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Abstract

Rainfall induced shallow landslides cause loss of life and significant damages involving
private and public properties, transportation system, etc. Prediction of shallow land-
slides susceptible locations is a complex task that involves many disciplines: hydrol-
ogy, geotechnical science, geomorphology, and statistics. Usually to accomplish this5

task two main approaches are used: statistical or physically based model. Reliable
models’ applications involve: automatic parameters calibration, objective quantification
of the quality of susceptibility maps, model sensitivity analysis. This paper presents
a methodology to systemically and objectively calibrate, verify and compare different
models and different models performances indicators in order to individuate and even-10

tually select the models whose behaviors are more reliable for a certain case study.
The procedure was implemented in package of models for landslide susceptibility

analysis and integrated in the NewAge-JGrass hydrological model. The package in-
cludes three simplified physically based models for landslides susceptibility analysis
(M1, M2, and M3) and a component for models verifications. It computes eight good-15

ness of fit indices by comparing pixel-by-pixel model results and measurements data.
Moreover, the package integration in NewAge-JGrass allows the use of other compo-
nents such as geographic information system tools to manage inputs-output processes,
and automatic calibration algorithms to estimate model parameters.

The system was applied for a case study in Calabria (Italy) along the Salerno-Reggio20

Calabria highway, between Cosenza and Altilia municipality. The analysis provided that
among all the optimized indices and all the three models, the optimization of the index
distance to perfect classification in the receiver operating characteristic plane (D2PC)
coupled with model M3 is the best modeling solution for our test case.
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1 Introduction

Landslides are one of major worldwide dangerous geo-hazards and constitute a seri-
ous menace the public safety causing human and economic loss (Park, 2011). Geo-
environmental factors such as geology, land-use, vegetation, climate, increasing pop-
ulation may increase the landslides occurrence (Sidle and Ochiai, 2006). Landslide5

susceptibility assessment, i.e. the likelihood of a landslide occurring in an area on the
basis of local terrain conditions (Brabb, 1984), is not only a crucial aspect for an ac-
curate landslide hazard quantification but also a fundamental tools for the environment
preservation and a responsible urban planning (Cascini et al., 2005).

During the last decades many methods for landslide susceptibility mapping were10

developed and they can be grouped in two main branches: qualitative and quantitative
methods (Glade and Crozier, 2005; Corominas et al., 2014 and references therein).

Qualitative methods, based on field campaigns and on the basis of expert knowl-
edge and experience, are subjective but necessary to validate quantitative methods
results. Quantitative methods include statistical and physically based methods. Statis-15

tical methods (e.g. Naranjo et al., 1994; Chung et al., 1995; Guzzetti et al., 1999; Catani
et al., 2005) use different approaches such as multivariate analysis, discriminant anal-
ysis, random forest to link instability factors (such as geology, soils, slope, curvature,
and aspect) and past and present landslides.

Deterministic models (e.g. Montgomery and Dietrich, 1994; Lu and Godt, 2008,20

2013; Borga et al., 2002; Simoni et al., 2008; Capparelli and Versace, 2011) syn-
thetize the interaction between hydrology, geomorphology, and soil mechanics in or-
der to physically understand and predict landslides triggering location and timing. In
general, they include a hydrological and a slope stability component. The hydrological
component simulates infiltration and groundwater flow processes with different degree25

of simplification, from steady state (e.g. Montgomery and Dietrich, 1994) to transient
analysis (Simoni et al., 2008). The soil-stability component simulates the safety factor
of the slope safety factor (FS) defined as ratio of stabilizing to destabilizing forces.
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Results of a landslide susceptibility analysis strongly depend on the model hypoth-
esis, parameters values, and parameters estimation method. Problems such as the
evaluation landslide susceptibility model performance, the choice of the more accu-
rate model, and the selection of the most performing method for parameter estimation
are still opened. For these reason, a procedure that allows an objective comparisons5

between different models and evaluation criteria aimed to the selection of the most
accurate models is needed.

Many efforts were devoted to the crucial problem of evaluating landslide suscep-
tibility models performances (e.g. Dietrich et al., 2001; Frattini et al., 2010; Guzzetti
et al., 2006). Accurate discussions about the most common quantitative measures of10

goodness of fit (GOF) between measured and modeled data are available in Ben-
net et al. (2013), Jolliffe and Stephenson, (2012), Beguería (2006), Brenning (2005)
and references therein. We summarized them in Appendix A. Wrong classifications in
landslide susceptibility analysis involve not only risk of loss of life but also economic
consequences. For example locations classified as stable increase their economical15

value because no construction restriction will be applied, and vice-versa for locations
classified as unstable.

In this work we propose an objective methodology for landslide susceptibility analy-
sis that allows to select the most performing model based on a quantitative comparison
and assessment of models prediction skills. The procedure is implemented in the open20

source, GIS based hydrological model, denoted as NewAge-JGrass (Formetta et al.,
2014) that uses the Object Modeling System (OMS, David et al., 2013) modeling frame-
work.

