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Abstract

This study provides a comprehensive assessment of state-of-the-art evolutionary multi-
objective optimization (EMO) tools’ relative effectiveness in calibrating hydrologic mod-
els. The relative computational efficiency, accuracy, and ease-of-use of the follow-
ing EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic5

Algorithm-II (ε-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis al-
gorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2).
This study uses three test cases to compare the algorithms’ performances: (1) a stan-
dardized test function suite from the computer science literature, (2) a benchmark hy-
drologic calibration test case for the Leaf River near Collins, Mississippi, and (3) a com-10

putationally intensive integrated model application in the Shale Hills watershed in Penn-
sylvania. A challenge and contribution of this work is the development of a methodology
for comprehensively comparing EMO algorithms that have different search operators
and randomization techniques. Overall, SPEA2 is an excellent benchmark algorithm
for multiobjective hydrologic model calibration. SPEA2 attained competitive to superior15

results for most of the problems tested in this study. ε-NSGAII appears to be superior
to MOSCEM-UA and competitive with SPEA2 for hydrologic model calibration.

1. Introduction

The hydrological behavior of a watershed can be conceptualized as a collection of spa-
tially distributed and highly interrelated water, energy and vegetation processes. Any20

computer-based model of watershed behavior must, therefore, implement this concep-
tualization using appropriately coupled systems of parametric mathematical functions;
with parameters allowing for the ability to adapt the model to different (but conceptu-
ally similar) watersheds. These parameterizations can be of varying complexity, but
are, by definition, much simpler than nature itself. Model parameters therefore often25

become effective parameters that are related to, but not identical with measurable wa-
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tershed characteristics and have to be estimated by calibrating the model to observed
watershed behavior (e.g. streamflow) to account for this discrepancy. Traditional man-
ual calibration methods use trial-and-error based analyses, which are time consuming
and difficult to implement for multiple performance objectives (e.g., capturing high flow,
average flow, and low flow simultaneously). There is a large body of recent water re-5

sources literature analyzing alternative tools and strategies for automatic calibration
using simulation-optimization frameworks (Duan et al., 1992; Gan and Biftu, 1996;
Yapo et al., 1996, 1998; Kuczera, 1997; Gupta et al., 1998; Boyle et al., 2000; Madsen,
2000; Madsen et al., 2002). Early studies (Duan et al. 1992) have highlighted that in
the context of optimization, the calibration problem is ill-posed, often highly nonlinear,10

non-convex, and multimodal (i.e., numerous local optima exist). These problem prop-
erties have motivated several prior studies to use heuristic-based optimization, and
in particular evolutionary algorithms because they have been shown to work well on
nonlinear, nonconvex, and multimodal problems (Goldberg, 1989; Duan et al., 1992;
Schwefel, 1995).15

Advances in computational capabilities have led to more complex hydrologic models
often predicting multiple hydrologic fluxes simultaneously (e.g. surface and subsurface
flows, energy). In addition, the use of an identification framework based on a single ob-
jective function is based on the erroneous assumption that all the available information
regarding one hydrologic variable can be summarized (in a recoverable form) using a20

single aggregate measure of model performance, leading unavoidably to the loss of in-
formation and therefore poor discriminative power (Wagener and Gupta, 2005). These
issues have led to an increasing interest in multi-objective optimization frameworks.
The growing body of research in the area of multiobjective calibration (Gupta et al.,
1998; Boyle et al., 2000; Madsen, 2000, 2003; Seibert, 2000; Wagener et al., 2001;25

Madsen et al., 2002; Vrugt et al., 2003a) has shown that the multiobjective approach
is practical, relatively simple to implement, and can provide insights into parameter un-
certainty as well as the limitations of a model (Gupta et al., 1998). Although a majority
of prior studies have focused on conceptual rainfall-runoff applications, there are an
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increasing number of recent studies focusing on developing multiobjective calibration
strategies for distributed hydrologic models (Madsen, 2003; Ajami et al., 2004; Muleta
and Nicklow, 2005a, b; Vrugt et al., 2005). Calibrating a distributed hydrologic model
remains a challenging problem because distributed hydrologic models have more com-
plex structures and significantly larger parameter sets that must be specified. More-5

over, distributed models are computationally expensive, causing automatic calibration
to be subject to severe computational time constraints.

There is also a hidden cost in using evolutionary algorithms for hydrologic model
calibration that has not been well addressed in the water resources literature. For in-
creasingly complex models with larger parameter sets a single evolutionary multiobjec-10

tive optimization (EMO) algorithm trial run may take several days or longer. Users must
carefully consider how EMO algorithms’ search parameters (i.e., population size, run
length, random seed, etc.) impact their performance. Moreover, all of the algorithms
perform stochastic searches that can attain significantly different results depending on
the seeds specified in their random number generators. When a single EMO trial run15

takes several days, trial-and-error analysis of the performance impacts of EMO algo-
rithm parameters or running the algorithm for a distribution of random trials can take
weeks, months, or even years of computation. The increasing size and complexity of
calibration problems being considered within the water resources literature necessitate
rapid and reliable search.20

The purpose of this study is to comprehensively assess the efficiency, effective-
ness, reliability, and ease-of-use of current EMO tools for hydrologic model calibration.
The following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted
Genetic Algorithm-II (ε-NSGAII) (Kollat and Reed, 2005b), the Multiobjective Shuffled
Complex Evolution Metropolis algorithm (MOSCEM-UA) (Vrugt et al., 2003a), and the25

Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler et al., 2001). ε-NSGAII is
a new algorithm developed by Kollat and Reed (2005a) that has been shown to be
capable of attaining superior performance relative to other state-of-the-art EMO algo-
rithms, including SPEA2 and ε-NSGAII’s parent algorithm NSGAII developed by Deb et
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al. (2002). The performance of ε-NSGAII is being tested relative to MOSCEM-UA and
SPEA2 because these algorithms provide performance benchmarks within the fields of
water resources and computer science, respectively. This study contributes a rigorous
statistical assessment of the performances of these three evolutionary multiobjective
algorithms using a formal metrics-based methodology.5

This study bridges multiobjective calibration hydrologic research where MOSCEM-
UA (Vrugt et al., 2003a, b) represents a benchmark algorithm and EMO research where
SPEA2 (Coello Coello et al., 2002) is a benchmark algorithm. Three test cases are
used to compare the algorithms’ performances. The first test case is composed of a
standardized suite of computer science test problems (Zitzler et al., 2000; Deb, 2001;10

Coello Coello et al., 2002), which are used to validate the algorithms’ abilities to per-
form global search effectively, efficiently, and reliably for a broad range of problem
types. This is the first study to test MOSCEM-UA on this suite of problems. The sec-
ond test case is a benchmark hydrologic calibration problem in which the Sacramento
soil moisture accounting model (SAC-SMA) is calibrated for the Leaf River watershed15

located close to Collins, Mississippi. The Leaf River case study has been used in the
development of both single and multiobjective objective calibration tools and specifi-
cally MOSCEM-UA (Duan et al., 1992; Yapo et al., 1998; Boyle et al., 2000; Wagener
et al., 2001; Vrugt et al., 2003a, b). The third test case assesses the algorithms’
performances for a computationally intensive integrated hydrologic model calibration20

application for the Shale Hills watershed located in the Susquehanna River Basin in
north central Pennsylvania. The Shale Hills test case demonstrates the computational
challenges posed by the paradigmatic shift in environmental and water resources sim-
ulation tools towards highly nonlinear physical models that seek to holistically simu-
late the water cycle. A challenge and contribution of this work is the development25

of a methodology for comprehensively comparing EMO algorithms that have different
search operators and randomization techniques.
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2. Multiobjective optimization: terms and tools

