships that are observed between historic
temperature and streamflow to higher temperatures can lead to very large changes
in streamflow. Fitting the models to bootstrap resamples of the data results in minor
changes to these relationships that can result in widely varying projections when the
models are used to predict streamflow at higher temperatures, particularly when these
relationships are nonlinear (as in the GAM). At the other end of the spectrum, the
random forest model exhibits almost no increase in uncertainty at high temperatures,
meaning that projections of streamflow at high temperatures are consistent across the
bootstrap resamples. This is likely the result of the random forest model structure. The
predicted value for each of a regression tree’s terminal nodes is the average of all
observations that meet the conditions described for that node. Thus, the model will not
predict values beyond those experienced historically, even if covariate values exceed
those contained within the historic dataset. Thus, this model is likely to underestimate
the change in streamflow that results from increasing temperatures.

5 Conclusions

In this work, we compared multiple methods for data-driven rainfall-runoff modeling in
their ability to simulate streamflow in five highly-seasonal watersheds in the Ethiopian
highlands. Despite the popularity of ANNs in research on streamflow prediction to date,
ANNSs were not found to be the most accurate model in any of the five basins evaluated.
Other methods, in particular GAMs and random forests, are able to capture non-linear
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relationships effectively and lend themselves to simpler visualization of model structure
and covariate influence, making it easier to gain insights on physical watershed func-
tions and confirm that the model is operating in a physically realistic manner. However,
it is important to carefully evaluate model structure and residuals, as these can con-
tribute to biased estimates of water availability and uncertainty in estimating sensitivity
to potential future changes in climate. In particular, autocorrelation in model residuals
can result in underestimation of aggregate metrics such as annual flow volumes, even
in models with high NSE performance. Uncertainty in GAM projections was found to
rapidly increase at high temperatures, whereas random forest projections may be un-
derestimating the impact of high temperatures on river flows. Thorough consideration
of this uncertainty and bias is important any time that models are used for water plan-
ning and management, but especially crucial when using such models to generate in-
sights about future streamflow levels. By considering multiple model formulations and
carefully assessing their predictive accuracy, error structure and uncertainties, these
methods can provide an empirical assessment of watershed behavior and generate
useful insights for water management and planning. This makes them a valuable com-
plement to physical models, particularly in data-scarce regions with little data available
for model parameterization, and warrants additional research into their development
and application.
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Table 2. Model parameters evaluated through cross validation.

Model type R package Parameters evaluated
GLM stats NA
GAM mgcv k = 3 (for each predictor)
MARS earth degree ={1, 2, 3}

nprune = {5, 10, 15, 20, 25}
ANN nnet size={1, 2, 4, 8, 20}

decay ={0.0, 0.1, 0.5, 1.0, 2.0}
RF randomForest mitry={2, 3, 4,5, 6, 7}

M5

Cubist

committees = {10, 50, 100}
neighbors = {0, 5, 9}
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Table 3. Cross validation errors for each assessed model.

Standard Formulation GLM GAM MARS RF M5 ANN Climatology Noah LSM
MAE Gilgel Abbay  30.78 1854 16.75 14.89 1511 17.22 10.42 28.11
Gumara 429 3.41 328 267 296 3.15 2.57 3.95
Koga 150 1.30 138 120 117 1.23 1.06 1.97
Megech 445 264 2.83 2.37 253 3.04 2.54 4.09
Ribb 469 2.98 3.50 2.97 327 3.17 2.81 7.01
NSE Gilgel Abbay  -0.02  0.81 0.83 087 086 0.84 0.95 0.59
Gumara 0.04 0.51 061 080 0.66 0.70 0.81 0.48
Koga 045 0.71 065 076 0.77 0.76 0.83 0.25
Megech -1.85 0.63 046 0.73 0.65 0.52 0.71 0.41
Ribb -1.14 0.71 0.39 0.71 0.31 0.67 0.73 -0.75
Anomaly Formulation GLM GAM MARS RF M5  ANN Climatology Noah LSM
MAE Gilgel Abbay 9.73 9.82 10.10 10.12 9.94 9.79 10.42 28.11
Gumara 2.22 2.25 2.43 2.23 2.16 2.22 2.57 3.95
Koga 1.03 1.06 1.08 1.09 105 1.05 1.06 1.97
Megech 249 2.48 263 266 269 250 2.54 4.09
Ribb 279 276 284 270 278 277 2.81 7.01
NSE Gilgel Abbay 0.95 0.95 095 095 095 095 0.95 0.59
Gumara 085 0.85 082 085 086 0.86 0.81 0.48
Koga 0.83 0.82 081 081 082 082 0.83 0.25
Megech 0.73 0.72 065 066 0.61 0.72 0.71 0.41
Ribb 0.73 0.75 072 075 0.73 0.74 0.73 -0.75
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Table 4. Residual autocorrelation factors at a 12 month lag for the standard formulation and
anomaly formulation models, and resulting mean annual observed and predicted flow.