OMS a Java based modeling framework that promotes the idea of programming
by components and provides to the model developers many facilitates such as: multi-25

threading, implicit parallelism, models interconnection, GIS based system.
The NewAge-JGrass system, Fig. 1, contains models, automatic calibration algo-

rithms for model parameters estimation, and methods for estimating the goodness of
the models prediction. The open source GIS uDig (http://udig.refractions.net/) and the
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uDig-Spatial Toolbox (Worku et al., 2014, https://code.google.com/p/jgrasstools/wiki/
JGrassTools4udig) are used as visualization and input/out data management system.

The methodology for landslide susceptibility analysis (LSA) represents one model
configuration into the more general NewAge-JGrass system. It includes two new mod-
els specifically developed for this paper: mathematical components for landslide sus-5

ceptibility mapping and procedures for landslides susceptibility model verification se-
lection. Moreover LSA configuration uses two models already implemented in NewAge-
JGrass: the geomorphological model set-up and the automatic calibration algorithms
for model parameter estimation. All the models used in the LSA configuration are pre-
sented in Fig. 1, encircled dashed red line.10

For a generic landslide susceptibility component it is possible to estimate the model
parameters that optimize a given GOF metric. To perform this step the user can choose
between a set of GOF indices and a set of automatic calibration algorithms. Comparing
the results obtained for different models and for different GOF metrics the user can
select the most performing combination for is own case study.15

The methodology, accurately presented in Sect. 2, was setup considering three dif-
ferent landslide susceptibility models, eight GOF metrics, and one automatic calibration
algorithm. The flexibility of the system allows to add more models, GOF metrics, and
to use different calibration algorithms. Thus different LSA configurations can be real-
ized depending on: the landslide susceptibility model, the calibration algorithm, and the20

GOFs selected by the used.
Lastly, Sect. 3 presents a case study of landslide susceptibility mapping along the

A3 Salerno-Reggio Calabria highway in Calabria, that illustrates the capability of the
system.

2 Modeling framework25

The landslide susceptibility analysis (LSA) is implemented in the context of NewAge-
JGrass (Formetta et al., 2014), an open source large-scale hydrological modeling sys-
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tem. It models the whole hydrological cycle: water balance, energy balance, snow melt-
ing, etc. (Fig. 1). The system implements hydrological models, automatic calibration
algorithms for model parameter optimization, and evaluation, and a GIS for input out-
put visualization (Formetta et al., 2011, 2014). NewAge-JGrass is a component-based
model: each hydrological process is described by a model (energy balance, evapo-5

transpiration, run off production in Fig. 1); each model implement one or more compo-
nent(s) (considering for example the model evapotranspiration in Fig. 1, the user can
select between three different components: Penman–Monteith, Priestly–Taylor, and
Fao); each component can be linked to the others and executed at runtime, build-
ing a model configuration. Figure 1 offers a complete picture of the system and the10

integration of the new LSA configuration encircled dashed red line. More precisely the
LSA in the actual configuration includes two new models: a landslides susceptibility
model and a model for model verification and selection. The first includes three com-
ponents proposed in Montgomery and Dietrich (1994), Park et al. (2013), and Rosso
et al. (2006), the latter includes the “Three steps verification procedure” (3SVP), ac-15

curately presented in Sect. 2. Moreover LSA configuration includes other two models
beforehand implemented in the NewAge-JGrass system: (i) the Horton Machine for ge-
omorphological model setup that compute input maps such as slope, total contributing
area and visualize model results, and (ii) the Particle Swarm for automatic calibration.
Section 2.1 presents the landslide susceptibility model and Sect. 2.2 the model selec-20

tion procedure (3SVP).

2.1 Landslide susceptibility models

The landslide susceptibility models implemented in NewAge-JGrass and presented in
a preliminary application in Formetta et al. (2014) are: the Montgomery and Dietrich
(1994) model (M1), the Park et al. (2013) model (M3) and the Rosso et al. (2008)25

model (M3). The tree models derives from simplifications of the infinite slope equation
(Grahm, 1984; Rosso et al., 2008; Formetta et al., 2014) for the factor of safety:
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FS =
C× (1+e)[

Gs +e×Sr +w ×e× (1−Sr)
]
×γw ×H × sinα× cosα

+

[
Gs +e×Sr −w × (1+e×Sr)

][
Gs +e×Sr +w ×e× (1−Sr)

] × tanϕ′

tanα
(1)

where FS [–] is the factor of safety, C = C′ +Croot is the sum of Croot, the root strength
[kNm−2] and C′ the effective soil cohesion [kNm−2], ϕ′ [–] is the internal soil friction
angle H is the soil depth [m], α [–] is the slope gradient γw [kNm−3] is the specific5

weight of water and w = h/H [–] where h [m] is the water table height above the failure
surface [m], Gs [–] is the specific gravity of soil e [–] is the average void ratio and Sr [–]
is the average degree of saturation.