2.1. Multiobjective optimization terminology

There is a growing body of water resources literature (Horn and Nafpliotis, 1993; Ritzel
et al., 1994; Cieniawski et al., 1995; Halhal et al., 1997; Loughlin et al., 2000; Reed
et al., 2001; Erickson et al., 2002; Reed and Minsker, 2004) demonstrating the impor-5

tance of multiobjective problems (MOPs) and evolutionary multiobjective solution tools.
A key characteristic of MOPs is that optimization cannot consider a single objective
because performance in other objectives may suffer. Optimality in the context of multi-
objective global optimization was originally defined by and named after Vilfredo Pareto
(Pareto 1896). A solution X ∗ is classified as Pareto optimal when there is no feasible10

solution X that will improve some objective values without degrading performance in
at least one other objective. More formally, solution X ∗∈Ω is Pareto optimal if for each
X∈Ω and I={1,2, ..., k}, either

fi (X ) ≥ fi (X
∗) (∀i ∈ I) (1)

or, there is at least one i ∈ I so that15

fi (X
∗) < fi (X ) (2)

where I is a set of integers that range from one to the number of total objectives, X and
X ∗ are vectors of decision variables, Ω is the decision space, k is the number of objec-
tives, and f is the objective function. The definition here is based on the assumption
that the optimization problem is formulated to minimize all objective values.20

Equations (1) and (2) state that a Pareto optimal solution X ∗ has at least one smaller
(better) objective value compared to any other feasible solution X in the decision space
while performing as well or better than X in all remaining objectives. As the name
implies, Pareto set is the set of Pareto optimal solutions. The Pareto front (P F ∗) is
the mapping of Pareto optimal set from the decision space to the objective space. In25

other words, the Pareto front is composed of a set of objective vectors which are not
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dominated by any other objective vectors in the objective space. The bold line in Fig. 1
illustrates a convex Pareto front for a hypothetical 2-objective minimization problem.

2.2. Evolution-based multiobjective search

Schaffer (1984) developed one of the first EMO algorithms termed the vector evalu-
ated genetic algorithm (VEGA), which was designed to search decision spaces for the5

optimal tradeoffs among a vector of objectives. Subsequent innovations in EMO have
resulted in a rapidly growing field with a variety of solution methods that have been
used successfully in a wide range of applications (for a detailed review see Coello
Coello et al., 2002). This study contributes the first comprehensive comparative anal-
ysis of these algorithms’ strengths and weaknesses in the context of hydrologic model10

calibration. The next sections give a brief overview of each tested algorithm as well
as a discussion of their similarities and differences. For detailed descriptions, readers
should reference the algorithms’ original published descriptions (Zitzler et al., 2001;
Vrugt et al., 2003a, b; Kollat and Reed, 2005b).

2.2.1. Epsilon Dominance NSGAII (ε-NSGAII)15

The ε-NSGAII exploits ε-dominance archiving (Laumanns et al., 2002; Deb et al.,
2003) in combination with automatic parameterization (Reed et al., 2003) for the
NSGA-II (Deb et al., 2002) to accomplish the following: (1) enhance the algorithm’s
ability to maintain diverse solutions, (2) automatically adapt population size commen-
surate with problem difficulty, and (3) allow users to sufficiently capture tradeoffs using20

a minimum number of design evaluations. A sufficiently quantified trade-off can be de-
fined as a subset of Pareto optimal solutions that provide an adequate representation
of the Pareto frontier that can be used to inform decision making. Kollat and Reed
(2005b) performed a comprehensive comparison of the NSGA-II, SPEA2, and their
proposed ε-NSGAII on a 4-objective groundwater monitoring application, where the25

ε-NSGAII was easier to use, more reliable, and provided more diverse representations
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of tradeoffs.
As an extension to NSGA-II (Deb et al., 2002), ε-NSGAII adds the concepts of ε-

dominance (Laumanns et al., 2002), adaptive population sizing, and a self termination
scheme to reduce the need for parameter specification (Reed et al., 2003). The val-
ues of ε, specified by the users represent the publishable precision or error tolerances5

for each objective. A high precision approximation of the Pareto optimal set can be
captured by specifying very small precision tolerances ε. The goal of employing ε-
dominance is to enhance the coverage of nondominated solutions along the full extent
of an application’s tradeoffs, or in other words, to maintain the diversity of solutions.
ε-NSGAII is binary coded and real coded. In this application, the real coded version of10

the ε-NSGAII proposed by Kollat and Reed (2005b) is employed. The ε-NSGAII uses
a series of “connected runs” where small populations are exploited to pre-condition
search with successively adapted population sizes. Pre-conditioning occurs by inject-
ing current solutions within the epsilon-dominance archive into the initial generations
of larger population runs. This scheme bounds the maximum size of the population to15

four times the number of solutions that exist at the user specified ε resolution. Theo-
retically, this approach allows population sizes to increase or decrease, and in the limit
when the epsilon dominance archive size stabilizes, the ε-NSGAII’s “connected runs”
are equivalent to time continuation (Goldberg, 2002). (i.e., injecting random solutions
when search progress slows). For more details about ε-dominance or the ε-NSGAII,20

please refer to the following studies (Laumanns et al., 2002; Kollat and Reed, 2005a,
b).

There are 4 major parameters that need to be specified for ε-NSGAII (1) the prob-
ability of mating, (2) the probability of mutation, (3) the maximum run time, and (4)
the initial population size. The mating and mutation operators and parameters are dis-25

cussed in more detail in Sect. 2.2.4. The maximum run time is defined as the upper
limit on the time the user is willing to invest in search. Although epsilons must be speci-
fied for every objective, these values are defined by the properties of the application not
the evolutionary algorithm. In any optimization application, it is recommended that the
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user specify the publishable precision or error tolerances for their objectives to avoid
wasting computational resources on unjustifiably precise results.

2.2.2. The Strength Pareto Evolutionary Algorithm 2 (SPEA2)

SPEA2 represents an improvement from the original Strength Pareto Evolutionary Al-
gorithm (Zitzler and Thiele, 1999; Zitzler et al., 2001). SPEA2 overcomes limitations of5

the original version of the algorithm by using an improved fitness assignment, bounded
archiving, and a comprehensive assessment of diversity using k-means clustering.
SPEA2 requires users to specify the upper bound on the number of nondominated
solutions that are archived. If the number of non-dominated solutions found by the
algorithm is less than the user-specified bound then they are copied to the archive10

and the best dominated individuals from the previous generation are used to fill up the
archive. If the size of non-dominated set is larger than the archive size, a k-means clus-
tering algorithm comprehensively assesses the distances between archive members.
A truncation scheme promotes diversity by iteratively removing the individual that has
the minimum distance from its neighbouring solutions. The archive update strategy in15