Autocorrelation factors

Mean annual flow (MCM)

Standard Anomaly Observed Standard Anomaly
Gilgel 0.33 0.11 22925 20703 22958
Gumara 0.29 0.07 2870 2392 2734
Koga 0.04 0.10 1383 1333 1386
Megech 0.05 0.04 2035 1637 2028
Ribb 0.21 -0.01 2575 1969 2615
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Table 5. Covariate importance measurements from each basin’s model.

Model type Linear model Generalized M5 model tree Random forest
additive model

Measure of Linear regression coefficients Estimated degrees of ~ Covariate usage Increase in MSE
influence and associated p values freedom (EDF) and in tree rules and when covariate is
associated p values  model coefficients randomly permuted

Basin Gilgel Abbay Koga Megech Gumara Ribb
Covariate Coefficient p value Coefficient pvalue EDF pvalue Tree Model Percent in-
estimate estimate rules  coefficients crease in MSE

Prec 0.22 <0.01 024 <0.01 1.346 <0.01 5% 58 % 7.71%
Prec (lag 1) 0.10 0.03 0.16 <0.01 0.624 0.08 0% 19% 2.79%
Prec (lag 2) 0.01 0.74 0.05 026 0 029 0% 0% 1.10%
Temp -0.09 0.08 -0.07 0.17 1.023 007 0% 47 % 12.74%
Temp (lag 1) -0.04 0.49 -0.06 022 0 032 0% 46 % 4.97 %
Temp (lag 2) -0.01 0.81 -0.09 0.08 0 056 0% 0% 8.16 %
Agr. LC 0.00 0.33 0.02 0.01 1.986 <0.01 86% 73% 15.21%
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Table 6. Mean and standard deviation values for temperature, wet-season rainfall, and dry-

season rainfall in each basin.

Temperature

(C)

Wet season
rainfall

(mm month‘1)

Dry season
rainfall

(mm month'1)

Mean SD Mean SD Mean SD
Gilgel Abbay 15.7 154 206 145 39.3 56.5
Gumara 17.7 1.55 186 137 29.0 43.6
Koga 15.7 154 206 145 39.3 56.5
Megech 20.6 1.75 234 118 41.4 60.9
Ribb 182 1.61 263 115 458 57.0

11118

| Jadeq uoissnosigq | Jedeq uoissnosiq | Jaded uoissnosiqg

Jaded uoissnosiq

HESSD
12, 11083-11127, 2015

Empirical streamflow
simulation for water
resource
management

J. E. Shortridge et al.

(8
K ()


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/11083/2015/hessd-12-11083-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/11083/2015/hessd-12-11083-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

3709.0"E 38°q’0"E

39°Q'0"E

12°0'0"N-

11°0'0"N-

SOUTH
SUDAN

WG AND

SOMALIA

ETHIOP

Esri, HERE, DeLomme,
Mapmylndia, © OpenStreethap.
contributors, and the GIS user

Sali

KENYA communiy

Lalib ela

Inkway
Beret

Madiji -
BeteHogf) ~ Firid

2 Mar gjf

Bahir D Shime

AMESSRA

D engeh

ndfa

Weyiat

N ¢ ALt TN
0 10 20w0:240 60 80 100
B EEN W Kilometers

g
Sources: Esti, DeLorme, USGS! NPS.

A Gauge Site
Gilgel Abbay
Gumara
Koga
Megech

~ 'Ribb

Chibachibasa

Mapmylndia, © OpenStreethap contributors, and.the GIS user community

Figure 1. Map of Lake Tana and surrounding rivers.
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