The model M1 assumes hydrological steady-state, flow occurring in the direction
parallel to the slope and neglect, cohesion, degree of soil saturation and void ratio. It10

computes w as:

w =
h
H

= min
(
Q
T
× TCA
b× sinα

,1.0
)

(2)

where T [L2 T−1] is the soil transmissivity defined as the product of the soil depth and
the saturated hydraulic conductivity, b [L] is the length of the contour line. Substituting
Eq. (2) in Eq. (1) the model is solved for Q/T assuming FS= 1 and stable and unstable15

sites are defined using threshold values on log(Q/T ) (Montgomery and Dietrich, 1994).
The model M2 considers both soil properties (as degree of soil saturation and void

ratio) and the soil cohesion as stabilizing factors. The model output is a map of safety
factors (FS) for each pixel of the analyzed area.

The component (M3) considers both the effects of rainfall intensity and duration on20

the landslide triggering process. The term w depends on rainfall duration and it is
obtained by coupling the conservation of mass of soil water with the Darcy’s law (Rosso
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et al., 2006) providing:

w =


Q
T ×

TCA
b×sinα ×

[
1−exp

(
e+1

e×(1−Sr)
× t
T ×

TCA
b×sinα ×H

)]
if t
T ×

TCA
b×sinα ×H ≤ −

e×(1−Sr)
1+e

× ln
(
1− T×b×sinα

TCA×Q
)

1 if t
T ×

TCA
b×sinα ×H > −

e×(1−Sr)
1+e

× ln
(
1− T×b×sinα

TCA×Q
) . (3)

Each component has a user interface which specifies input and output. Model input
are computed in the GIS uDig integrated in the NewAge-JGrass system by using the
Horton Machine package for terrain analysis (Worku et al., 2014). Model output maps5

are directly imported in the GIS and available for user’s visualization.
The models that we implemented present increasing degree of complexity on the

theoretical assumptions for modeling landslide susceptibility. Moving from M1 to M2
soil cohesion and soil properties were considered, and moving from M2 to M3 rainfall
of finite duration was used.10

2.2 Automatic calibration and model verification procedure

In order to assess the models’ performance we developed model that computes the
most used indices for assessing the quality of a landslide susceptibility map. These
are based on pixel-by-pixel comparison between observed landslide map (OL) and
predicted landslides (PL). They are binary maps with positive pixels corresponding to15

“unstable” ones, and negative pixels that correspond to “stable” ones. Therefore, four
types of outcomes are possible for each cell. A pixel is a true-positive (tp) if it is mapped
as “unstable” both in OL and in PL, that is a correct alarm with well predicted landslide.
A pixel is a true-negative (tn) if it is mapped as “stable” both in OL in PL, that correspond
to a well predicted stable area. A pixel is a false-positive (fp) if it is mapped as “unsta-20

ble” in PL, but is “stable” in OL; that is a false alarm. A pixel is a false-negative (fn) if it
is mapped as “stable” in PL, butt is “unstable” in OL, that is a missed alarm. The con-
cept of the Receiver Operator Characteristic (ROC, Goodenough et al., 1974) graph
is based on the values assumed by tp, fp, tn. The ROC is a methodology to assess
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the performance of models that provides results assigned to one of two classes. ROC
graph is widely used in many scientific fields such as medicine (Goodenough et al.,
1974), biometrics (Pepe, 2003) and machine learning (Provost and Fawcett, 2001).
ROC graph is a Cartesian plane with the FPR on the x axis and TPR on the y axis.
FPR is the ratio between false positive and the sum of false positive and true negative,5

and TPR is the ratio between true positive and the sum of true positive and false neg-
ative. They are defined in Table 1 and commented in Appendix A. The performance
of a perfect model corresponds to the point P(0,1) on the ROC plane; points that fall
on the bisector (black solid line, on the plots) are associated with models considered
random: they predict stable or unstable cells with the same rate.10

Eight GOF indices for quantification of model performances are implemented in the
system. Table 1 shows their definition, range, and optimal values. A more accurate
description of the indices is provided in Appendix A.

Automatic calibration algorithms implemented in NewAge-JGrass as OMS compo-
nents can be used in order to tune model parameters for reproducing the actual land-15

slide. This is possible because each model is an OMS component and can be linked to
the calibration algorithms as it is, without rewriting or modifying their code. Three cal-
ibration algorithms are embedded in the system core: Luca (Hay et al., 2006), a step-
wise algorithm based on shuffle complex evolution (Duan et al., 1992), Particle Swarm
Optimization (PSO), a genetic model presented in Kennedy and Eberhart (1995), and20

DREAM (Vrugt et al., 2008) acronym of Differential Evolution Adaptive Metropolis. In
actual configuration we used Particle Swarm Optimization (PSO) algorithm to estimate
model parameters optimal values.

During the calibration procedure the selected algorithm compares model output in
term of binary map (stable or unstable pixel) with the actual landslide optimizing a se-25

lected objective function (OF). The model parameter set for which the OF assumes its
best value is the optimization procedure output. The eight GOF indices presented in
Table 1 were used in turn as OF and, consequently, eight optimal parameters sets were
provided as calibration output (one for each optimised OF). To better clarify: a GOF in-
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dex selected in Table 1 becomes an OF when it is used as objective function of the
automatic calibration algorithm.