SPEA2 helps to preserve boundary (outer) solutions and guide the search using solu-
tion density information. SPEA2 has 4 primary parameters that control the algorithm’s
performance: (1) population size, (2) archive size, (3) the probability of mating, and (4)
the probability of mutation. For a more detailed description, see the work of Zitzler et
al. (Zitzler and Thiele, 1999; Zitzler et al., 2001)20

2.2.3. Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM-UA)

MOSCEM-UA was presented by Vrugt et al. (2003a). The algorithm combines a
Markov Chain Monte Carlo sampler with the Shuffle Complex Evolutionary algorithm
(SCE-UA) algorithm (Duan et al., 1992), while seeking Pareto optimal solutions us-
ing an improved fitness assignment approach based on the original SPEA (Zitzler and25

Thiele, 1999). It modifies the fitness assignment strategy of SPEA to overcome the

2473

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2465/hessd-2-2465_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2465/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 2465–2520, 2005

Effective
multiobjective

hydrologic model
calibration

P. Reed et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

drawback that individuals dominated by the same archive members are assigned the
same fitness values (Zitzler et al., 2001; Vrugt et al., 2003a). MOSCEM-UA combines
the complex shuffling of the SCE-UA (Duan et al., 1992, 1993) with the probabilistic
covariance-annealing process of the Shuffle Complex Evolution Metropolis-UA algo-
rithm (Vrugt et al., 2003b). Firstly, a uniformly distributed initial population is divided5

into complexes within which parallel sequences are also created after sorting the pop-
ulation based on fitness values. Secondly, the sequences are evolved iteratively to-
wards a multivariate normally distributed set of solutions. The moments (mean and
covariance matrix) of the multivariate distribution change dynamically because they
are calculated using the information from current evolution stage of sequences and10

associated complexes. Finally, the complexes are reshuffled before the next sequence
of evolution. For a detailed introduction to the algorithm, please refer to the research
of Vrugt et al. (2003a, b).

Based on the findings of Vrugt et al. (2003a) and our own analysis, MOSCEM-UA’s
performance is most sensitive to two parameters: population size and the number of15

complexes/sequences. All of the remaining parameters (i.e., reshuffling and scaling)
were set to the default values in a C source version of the algorithm we received from
Vrugt in June 2004.

2.2.4. Similarities and differences between the algorithms

ε-NSGAII, SPEA2, and MOSCEM-UA all seek the Pareto optimal set instead of a single20

solution. Although these algorithms employ different methodologies, ultimately they all
seek to balance rapid convergence to the Pareto front with maintaining a diverse set of
solutions along the full extent of an application’s tradeoffs. Diversity preservation is also
important for limiting premature-convergence to poor approximations of the true Pareto
set. The primary factors controlling diversity are population sizing, fitness assignment25

schemes that account for both Pareto dominance and diversity, and variational opera-
tors for generating new solutions in unexplored regions of a problem space.

A key characteristic of ε-NSGAII is the algorithm’s ability to adapt population size
2474
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commensurate to problem difficulty and promote diversity using “time continuation”
(i.e., injecting random solutions when search progress slows). Both SPEA2 and
MOSCEM-UA are impacted by population size, but currently trial-and-error analysis
is necessary to determine an appropriate search population size. With respect to the
fitness assignment, these three algorithms all use the Pareto dominance concept. Both5

MOSCEM-UA and SPEA2 use the fitness assignment method based on the original fit-
ness assignment approach employed in SPEA. MOSCEM-UA improves the original
method by adding Pareto rank when assigning fitness values to dominated individuals
in the population. SPEA2 considers both dominated and nondominated individuals as
well as their density information when applying fitness assignment. The density func-10

tion is used to differentiate individuals with the same raw fitness values by calculating
the distance from current point being considered to a predefined nearest point (Zit-
zler et al., 2001). ε-NSGAII adopts the ε-dominance grid based approach for fitness
assignment and diversity preservation (Laumanns et al., 2002).

Regarding the whole evolution process, MOSCEM-UA is significantly different from15

SPEA2 and ε-NSGAII although all of them randomly initialize their search popula-
tions. As discussed above, MOSCEM-UA uses the complex shuffling method and the
Metropolis-Hastings algorithm to conduct search. Offspring are generated using a mul-
tivariate normal distribution developed utilizing information from the current draw of the
parallel sequence within a complex. The acceptance of a new generated candidate20

solution is decided according to the scaled ratio of candidate solution’s fitness to cur-
rent draw’s fitness of the sequence. Complex shuffling helps communication between
different complexes and promotes solution diversity.

Comparatively, SPEA2 and ε-NSGAII adopt the traditional evolutionary operators
(e.g. selection, crossover and mutation) in searching. They both use binary tournament25

selection, simulated binary crossover (SBX), and polynomial mutation. And both of
them maintain external archives which store the best solutions found from the random
initial generation to final termination generation. However, these two algorithms are
different in many aspects. After population initialization, SPEA2 assigns fitness to each
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individual in the population and the archive. Nondominated sorting is conducted on all
these individuals and then the nondominated solutions are copied to the archive of
next generation. Because the archive is fixed in size, either a truncation scheme must
be implemented or the best dominated solutions must be used to fill up the archive.
Then binary tournament selection with replacement is applied to select individuals for5

a mating pool. The new population in SPEA2’s next generation is created by applying
crossover and mutation operators to the mating pool. The process is repeated until a
user specified termination criterion is met.
ε-NSGAII initiates the search with an arbitrarily small number of individuals (e.g., 10-

individuals). Binary tournament selection, SBX crossover, and mutation operators are10

implemented to generate the first child population. Pareto ranks are assigned to the in-
dividuals from the parent and children populations. Solutions are selected preferentially
based on their non-domination rank. Crowding distances (i.e., Euclidean norms for
measuring distance from neighbour solutions) are used to distinguish between the in-
dividuals with the same non-domination rank (i.e., larger crowding distances are picked15

preferentially to promote diversity). At the end of each generation, the external archive
is updated with the ε-non-dominated solutions. The archive size and population size
change dynamically based on the total number of ε non-dominated solutions stored.
In this study, a single termination criterion based on the maximum number of function
evaluations was used for all of the algorithms (i.e., they all had identical numbers of20

function evaluations) to ensure a fair comparison.

3. Case studies

3.1. Case study 1: the test function suite

The first test case is composed of a standardized suite of computer science test prob-
lems (Zitzler et al., 2000; Deb, 2001; Coello Coello et al., 2002), which are used to25

validate the algorithms’ abilities to perform global search effectively, efficiently, and reli-
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ably for a broad range of problem types. This is the first study to test MOSCEM-UA on
this suite of problems. The test function suite has been developed collaboratively by
the EMO community (Coello Coello et al., 2002; Deb et al., 2002) as standardized per-
formance tests where new algorithms must meet or exceed the performance of current
benchmark algorithms such as SPEA2.5

Since these test functions have been used very broadly in the EMO literature (Zit-
zler et al., 2000; Deb, 2001; Coello Coello et al., 2002; Kollat and Reed, 2005a), their
detailed formulations will not be presented here. Table 1 provides an overview of the
number of the decision variables used, their ranges, and the problems’ characteristics.
The test functions are labeled T1, T2, T3, T4, and T6 following the naming convention10

of Zitzler et al. (2000). All of the test functions have been implemented in the stan-
dard forms used in the EMO literature. Generally, T1 and T2 are considered relatively
straightforward convex and non-convex test problems. T3 tests algorithms’ abilities to
find discontinuous convex sets of solutions. T4 and T6 are the most challenging of
the test functions requiring algorithms to overcome large numbers of local fronts and15

non-uniformly distributed solution spaces, respectively.