In order to quantitatively analyze the model performances we implemented a three
steps verification procedure (3SVP). Firstly we evaluated the performances of every
single OF index for each model. We presented the results in the ROC plane in order5

to asses what is (are) the OF index(es) whose optimization provides best model per-
formances. Secondly, we verified if each OF metric has own information content or if it
provides information analogous to other metrics (and unessential).

Lastly, for each model, the sensitivity of each optimal parameter set is tested by
perturbing optimal parameters and by evaluating their effects on the GOF.10

3 Modeling framework application

The LSA presented in the paper is applied for the highway Salerno-Reggio Calabria
in Calabria region (Italy), between Cosenza and Altilia. Section 3.1 describes the test-
site; Sect. 3.2 describes the model parameters calibration and verification procedure;
Sect. 3.3 presents the models performances correlations assessment; lastly, Sect. 3.415

presents the robustness analysis of the GOF indices used.

3.1 Site description

The test site was located in Calabria, Italy, along the Salerno-Reggio Calabria highway
between Cosenza and Altilia municipalities, in the southern portion of the Crati basin
(Fig. 2). The mean annual precipitation is about of 1200 mm, distributed on about 10020

rainy days, and mean annual temperature of 16 ◦C. Rainfall peaks occur in the period
October–March, during which mass wasting and severe water erosion processes are
triggered (Capparelli et al., 2012; Conforti et al., 2011; Iovine et al., 2010).
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In the study area the topographic elevation has an average value of around
450 ma.s.l., with a maximum value of 730 ma.s.l. Slope gradients, computed from 10 m
resolution digital elevation model, range from 0 to 55◦, while its average is about 26◦.

The Crati Basin is a Pleistocene-Holocene extensional basin filled by clastic marine
and fluvial deposits (Vezzani, 1968; Colella et al., 1987; Fabbricatore et al., 2014). The5

stratigraphic succession of the Crati Basin can be simply divided into two sedimen-
tary units as suggested by Lanzafame and Tortorici (1986). The first unit is a Lower
Pliocene succession of conglomerates and sanstones passing upward into silty clays
(Lanzafame and Tortorici, 1986) second unit. This is a succession of clayey deposits
grading upward into sandstones and conglomerates referred to Emilian and Sicilian,10

respectively (Lanzafame and Tortorici, 1986), as also suggested by data provided by
Young and Colella, 1988. Mass movements were analyzed from 2006 to 2013 by inte-
grating aerial photography interpretation acquired in 2006, 1 : 5000 scale topographic
maps analysis, and extensive field survey.

All the data were digitized and stored in GIS database (Conforti et al., 2014) and the15

results was the map of occurred landslide presented in Fig. 2d. Digital elevation model,
slope and total contributing area (TCA) maps are presented in Fig. 2a–c respectively. In
order to perform model calibration and verification, the dataset of occurred landslides
was divided in two parts one used for calibration (located in the bottom part of Fig. 2d)
and one for validation (located in the upper part of the Fig. 2d).20

3.2 Models calibration and verification

The three models presented in Sect. 2 were applied to predict landslide susceptibility
for the study area. Models’ parameters were optimized using each GOF index pre-
sented in Table 1 in order to fit landslides of the calibration group. Table 2 presents the
list of the parameters that will be optimized specifying their initial range of variation,25

and the parameter kept constant during the simulation and their value.
The component PSO provides 8 best parameters set one for each optimized GOF

indices. Values for each model (M1, M2 and M3) were presented in Table 3. Opti-
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mal parameter sets are slightly different among the models and among the optimized
GOF indices for a fixed model. Moreover a compensation effect between parameter
values is evident: high values of friction angles are related to low cohesion values
or high values of critical rainfall are related to high values of soil resistance param-
eters. Considering the model M1, transmissivity value (74 m2 day−1) optimizing ACC5

is much lower compared to the transmissivity values obtained optimizing the other in-
dex (around 140 m2 day−1). Similar behavior is observed for the optimal rainfall value
which is 148 [mmday−1] optimizing ACC and around 70 [mmday−1] optimizing the other
indices. Considering the model M2, the optimal transmissivity and rainfall values op-
timizing CSI (10 [m2 day−1] and 95 [mmday−1]), are much lower compared the values10

obtained optimizing the other indices (around 50 [m2 day−1] and 250 [mmday−1] in av-
erage). For the model M3, instead, optimal parameters present the same order of mag-
nitude for all optimized indices. This suggests that the variability of the optimal param-
eter values for model M1 and M2 could be due to compensate the effects of important
physical processes neglected by those models.15

Executing the models using the eight optimal parameters set, true-positive-rates and
false positive rates are computed by comparing model output and actual landslides
for both calibration and verification dataset. Results were presented in Table 4, for
all three models M1, M2 and M3. Those points were reported in the ROC plane in
order to visualize in a unique graph the effects of the optimised objective function on20

model performances. This procedure was repeated for the three models. ROC planes
considering all the GOF indices and all three models are included in Figs. B1–B3 both
for calibration and for verification period. For the model M2 and M3 is clear that ACC,
HSS, and CSI provides the less performing models results. This is true also for model
M1, even if, differently form M2 and M3, there is not a so clear separation between the25

performances provided by ACC, HSS, and CSI and the remaining indices.
Among the results provided in Table 4, we focused our attention only on the GOF in-

dices whose optimization satisfies the condition: FPR< 0.4 and TPR> 0.7. This choice
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was made in order to restrict the results’ comments only on the GOF indices that pro-
vide acceptable model results and for the readability of graphs.

Figure 3 presents three ROC planes, one for each model, with the optimized GOF
indices that provides FPR< 0.4 and TPR> 0.7. Results presented in Fig. 3 and Table 4
shows that: (i) optimization of AI, D2PC, SI and TSS allows to reach the best model per-5

formance in the ROC plane, and this is verified for all three models, (ii) performances
increase as model complexity increases: moving from M1 to M3 points in the ROC
plane approaches the perfect point (TPR= 1, FPR= 0), (iii) increasing model complex-
ity good model results are reached not only in calibration but also in validation dataset.
In fact, moving from M1 to M2 soil cohesion and soil properties were considered, and10

moving from M2 to M3 rainfall of finite duration was used.
The first step of the 3SVP procedure remarks that the optimization of AI, D2PC, SI,

and TSS provides the best performances independently of the model we used.

3.3 Models performances correlations assessment

The second step of the procedure aims to verify the information content of each opti-15

mized OF, checking if it is analogous to other metrics or it is peculiar of the optimized
OF.

Executing a model using one of the eight parameters set (let’s assume, for example,
the one obtained optimizing CSI) allows the computation of all the remaining GOF
indices, that we indicate as CSICSI, ACCCSI, HSSCSI, TSSCSI, AICSI, SICSI, D2PCCSI,20

ESICSI, both for calibration and for verification dataset. Let’s denote this vector with the
name MP CSI: the model performances (MP ) vector computed using the parameters
set that optimize CSI. MP CSI has 16 elements, 8 for calibration and 8 for validation
dataset. Repeating the same procedure for all eight GOF indices it gives: MP ACC,
MP ESI, MP SI, MP D2PC, MP TSS, MP AI, MP HS. Figure 4 presents the correlation plots25

(Murdoch and Chow, 1996) between all MP vectors, for each model M1, M2 and M3.
The matrix is symmetric and gives a certain ellipse at intersection of row i and column
j . The color is the absolute value of the correlation coefficient between the MP i and
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MP j vectors. The ellipse’s eccentricity is scaled according to the correlation value: the
more is prominent as the less the vector are correlated; if ellipse leans towards the
right correlation is positive and if it leans to the left, it is negative.

All indices present a positive correlation among each other independent of the model
used. Moreover strong correlations between the MP vectors of AI, D2PC, SI and TSS5

are evident in Fig. 4. This confirms that an optimization of AI, D2PC, SI and TSS provide
quite similar model performances, and this is independent of the model used. On the
other hand the remaining GOF indices give quite different information from the previous
four indices, but they gave worse performances in first step analysis. Thus in the case
study using one of the four best GOF can be enough for parameter estimation.10

3.4 Models sensitivity assessment

In this step we focused the attention on the models M2 and M3 and we performed
a parameter sensitivity analysis. Let’s assume to consider model M2 and the optimal
parameter set computed by optimizing the Critical Success Index (CSI). Moreover let’s
assume to consider the cohesion model parameter, the procedure evolves according15

the following steps:

– The starting parameter values are the optimal values derived from the optimiza-
tion of the CSI index.

– All the parameters except the analyzed parameter (cohesion) were kept constant
and equal to the optimal parameter set.20

– 1000 random values of the analyzed parameter (cohesion) were picked up from
a uniform distribution with lower and upper bound defined in Table 1. With this
procedure 1000 model parameter sets were defined and used to execute the
model.
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– 1000 values of the selected GOF index (CSI), computed by comparing model
outputs with measured data, were used to compute a boxplot of the parameter C
and optimized index CSI.

The procedure was repeated for each parameter and for each optimized index. Results
where presented in Figs. 5 and 6 for model M2 and M3 respectively.5

Each column of the figures represents one optimized index and has a number of
boxplot equal to the number of model’s parameters (5 for M2 and 6 for M3). Each
boxplot represents the range of variation of the optimized index due a certain model
parameters change. The more narrow are the boxplot for a given optimized index the
less sensitive is the model to that parameter. For both M2 and M3 the parameter set10

obtained by optimizing AI and SI shows the less sensitive behavior for almost all pa-
rameters. In this case a model parameter perturbation does not influence much the
model performances. On the contrary, the models whit parameters obtained by opti-
mizing ACC, TSS, and D2PC are the more sensitive to the parameters variations and
this is reflected in much more evident changing of model performances.15

3.5 Models selections and susceptibility maps

The selection of the more appropriate model for computing landslide susceptibility
maps is based on what we learn forms the previous steps. In the first step we learn
that (i) optimization of AI, D2PC, SI and TSS outperform the remaining indices and
(ii) models M2 and M3 provides more accurate results compared to M1. The second20

step suggests that overall models results obtained by optimizing AI, D2PC, SI and TSS
are similar each others. Lastly, the third step show that models performance derived
from the optimization of AI and SI are the less sensible to input variations compared
to D2PC and TSS. This behavior could be due the formulation of AI and SI that gives
much more weight to the true positive compared to D2PC and TSS.25

In particular for our application, the model M3 whit parameters obtained by optimizing
D2PC was the most sensitive to the parameter variation avoiding an “insensitive” or
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flat response changing the parameters value. A more sensitive couple model-optimal
parameter set will in fact accommodates eventual parameters, input data, or measured
data variations responding to these changes with a variation of model performance.