3.2. Case study 2: Leaf River watershed

The Leaf River SAC-SMA test case represents a benchmark problem within the water
resources literature, which has been used extensively for developing tools and strate-
gies for improving hydrologic model calibration (Duan et al., 1992; Yapo et al., 1998;20

Boyle et al., 2000; Wagener et al., 2001; Vrugt et al., 2003a, b). Readers interested
in the full details of the Leaf River case study’s dataset should reference earlier works
(e.g., Sorooshian et al., 1993). The Leaf River case study used in this paper has been
developed based on the original studies used to develop and demonstrate MOSCEM-
UA (Vrugt et al., 2003a, b). The Sacramento Soil Moisture Accounting model is a 1625

parameter lumped conceptual watershed model used for operational river forecasting
by the National Weather Service throughout the US (see Burnash, 1995, for more de-
tails on the model). All three algorithms searched the same 13 SAC-SMA parameters
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(3 parameters are commonly fixed a priori) and parameter ranges as were specified
by Vrugt et al. (2003a). The algorithms were tested on their ability to quantify a 2-
objective tradeoff based on a root-mean square error (RMSE) problem formulation.
The first objective was formulated using a Box-Cox transformation of the hydrograph
(z=[(y+1)λ−1]/λ where λ=3) as recommended by Misirli et al. (2003) to reduce the5

impacts of heteroscedasticity in the RMSE calculations (also increasing the influence
of low flow periods). The second objective was the non-transformed RMSE objective,
which is largely dominated by peak flow prediction errors due to the use of squared
residuals. The best known approximation set generated for this problem is discussed
in more detail in the results of this study (see Fig. 5a).10

A 65-day warm-up period was used in this study based on the methodological recom-
mendations of Vrugt et al. (2003a). A two-year calibration period was used in this study
from 1 October 1952 to 30 September 1954. The calibration period was shortened for
this study to control the computational demands posed by rigorously assessing the
EMO algorithms. A total of 150 EMO algorithm trial runs were used in this case study15

(i.e., 50 trials per algorithm). Each EMO algorithm trial run utilized 100,000 SAC-SMA
model evaluations, yielding a total of 15 000 000 SAC-SMA model evaluations used
in our Leaf River case study analysis. Reducing the calibration period improved the
computational tractability of our analysis. The focus of this study is on assessing the
performances of the three EMO algorithms which are captured in the 2 year calibration20

period. In actual operational use of the SAC-SMA for the Leaf River 8 to 10 year cal-
ibration periods are used to account for climatic variation between years (Boyle et al.,
2000).

3.3. Case study 3: Shale Hills watershed

The Shale Hills experimental watershed was established in 1961 and is located in the25

north of Huntington County, Pennsylvania. It is located within the Valley and Ridge
province of the Susquehanna River Basin in north central Pennsylvania. The data
used in this study was supplied by a comprehensive hydrologic experiment conducted
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in 1970 on a 19.8 acre sub-watershed of the Shale Hill experimental site. The experi-
ment was led by Jim Lynch of the Pennsylvania State University’s Forestry group with
the purpose of exploring the physical mechanisms of the formation of stream-flow at the
upland forested catchment and to evaluate the impacts of antecedent soil moisture on
both the volume and timing of the runoff (see Duffy, 1996). The experiment was com-5

posed of an extensive below canopy irrigation network for simulating rainfall events as
well as a comprehensive piezometer network, 40 soil moisture neutron access tubes
and 4 weirs for measuring flow in the ephemeral channel. Parameterization of the inte-
grated model for the Shale Hills was also supported by more recent site investigations,
where Lin et al. (2005) extensively characterized the soil and groundwater properties10

of the site using in-situ observations and ground penetrating radar investigations.

3.3.1. Integrated model description

The hydrologic model being calibrated in this study is a semi-distributed version of the
integrated hydrologic model being developed by Duffy et al. (1996, 2004), Qu (2004).
This model integrates watershed processes within the terrestrial hydrologic cycle over a15

wide range of time scales. It couples surface, subsurface and channel states within the
hillslope and watershed. The model strategy is to transform partial differential equa-
tions (PDEs) to ordinary differential equations (ODEs), using the semi-discrete finite
volume method (SD FVM) (Duffy, 2004). Specifically, the spatial domain is decom-
posed into different zones (response units). Different ODEs are created to simulate20

different hydrologic processes within each zone. The ODE system within each zone
is termed a “Model Kernel”. An overall ODE system is created by combining all of the
model kernels. The ODE system is solved using an implicit Runge-Kutta ODE solver
(RADAU IIA) of order 5 (Hairer and Wanner, 1996). As noted by Duffy (1996, 2004),
by taking advantage of the finite volume method, the model strategy has the capability25

of capturing the “dynamics” in different processes while maintaining the water balance
(Qu, 2004). The model also has the flexibility of easily adding/eliminating (switching
on/off) the key hydrologic processes for a system.
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As discussed above, the water budget is computed using a global model kernel com-
posed of ODEs representing each of the watershed zones or river sections. The num-
ber of ODEs increases linearly with the number of decomposed spatial zones within
the watershed. In the Shale Hills application, the watershed is decomposed into 7
zones and 4 river sections connected to each other between the zones. The decom-5

posed domain and the topology of the zones and the river sections are shown in Fig. 2.
The domain decomposition results in 32 ODEs solved implicitly using a solver that has
been proven to be highly effective for ODE systems (Guglielmi and Hairer, 2001). The
model simulation time is substantial for this study given that the EMO algorithms will
have to evaluate thousands of simulations while automatically calibrating model param-10

eters. On a Pentium 4 Linux workstation with a 3 gigahertz processor and 2 gigabytes
of RAM, a one month simulation of Shale Hills using a 1 hour output time interval re-
quires 120 s of computing time. If 5000 model evaluations are used to optimize model
parameters, then a single EMO run will take almost 7 days. This study highlights how
trial-and-error analysis of EMO algorithm performance can have a tremendous cost in15

both user and computational time.

3.3.2. Problem formulation

Multiobjective calibration uses multiple performance measures to improve model pre-
dictions of distinctly different responses within a watershed’s hydrograph simultane-
ously (e.g., high flow, low flow, average flow). For the Shale Hills case study, the20

calibration objectives were formulated to generate alternative model parameter groups
that capture high flow, average flow, and low flow conditions for the Shale Hills test
case using the three search objectives given in Eqs. (3)–(5). The problem formulations
used in this study build on prior research using RMSE and the heteroscedastic max-
imum likelihood estimator (HMLE) measures (Sorooshian and Dracup, 1980; Yapo et25

al., 1996, 1998; Gupta et al., 1998; Boyle et al., 2000; Madsen, 2003; Ajami et al.,
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2004).