For this reason we used the combination the model M3 whit parameters obtained
by optimizing D2PC for drawing the final susceptibility maps in Fig. 7. Categories of5

landslides susceptibility from class 1 to 5 are assigned from low to high according FS
values (e.g. Huang et al., 2007): Class 1 (FS< 1.0), Class 2 (1.0 <FS< 1.2), Class 3
(1.2 <FS< 1.5), Class 4 (1.5 <FS< 2.0), Class 5 (FS> 2).

4 Conclusions

The paper presents a procedure for landslides susceptibility models evaluation and se-10

lection. It includes 3 steps: (i) model parameters calibration optimizing different GOF
indices and models evaluation in the ROC plane, (ii) computation of degree of similar-
ities between different models performances obtained by optimizing all the considered
GOF index, (iii) evaluation of models sensitivity to parameters variations.

The procedure has been conceived like a model configuration of the hydrological15

system NewAge-JGrass; it integrates: (i) three simplified physically based landslides
susceptibility models, (ii) a package for model evaluations based on pixel-by-pixel com-
parison of modeled and actual landslides maps, (iii) models parameters calibration al-
gorithms, and (iv) the integration with uDig open-source geographic information system
for model input-output maps management.20

This procedure was applied in a test case on the Salerno-Reggio Calabria highway
and the best model performances were provided by model M3 optimizing D2PC index.

The system is open-source and available at (https://github.com/formeppe). It is in-
tegrated according the Object Modeling System standards and this allow the user to
easily integrate a generic landslide susceptibility model and use the complete frame-25

work presented in the paper avoiding rewriting programming code. The system will
be helpful for decision makers that deal with risk management assessment and could
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be improved by adding new landslide susceptibility models or different types of model
selection procedure.

Appendix A

A1 Critical Success Index (CSI)

CSI, Eq. (A1), is the number of correct detected lindslided pixels (tp), divided by the5

sum of tp, fn and fp. CSI is also named threat score. It range between 0 and 1 and its
best value is 1. It penalizes both fn and fp.

CSI =
tp

tp+ fp+ fn
(A1)

A2 Equitable Success Index (ESI)

ESI, Eq. (A2), contrarily to CSI, is able to take into account the true positives associated10

with random chance (R). ESI ranges between −1/3 and 1. Value 1 indicates perfect
score.

ESI =
tp−R

tp+ fp+ fn−R
(A2)

R =
(tp+ fn)× (tp+ fp)

tp+ fn+ fp+ tn
(A3)

A3 Success Index (SI)15

SI, Eq. (A4), equally weight True positive rate (Eq. A5) and specificity defined as 1
minus false positive rate (FPR), Eq. (A6). SI varies between 0 and 1 and its best value
is 1. SI is also named modified success rate.
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SI =
1
2
×
(

tp

tp+ fn
+

tn
fp+ tn

)
=

1
2
× (TPR+ specificity) (A4)

TPR =
tp

tp+ fn
(A5)

FPR =
fp

fp+ tn
(A6)

A4 Distance to perfect classification (D2PC)

D2PC is defined in Eq. (A7). It measure the distance, in the plane FPR-TPR between5

an ideal perfect point of coordinates (0,1) and the point of the tested model (FPR,TPR).
D2PC ranges in 0–1 and its best value are 0.

D2PC =
√

(1−TPR)2 +FPR2 (A7)

A5 Average Index (AI)

AI, Eq. (A8), is the average value between four different indices: (i) TPR, (ii) precision,10

(iii) the ratio between successfully predicted stable pixels (tn) and the total number of
actual stable pixels (fp+ tn) and (iv) the ratio between successfully predicted stable
pixels (tn) and the number of simulated stable cells (fn+ tn).

AI =
1
4

(
tp

tp+ fn
+

tp

tp+ fp
+

tn
fp+ tn

+
tn

fn+ tn

)
(A8)

A6 Heidke Skill Score (HSS)15

The fundamental idea of a generic skill score measure is to quantify the model perfor-
mance respect to set of control or reference model. Fixed a measure of model accuracy
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Ma, the skill score formulation is expressed in Eq. (A9):

SS =
Ma −Mc

Mopt −Mc
(A9)

where Mc is the control or reference model accuracy and Mopt is the perfect model
accuracy.

SS assumes positive and negative value, if the tested model is perfectMa =Mopt and5

SS= 1, if the tested model is equal to the control model than Ma =Mc and SS= 0.
The marginal probability of a predicted unstable pixel is (tp+fp)/n where n is the total

number of pixels n = tp+ fn+ fp+ tn. The marginal probability of a landslided unstable
pixel is (tp+ fn)/n.

The probability of a correct yes forecast by chance is: P1 = (tp+ fp)(tp+ fn)/n2. The10

probability of a correct no forecast by chance is: P2 = (tn+ fp)(tn+ fn)/n2.
In the HSS, Eq. (A10), the control model is a model that forecast by chance: Mc =

P1+P2, the measure of accuracy is the Accuracy (ACC) defined in Eq. (A11), and the
Mopt = 1.

HSS =
2× (tp× tn)− (fp× fn)

(tp+ fn)× (fn+ tn)+ (tp+ fp)× (fp+ tn)
(A10)15

ACC =
tp+ tn

tp+ fn+ fp+ tn
(A11)

The range of the HSS is −∞ to 1. Negative values indicate that indicates that the model
provides no better results of a random model, 0 means no model skill, and a perfect
model obtains a HSS of 1. HSS is also named as Cohen’s kappa.

A7 True Skill Statistic (TSS)20

TSS, Eq. (A12), is the difference between the hit rate and the false alarm rate. It is also
named Hanssen and Kuipper’s Skill Score and Pierce’s Skill Score. It ranges between
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−1 and 1 and its best value is 1. TSS equal −1 indicates that the model provides no
better results of a random model. A TSS equal 0 indicates an indiscriminate model.

TSS measures the ability of the model to distinguish between landslided and non-
landslided pixels. If the number of tn is large the false alarm value is relatively over-
whelmed. If tn is large, as happens in landslides maps, FPR tends to zero and TSS5

tends to TPR. A problem of TSS is that it threats the hit rate and the false alarm rate
equally, irrespective of their likely differing consequences.

TSS =
(tp× tn)− (fp× fn)

(tp+ fn)× (fp+ tn)
= TPR−FPR (A12)

TSS is similar to Heidke, except the constraint on the reference forecasts is that they
are constrained to be unbiased.10
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Table 1. Indices of goodness of fit for comparison between actual and predicted landslide.

Name Definition Range Optimal value

Critical success index (CSI) CSI = tp
tp+fp+fn [0,1] 1.0

Equitable success index (ESI) ESI = tp−R
tp+fp+fn−R R = (tp+fn)×(tp+fp)

tp+fn+fp+tn [−1/3,1] 1.0

Success Index (SI) SI = 1
2 ×
(

tp
tp+fn +

tn
fp+tn

)
[0,1] 1.0

Distance to perfect D2PC =
√

(1−TPR)2 +FPR2 [0,1] 0.0

classification (D2PC) TPR = tp
tp+fn FPR = fp

fp+tn

Average Index (AI) AI = 1
4

(
tp

tp+fn +
tp

tp+fp +
tn

fp+tn +
tn

fn+tn

)
[0,1] 1.0

True skill statistic (TSS) TSS = (tp×tn)−(fp×fn)
(tp+fn)×(fp+tn) [−1,1] 1.0

Heidke skill score (HSS) HSS = 2×(tp×tn)−(fp×fn)
(tp+fn)×(fn+tn)+(tp+fp)×(fp+tn) [−∞,1] 1.0

Accuracy (ACC) ACC = (tp+tn)
(tp+fn+fp+tn) [0,1] 1.0
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Table 2. Optimised models’ parameters values.

Model Parameters Constant Value Range value

Soil Depth [m] – [0.8; 5.0]
Transmissivity [m2 day−1] – [10; 150]
Soil/water density ratio – [1.8; 2.8]
Friction Angle [◦ ] – [11; 40]
Rainfall [mmday−1] – [50; 300]
Soil Cohesion [kPa] – [0; 50]
Degree Of Saturation [–] 0.5 –
Soil Porosity [–] 0.5 –
Rainfall Duration [day] – [0.1; 3.0]
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Table 3. Optimal parameter sets output of the optimization procedure of each GOF indices in
turn. Results were presented for each model (M1, M2 and M3).

Model: M1

Optimised Index AI HSS TSS D2PC SI ESI CSI ACC
Soil Depth [m] 1.32 1.85 1.44 2.80 1.36 2.62 2.42 2.01
Transmissivity [m2 day−1] 140.24 146.31 142.68 137.10 147.69 144.66 136.73 74.74
Soil/water density ratio [–] 2.61 2.56 2.77 2.71 2.78 2.79 2.63 2.72
Friction Angle [◦] 24.20 32.40 22.50 23.10 22.40 29.50 29.50 38.30
Rainfall [mmday−1] 85.38 53.30 71.36 50.00 52.69 69.19 61.35 141.80

Model: M2

Optimised Index AI HSS TSS D2PC SI ESI CSI ACC
Transmissivity [m2 day−1] 65.43 33.22 80.45 38.22 84.54 33.24 10.70 55.76
Cohesion [kPa] 25.17 49.63 49.42 16.94 30.01 41.24 44.58 46.85
Friction Angle [◦ ] 29.51 38.38 20.01 32.30 24.57 33.78 35.68 34.96
Rainfall [mmday−1] 236.14 293.44 270.42 153.61 294.70 298.44 95.35 299.01
Soil/water density ratio [–] 2.11 2.40 2.06 2.44 2.77 2.17 2.55 2.19
Soil Depth [m] 2.35 1.68 2.38 2.44 2.74 1.12 1.37 1.12