Average RMSE : f1(θ) =

[
1
N

N∑
i=1

w1i
[
Qobs,i −Qsim,i(θ)

]2]1/2

(3)

High flow RMSE : f2(θ) =

 1
Mp∑
j=1

nj

Mp∑
j=1

nj∑
i=1

w2i
[
Qobs,i −Qsim,i(θ)

]2


1/2

(4)

Low flow RMSE : f3(θ) =

 1
Ml∑
j=1

nj

Ml∑
j=1

nj∑
i=1

w3i
[
Qobs,i −Qsim,i(θ)

]2


1/2

(5)

where Qobs,i is the observed discharge at time i ; Qsim,i(θ) is the simulated discharge; N5

is the total number of time steps in the calibration period; Mp is the number of peak flow
events; Ml is the number of low flow events; nj is the number of time steps in peak/low
flow event number j ; w1, w2 and w3 are the weighting functions; θ is the set of model
parameters to be calibrated.

In this study, the weighting coefficients for high flow and low flow are adapted forms10

of HMLE statistics (Yapo et al., 1996). The weights for high flow errors are set to the
square of the observed discharges to emphasize peak discharge values. The weights
for low flow are set to give prominence to low flow impacts on the estimation errors. The
weighting coefficient for average flow is set to 1 and thus the error metric for average
flow is the standard RMSE statistic. Equation (6) provides the weighting coefficients15
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used to differentiate different hydrologic responses.

w1 = 1 w2 = Q2
obs w3 =

(
1

Q2
obs

)1/
Ml∑
j=1

nj

(6)

Preliminary sensitivity analysis showed that the model was very sensitive to the initial
surface storage, but the impacts of the initial surface storage were attenuated within
the first 100 h. Figure 3 illustrates the Shale Hills calibration period including a 100 h5

warm up period to reduce the impacts of the initial conditions. High flow and low flow
classifications were made based on points of inflection within the hydrograph. Table 2
overviews the parameters being calibrated for the Shale Hills case study. For overland
flow the convergence time scale of a hill slope η can not be estimated analytically so the
parameter was selected for calibration. The saturated soil hydraulic conductivity Ks is10

calibrated as well as the empirical constants (α, β) in the van Genuchten soil functions.
In our preliminary sensitivity analysis, Manning’s coefficient (n) and the saturated hy-
draulic conductivity of river reaches were identified to significantly impact river routing
and groundwater-stream interactions. Both of these parameters are calibrated. In the
Shale Hills case study, a total of 36 parameters are being calibrated (7 spatial zones *15

4 parameters + 4 river sections * 2 parameters). The parameter ranges were specified
based on both field surveys (Qu, 2004; Lin et al., 2005) and recommendations from
literature (Carsel, 1988; Dingman, 2002).

4. Description of the computational experiment

4.1. Algorithm configurations and parameterizations20

In an effort to ensure a fair comparison between ε-NSGAII and each of the other algo-
rithms, significant effort has been focused on seeking optimal configurations and pa-
rameterizations for SPEA2 and MOSCEM-UA using trial-and-error analysis and prior
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literature. The broadest analysis of the impacts of alternative algorithm configurations
was done for the test function suite, since this test case has the smallest computational
demands. The algorithms were allotted 15 000 function evaluations for each trial run
when solving each problem within the test function suite based on the recommenda-
tions and results of prior studies (Zitzler et al., 2001; Kollat and Reed, 2005a). For5

each problem in the test function suite a total of 350 trial runs were performed (i.e., 1
configuration for ε-NSGAII tested for 50 random seeds, 4 MOSCEM-UA configurations
tested for 50 random seeds each yielding 200 trial runs, and 2 SPEA2 configurations
tested for 50 random seeds each yielding 100 trial runs).

Since ε-NSGAII and SPEA2 use the same mating and mutation operators, the algo-10

rithms’ probabilities of mating where set equal 1.0 and their probabilities of mutation
were set equal to 1/L where L is the number of decision variables as has been rec-
ommended extensively in the literature (Zitzler et al., 2000, 2001; Deb, 2001; Coello
Coello et al., 2002). ε-NSGAII utilized an initial population size of 10 individuals. For
the test function suite SPEA2’s two configurations both used an archive size of 10015

based on prior studies (Zitzler et al., 2000, 2001; Deb, 2001; Coello Coello et al., 2002)
and two different population sizes (N=100) and (N=250). MOSCEM-UA’s configura-
tions tested the impacts of increasing population sizes N and increasing the numbers
of complexes C: (N=100, C=2), (N=250, C=2), (N=250, C=5) and (N=1000, C=5).
The largest population size and number of complexes tested for MOSCEM-UA were20

based on a personal communication with the Jasper Vrugt, the algorithm’s creator.
ε-NSGAII utilized the same configuration as was used for the test function suite on

the Leaf River and Shale Hills case studies in an effort to test the algorithms’ robustness
in the absence of trial-and-error analysis. Based on the SPEA2’s performance on
the test function suite and trial-and-error analysis the algorithm’s population size was25

set equal to 100 for both the Leaf River and Shale Hills test cases. A key challenge
in maximizing the performance of SPEA2 lies in specifying an effective archive size
without a priori knowledge of the Pareto set. SPEA2’s performance is very sensitive
to archive size. Trial-and-error analysis revealed that if the algorithm’s archive is too
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small than its overall performance suffered. Moreover, setting the SPEA2 archive to
be very large also reduced the algorithm’s search effectiveness because its diversity
enhancing clustering operator is under utilized. For the Leaf River and Shale Hills case
studies, SPEA2’s performance was maximized by setting the archive size equal to 500
and 100, respectively, based on the average archive sizes attained by the ε-NSGAII.5

Note ε-NSGAII automatically sizes its archive based on the number of ε-nondominated
solutions that have been found.

For the Leaf River case study, MOSCEM-UA utilized a population size of 500 individ-
uals and 10 complexes as was used by Vrugt et al. (2003a) in the original development
and demonstration of the algorithm. As will be discussed in the results presented in10

Sect. 5 increasing the population size and number of complexes used by MOSCEM-UA
has a very large impact on the algorithm’s solution time, which significantly impacted
our analysis of the Shale Hills test case. For the Shale Hills case study, MOSCEM-UA
was tested for a population size of 250 with 2 or 5 complexes to ensure that a single
run would complete in 7 days based on the maximum runtimes we were allotted for the15

LION-XO computing cluster. The computational constraints limiting our ability to use
larger population sizes and more complexes in the Shale Hills trial runs for MOSCEM-
UA are discussed in greater detail in Sect. 5.

4.2. Performance metrics

The performances of all of the EMO algorithms tested in this study were assessed20

using metrics designed to answer two questions: (1) how good are the approximation
sets found by the EMO algorithms? and (2) which of the solution sets are better than
the others? Deb and Jain (2002), stress that EMO performance assessments must
account for two separate and often conflicting approximation set properties: (1) con-
vergence – the distance from the reference set of optimal solutions, and (2) diversity –25

how well the evolved set of solutions represents the full extent of the tradeoffs that exist
between an application’s objectives. Performance metrics that measure these proper-
ties are termed unary indicators because their values are calculated using one solution
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set and they reveal specific aspects of solution quality (Zitzler et al., 2003).
Two unary metrics, the ε-indicator (Zitzler et al., 2003) and the hypervolume indicator

(Zitzler and Thiele, 1999) were selected to assess the performances of the algorithms.
The unary ε-indicator measures how well the algorithms converge to the true Pareto
set or the best known approximation to the Pareto set. The unary ε-indicator repre-5

sents the smallest distance that an approximation set must be translated to dominate
the reference set, so smaller indicator values are preferred. The unary hypervolume
metric measures how well the algorithms performed in identifying solutions along the
full extent of the Pareto surface or its best known approximation (i.e., solution diversity).
The unary hypervolume metric was computed as the difference between the volume10

of the objective space dominated by the true Pareto set and volume of the objective
space dominated by the approximation set. Ideally, the hypervolume metric should be
equal to zero. For more details about the descriptions and usages of these metrics,
see Zitzler and Thiele (1999); Zitzler et al. (2003); Kollat and Reed (2005b).

In addition to the unary metrics discussed above, performance was also assessed15

using a binary metric. The binary metric was implemented by combining the unary
ε-indicator metric with an interpretation function. Zitzler et al. (2003) formulated the in-
terpretation function to directly compare two approximation solution sets and conclude
which set is better or if they are incomparable. The term “binary” refers to the metric’s
emphasis on comparing the quality of two approximation sets. The ε-indicator and the20

interpretation function are formulated as shown in Eqs. (7) and (8) separately:

Iε(A,B) = max
z2∈B

min
z1∈A

max
1≤i≤n

z1
i

z2
i

(7)

F = (Iε(A,B) ≤ 1 ∧ Iε(B,A) > 1) (8)

Where z1∈A and z2∈B are objective vectors; A and B are two approximation sets; F is
an interpretation function. If A is not better than B and B is not better than A, then the25

sets are incomparable. When F is true, it indicates that A is better than B. Similarly,
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changing the order of A and B, the decision about whether B is better than A can be
made.

The binary ε-indicator metric provides a direct way of ranking the quality of approx-
imation sets generated using different initial random populations and/or different algo-
rithm configurations. The results of each trial run are compared to the results of all5

other trial runs in the comparison pool. Each trial run is given a rank according to the
number of trial runs that exceed its performance in terms of the binary ε-indicator met-
ric. The best trial runs are assigned a rank of one, while a rank of two is assigned to
the trial runs that have the second best results. The process is repeated until every
trial run is assigned a rank. The trial runs in the same rank are incomparable to one10

another. In this study, the binary ε-indicator ranking results are presented in terms of
the ratio of trial runs that attain top ranks (i.e., ranks of 1 or 2).

5. Results

5.1. Optimization results for the test function suite

As described in Sect. 4.2, the binary ε-indicator metric provides performance rankings15

for alternative algorithm configurations and cross-algorithm performance. For each
test problem a total of 350 trial runs were performed (i.e., 1 configuration for ε-NSGAII
tested for 50 random seeds, 4 MOSCEM-UA configurations yielding 200 random seed
trials, and 2 SPEA2 configurations yielding 100 random seed trials). After ranking the
trial runs, we present the ratio of the number of top ranking runs out of the 50 trials20

used to test each of the algorithms’ configurations (see Table 3).
The best configurations for SPEA2 and MOSCEM-UA are (N=100) and (N=1000,

C=5), respectively. The ε-NSGAII has the best overall binary ε-indicator metric rank-
ings for the test function suite.

The unary hypervolume and ε-indicator metrics measure solution diversity and algo-25

rithm convergence to the true Pareto fronts, respectively. These unary metrics provide
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a more detailed understanding of the dynamic performances of the algorithms in terms
of efficiency, effectiveness, and reliability. The means and standard deviations of the
final optimization results for the best configurations (ε-NSGAII has only one configura-
tion) are summarized in Table 4.

Recall that the unary ε-indicator represents the smallest distance that an approxima-5

tion set must be translated to dominate the reference set so smaller indicator values
are preferred. Likewise, the unary hypervolume metric is the difference between the
volume of the objective space dominated by the true Pareto set and volume of the
objective space dominated by the approximation set. Ideally, the hypervolume metric
should be equal to zero.10

In Table 4, the ε-NSGAII has the best overall average performance in both metrics
for the test functions. In addition, the relatively small standard deviations reveal that
ε-NSGAII is reliable in solving the test functions. SPEA2 is also effective and reliable
in solving the test functions. Both ε-NSGAII and SPEA2 are superior to MOSCEM-UA.
Figure 4 illustrates the variability in the algorithms’ performances by presenting runtime15

results for the ε-indicator distance metric.
The plots show the results of all 50 random seed trials with the mean performance

indicated by a solid line, the standard deviation by a dashed line, and the range of
random seed performance indicated by the shaded region. Visualizing the results in
this manner allows for comparison between the dynamics and reliability (i.e., larger20

shaded regions indicate lower random seed reliability) of each algorithm.
Figure 4 confirms that ε-NSGAII was both the most efficient and effective of the

algorithms attaining very close approximations of the true Pareto sets in under 2500
evaluations. SPEA2 typically requires 7500 evaluations to attain equivalent metric val-
ues relative to ε-NSGAII. MOSCEM is the least reliable and efficient of the algorithms25

for the test function suite, failing to attain competitive results in 15 000 evaluations.
Dynamic plots of the hypervolume metric showed very similar results to the runtime
unary ε-indicator results shown in Fig. 4. The most significant performance differences
between the algorithms resulted for the multi-modal T4 problem. The performance
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rankings in Table 3 show that MOSCEM-UA generally failed to converge to the Pareto
front for T4. SPEA2’s dynamic search results for T4 (see Fig. 4) are much better than
MOSCEM-UA but its final solution set is still far away from the Pareto front as evi-
denced by its poor ranking results in Table 3. Only ε-NSGAII successfully converges to
the true Pareto front for T4 with high reliability. In terms of elapsed computational time,5

the ε-NSGAII is an order of magnitude faster than that of SPEA2, and the elapsed
computational time of SPEA2 is an order of magnitude faster than MOSCEM-UA. For
example, in solving T1, the average computational times required by ε-NSGAII, SPEA2
and MOSCEM-UA are 1.90 s, 21.75 s, and 397.42 s, respectively. Note this difference
in computational efficiency had dramatic impacts on the computational times required10

for our test function analysis, where several days were required for MOSCEM-UA, sev-
eral hours for SPEA2, and several minutes for ε-NSGAII.

Averaged performance metrics are meaningful only in cases when the EMO algo-
rithms’ metric distributions are significantly different from one another. In this study,
the Mann-Whitney test (Conover, 1999) was used to validate that the algorithms at-15

tained statistically significant performance differences. The null hypothesis for the tests
assumed that metric distributions for any two algorithms are the same. The Mann-
Whitney test showed a greater than 99% confidence that performance metric scores
for the ε-NSGAII are significantly different those of MOSCEM-UA for all of the test func-
tions. When comparing SPEA2 and MOSCEM-UA it was found that the algorithms’20

performance differences on T2 are not statistically significant. On all of the remaining
test functions SPEA2’s superior performance relative to MOSCEM-UA was validated
at greater than a 99% confidence level. The ε-NSGAII’s performance was statistically
superior to SPEA2 at the 99% confidence level for all of the test functions except for T3.
ε-NSGAII and SPEA2 did not attain a statistically meaningful performance difference25

on T3.
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5.2. Optimization results for the Leaf River case study