Model: M3

Optimised Index AI HSS TSS D2PC SI ESI CSI ACC
Transmissivity [m2 d−1] 30.95 26.55 47.03 36.31 57.28 25.84 31.60 48.71
Cohesion [kPa] 36.88 44.33 28.51 31.60 45.46 41.80 32.05 37.09
Friction Angle [◦] 19.55 36.44 27.80 29.70 21.46 33.27 36.47 38.50
Rainfall [mmday−1] 248.77 230.08 258.82 201.71 299.90 291.32 273.03 193.02
Soil/water density ratio [–] 2.40 2.57 2.08 2.80 2.65 2.63 2.61 2.44
Soil Depth [m] 1.84 1.42 2.23 2.92 2.85 1.17 1.13 1.15
Rainfall Duration [day] 0.12 1.78 1.24 1.96 1.24 0.39 1.30 1.98
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Table 4. Results in term of true-positive rate (TPR) and false-positive rate (FPR), for each
model (M1, M2 and M3), for each optimised GOF index and for both calibration and verification
dataset. In bold the rows for which the condition FPR< 0.4 and TPR> 0.7 is verified.

MODEL: M1 MODEL: M2 MODEL: M3
Period Optim. index FPR TPR FPR TPR FPR TPR

CAL ACC 0.04 0.12 0.03 0.12 0.03 0.13
CAL AI 0.29 0.70 0.35 0.79 0.38 0.82
CAL CSI 0.17 0.48 0.10 0.36 0.09 0.32
CAL D2PC 0.32 0.72 0.32 0.76 0.32 0.75
CAL ESI 0.17 0.48 0.43 0.82 0.09 0.36
CAL HSS 0.12 0.35 0.09 0.35 0.09 0.35
CAL SI 0.34 0.74 0.39 0.85 0.39 0.86
CAL TSS 0.34 0.73 0.39 0.83 0.37 0.82
VAL ACC 0.05 0.12 0.03 0.12 0.03 0.10
VAL AI 0.26 0.56 0.31 0.69 0.34 0.72
VAL CSI 0.17 0.39 0.09 0.31 0.08 0.29
VAL D2PC 0.29 0.59 0.28 0.67 0.28 0.66
VAL ESI 0.17 0.39 0.41 0.76 0.09 0.30
VAL HSS 0.12 0.30 0.09 0.30 0.09 0.30
VAL SI 0.30 0.61 0.37 0.75 0.39 0.76
VAL TSS 0.30 0.62 0.35 0.74 0.34 0.71
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Table A1. Acronyms table.

3SVP Three steps verification procedure
AI Average Index
CSI Critical success index
D2PC Distance to perfect classification
ESI Equitable success index
fn False negative
fp False positive
FPR False positive rate
FS Factor of safety
GIS Geogrphic informatic system
GIS Geogrphic informatic system
GOF Goodness of fit indices
HSS Heidke skill score
LSA Landslide susceptibility analysis
M1 Model for landslide susceptibility analysis proposed

in Montgomery and Dietrich (1994)
M2 Model for landslide susceptibility analysis proposed

in Park et al. (2013)
M3 Model for landslide susceptibility analysis proposed

in Rosso et al. (2006)
MP Model performances vector
OF Objective function
OL Observed landslide map
OMS Object modeling system
PL Predicted landslide map
PSO Particle Swarm optimization
ROC Receiver operating characteristic
SI Success index
TCA Total contributing area
tn True negative
tp True positive
TPR True positive rate
TSS True Skill Statistic
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Figure 1. Integration of the Landslide susceptibility analysis system in NweAge-JGrass hydro-
logical model.

13247

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/13217/2015/hessd-12-13217-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/13217/2015/hessd-12-13217-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 13217–13256, 2015

Evaluating
performances of

simplified physically
based models

G. Formetta et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 2. Test site. (a) Digital elevation model (DEM) [m], (b) slope [–] expressed as tangent of
the angle, (c) total contributing area (TCA) expressed as number of draining cells and (d) map
of actual landslides.
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Figure 3. Models’ performances results in the ROC plane for M1, M2 and M3. Only GOF indices
whose optimization provides FPR< 0.4 and TPR> 0.7 were reported.
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Figure 4. Correlation plot between models’ performance (MP) vector computed by optimizing
all GOF indices in turn. Results are reported for each model: M1, M2 and M3.
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Figure 5. Model M2 parameters sensitivity analysis.
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Figure 6. Model M3 parameters sensitivity analysis.
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Figure 7. Landslide susceptibility maps using model M3 and parameter set obtained by opti-
mising D2PC.
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Figure B1. Models’ performances results in the ROC plane for M1.
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Figure B2. Models’ performances results in the ROC plane for M2.
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Figure B3. Models’ performances results in the ROC plane for M3.
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