The performance metrics utilized in this study require a reference Pareto set or the
best known approximation to the Pareto optimal set. The best known approximation
set was generated by collecting all of the nondominated solutions generated from the
150 trial runs used for this case study (i.e., 50 trial runs per algorithm). Figure 5 shows5

the solutions contributed by each algorithm for the 2-objective tradeoff between the
Box-Cox transformed RMSE metric and the standard RMSE metric.
ε-NSGAII found 58% of the reference set and the remaining 42% of the reference set

was generated by SPEA2. MOSCEM-UA was unable to contribute to the best solutions
that compose the reference set. Table 5 shows that SPEA2 was able to attain the best10

binary ε-indicator metric rankings followed by ε-NSGAII and lastly MOSCEM-UA.
Table 6 shows that SPEA2 had the best average performance in terms of both the

ε-indicator and hypervolume unary metrics. The Mann-Whitney test validated that
SPEA2’s results were different from both MOSCEM-UA and ε-NSGAII at the 99% con-
fidence level.15

The results of Table 6 demonstrate that average performance metrics can be mis-
leading without statistical testing. Although MOSCEM-UA has superior mean hyper-
volume and ε-indicator distance values relative to ε-NSGAII, performance differences
between the algorithms were not statistically significant (i.e., the null hypothesis in
the Mann-Whitney test could not be rejected). In fact, all three algorithms had sig-20

nificant ranges of performance for this test case because of the presence of a large
false front (i.e., the locally nondominated front shown in Fig. 5), which caused some of
the algorithms’ runs to miss the best known front. Figure 6 illustrates the variability in
the algorithms’ performances by presenting runtime results for the ε-indicator distance
metric.25

Figure 6 verifies that SPEA2 has the best mean performance over the full duration
of the run. The figure also shows that SPEA2 was slightly more reliable relative to
ε-NSGAII and MOSCEM-UA. Figure 6 also verifies that MOSCEM-UA and ε-NSGAII
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have nearly identical runtime performance distributions. Dynamic plots for hypervol-
ume showed similar runtime distributions for the three algorithms. Figure 7 illustrates
dynamic results for the best performing trial runs for each of the algorithms.

The plot shows that ε-NSGAII is able to attain superior hypervolume (diversity)
and ε-indicator distance (convergence) metrics in less than 5000 model evaluations.5

SPEA2 and MOSCEM-UA required between 12 000 and 25 000 model evaluations to
attain equivalent performance metric values. Overall SPEA2 had superior performance
for this test case while MOSCEM-UA and ε-NSGAII had comparable performances.

5.3. Optimization results for the Shale Hills test case

For the Shale Hills test case, MOSCEM-UA’s parameters were challenging to set10

given the computational expense of the integrated hydrologic model. As discussed
in Sect. 3.3.1, the Shale Hills test case poses a tremendous computational challenge
where a single algorithm trial run requires approximately a week of computation. Given
the magnitude of simulation evaluation times, the computational time spent in algo-
rithmic search for both ε-NSGAII and SPEA2 is negligible. Unfortunately, MOSCEM-15

UA’s algorithmic time is not negligible for increasing population sizes and increasing
numbers of complexes because the algorithm utilizes a matrix inversion as part of its
stochastic search operators. The severity of MOSCEM-UA’s algorithmic inefficiency is
highlighted in the test function analysis where ε-NSGAII was able to solve the test func-
tion suite for 50 random seeds in times on the order of minutes whereas MOSCEM-UA20

required days for population sizes greater than 250. For the Shale Hills case study,
MOSCEM-UA was tested for a population size of 250 with 2 or 5 complexes because
increasing these parameters caused a single run to exceed the 7 day maximum run-
times we were allotted for the LION-XO computing cluster. The severe computational
demands of this test case required that we assess the algorithms using 15 random25

seed trials. If the 60 trial runs (i.e., 4 algorithm configurations * 15 random seed tri-
als) were run on a single Pentium 4 Linux workstation with a 3 gigahertz processor
and 2 gigabytes of RAM this test case would have required approximately 420 days of

2490

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2465/hessd-2-2465_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2465/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 2465–2520, 2005

Effective
multiobjective

hydrologic model
calibration

P. Reed et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

continuous computation.
The best known approximation set was generated by collecting the nondominated

solutions from the 60 trial runs used for this case study. Figure 8a shows the best
known solution set in the 3-objective solution space defined for this test case. Figure 8b
projects the solution set onto the 2-objective planes to better illustrate the tradeoffs that5

exist between low, average, and peak flow calibration errors.
Figure 9 shows that ε-NSGAII found 94% of the reference set and the remaining 6%

of the reference set was generated by SPEA2. MOSCEM did not contribute to the best
solutions that compose the reference set.

Table 7 shows that SPEA2 was able to attain slightly better binary ε-indicator metric10

rankings relative to the ε-NSGAII. As indicated by Fig. 9 and Table 7 MOSCEM had
difficultly in generating highly ranked runs for this test case. Although Table 8 shows
that SPEA2 had the best average performance in terms of the ε-indicator and hyper-
volume unary metrics, the Mann-Whitney test showed that SPEA2’s results were not
statistically different from ε-NSGAII. Relative to MOSCEM-UA, SPEA2 and ε-NSGAII15

attained superior results that were confirmed to be statistically different at the 99%
confidence level.

Figures 10 and 11 show the dynamic results for the full distribution of trials and for
the best single runs for the three algorithms, respectively. Performance metric differ-
ences between SPEA2 and ε-NSGAII resulted from a single trial run. As shown in20

Table 7 a single ε-NSGAII run failed to attain a top binary ranking, which is reflected
in the upper bound of the shaded region in Fig. 10. This single run highly biased both
the mean and standard deviations for the unary metrics given in Table 8 for ε-NSGAII.
The Mann-Whitney test validates that the remaining ε-NSGAII trial runs were not sta-
tistically different from SPEA2. For MOSCEM-UA, Table 7 in combination with Fig. 1025

show that more than 60 percent of the algorithm’s trial runs failed to solve this test
case. Figures 9 and 11 show that ε-NSGAII’s best runs were superior relative to the
other algorithms’ results, generating nearly all of the reference set.

As was noted for the Leaf River case study, SPEA2’s performance for the Shale
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Hills test case is heavily impacted by its archive size. It has been widely recognized
(Coello Coello et al., 2002) that SPEA2’s k-means clustering diversity operator allows
the algorithm to attain highly diverse solution sets for high-order Pareto optimization
problems (i.e., problems with 3 or more objectives). This operator is only active in
the search process if the archive is sized appropriately, which in typical applications5

will require trial-and-error analysis. For this test case every trial run would require a
week of computing time. It should be noted that ε-NSGAII automatically generates
its archive size based on users’ precision goals for each objective. Additionally, the
algorithm starts with a very small population size, which is automatically adjusted to
enhance search effectiveness. The results presented in this study are conservative10

tests for the ε-NSGAII because SPEA2 and MOSCEM-UA initiate search with at least
an order of magnitude advantage in search population.

6. Discussion

6.1. Relative benefits and limitations of SPEA2

SPEA2 is an excellent benchmark algorithm for multiobjective hydrologic model cali-15

bration. Overall SPEA2 attained competitive to superior results for most of the prob-
lems tested in this study. The algorithm’s poorest performance occurred on the T4 test
function, which represents a severely difficult multimodal problem with 219 local fronts.
SPEA2’s best overall performance occurred for the Leaf River case study where the
algorithm was far more reliable relative to both the ε-NSGAII and MOSCEM-UA. The20

Leaf River test case is challenging because of its multimodality (see Fig. 5). Our analy-
sis showed that carefully setting the archive size for SPEA2 for this case study enabled
the algorithm to fully exploit its k-means clustering diversity operator to spread solu-
tions across the search space and more reliably escape the false nondominated front
shown in Fig. 5. For the Shale Hills test case, SPEA2 and ε-NSGAII had statistically25

equivalent performance metrics, although SPEA2 was slightly more reliable. SPEA2 is
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generally superior in performance relative to MOSCEM-UA.
The primary strengths of the SPEA2 algorithm lie in the algorithm’s search reliability

and its diversity preservation operator as has been recognized in other studies. In this
study, SPEA2 showed a limited sensitivity to its population sizing and search param-
eters. Other studies (Zitzler et al., 2001; Coello Coello et al., 2002; Deb et al., 2003)5

have shown that SPEA2’s sensitivity to population size often manifests itself in terms
of a performance threshold for very difficult problems where the algorithm fails until the
population is made sufficiently large. In this study, SPEA2’s poor performance on test
function T4 provides an example of this performance threshold. In these cases, it is
very difficult to predict how to appropriately size SPEA2’s population. Significant trial-10

and-error analysis is required. The biggest challenge in maximizing the performance
of SPEA2 lies in specifying an effective archive size without a priori knowledge of the
Pareto set. In practice, this would require significant trial-and-error analysis, which is
problematic for more complex, computationally intensive calibration applications.

6.2. Relative benefits and limitations of MOSCEM-UA15

MOSCEM-UA was the least competitive of the three algorithms tested in this study
failing to effectively solve either the standardized test function suite or the Shale Hills
test case. MOSCEM-UA attained its best performance on the Leaf River case study,
which was used in its development (Vrugt et al., 2003a). On the Leaf River case study,
MOSCEM-UA was inferior to SPEA2 and statistically similar to ε-NSGAII. MOSCEM-20

UA did not contribute to any of the reference sets (i.e., the best overall solutions) for
the two hydrologic calibration applications. The algorithm’s Markov Chain Monte Carlo
sampler in combination with its shuffle complex search operator does not scale well for
problems of increasing size and/or difficulty. MOSCEM-UA’s binary ε-indicator rankings
for all three test cases show that the algorithm is not reliable even with significant25

increases in population size and complex number.
MOSCEM-UA’s primary strength is its estimation of the posterior parameter distri-

butions for hydrologic model parameters (assuming the initial Gaussian assumptions
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made for hydrologic parameters are acceptable to users). Additionally, the algorithm
has a limited number of parameters that need to be specified (i.e., the population size
and number of complexes). MOSCEM-UA is however, critically sensitive to these pa-
rameters. The matrix inversion used in the algorithm’s stochastic search operators
causes MOSCEM-UA’s efficiency to dramatically reduce with increases in population5

size and complexes. The algorithm is best suited for hydrologic model calibration appli-
cations that have small parameter sets and small model evaluation times. In general,
it would be expected that MOSCEM-UA’s performance would be met or exceeded by
either SPEA2 or ε-NSGAII.

6.3. Relative benefits and limitations of ε-NSGAII10

ε-NSGAII attained competitive to superior performance results relative to SPEA2 on
the test function suite and the Shale Hills test case. Overall, ε-NSGAII generated
the majority the reference sets (i.e., best overall solutions) for both hydrologic model
calibration case studies. ε-NSGAII also had the best single run results for both of
the calibration case studies as illustrated in Figs. 7 and 11. The algorithm’s poorest15

performance occurred on Leaf River case study, in which its average performance was
inferior to SPEA2 and statistically equivalent to MOSCEM-UA.

Although ε-NSGAII generated 58% of the reference set for the Leaf River test, its
binary ε-indicator metric rankings (see Table 5) show that the algorithm performed less
reliably than SPEA2. This highlights the biggest limitation impacting ε-NSGAII’s per-20

formance, which is related to its parent algorithm NSGAII’s diversity operator (Deb et
al., 2002). It has been widely reported (Coello Coello et al., 2002; Deb et al., 2003)
that the original NSGAII converges very quickly, but its crowded tournament diversity
operator can fail to promote sufficient diversity for some problems. Although Kollat and
Reed (2005a, b) have demonstrated ε-NSGAII is statistically superior to the original25

NSGAII in terms of both convergence and diversity, ε-NSGAII can still be impacted by
the limitations associated with the crowded tournament operator. For the Leaf River
case study, ε-NSGAII had a reduced reliability relative to SPEA2 because several trial

2494

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2465/hessd-2-2465_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2465/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 2465–2520, 2005

Effective
multiobjective

hydrologic model
calibration

P. Reed et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

runs failed to create sufficiently diverse solutions that could escape the false local front.
As was discussed above, SPEA2’s archive was sized carefully to maximize the effec-
tiveness of its k-means clustering diversity operator, which allowed the algorithm to
escape the local front. It is interesting to note that for the multimodal T4 test function
with 219 local fronts, that ε-NSGAII’s performance is far superior to SPEA2. In this5

instance, ε-NSGAII’s was able to escape local fronts because of the random solutions
injected into the search population during the algorithm’s dynamic changes in popu-
lation size. In the limit, when the algorithm’s ε-dominance archive size stabilizes, the
ε-NSGAII’s dynamic population sizing and random solution injection is equivalent to a
diversity enhancing search operator termed “time continuation” (Goldberg, 2002).10

In this study, ε-NSGAII appears to be superior to MOSCEM-UA and competitive with
SPEA2 for hydrologic model calibration. ε-NSGAII’s primary strength lies in its ease-of-
use due to its dynamic population sizing and archiving which lead to rapid convergence
to very high quality solutions. Overall ε-NSGAII found a majority of the best known so-
lutions for the calibration problems using less than 5000 model evaluations. ε-NSGAII’s15

dynamic population sizing and archive-based preconditioning of search helps eliminate
the need for trial-and-error analysis relative to SPEA2, which is particularly important
for computationally intensive applications like the Shale Hills test case.

7. Conclusions

This study provides a comprehensive assessment of state-of-the-art evolutionary mul-20

tiobjective optimization tools’ relative effectiveness in calibrating hydrologic models.
Three test cases were used to compare the algorithms’ performances. The first test
case is composed of a standardized suite of computer science test problems, which are
used to validate the algorithms’ abilities to perform global search effectively, efficiently,
and reliably for a broad range of problem types. The ε-NSGAII attained the best overall25

performance for the test function suite followed by SPEA2. MOSCEM-UA was not able
to solve the test function suite reliably. The second test case is a benchmark hydro-
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logic calibration problem in which the Sacramento soil moisture accounting model is
calibrated for the Leaf River watershed. SPEA2 attained statistically superior perfor-
mance for this case study in all metrics at the 99% confidence level. MOSCEM-UA and
ε-NSGAII attained results that were competitive with another for the Leaf River case
study. The third test case assesses the algorithms’ performances for a computationally5

intensive integrated hydrologic model calibration application for the Shale Hills water-
shed located in the Susquehanna River Basin in north central Pennsylvania. For the
Shale Hills test case, SPEA2 and ε-NSGAII had statistically equivalent performance
metrics, although SPEA2 was slightly more reliable. MOSCEM-UA’s performance on
the Shale Hills test case was limited by the severe computational costs associated with10

increasing the algorithm’s population size and number of complexes.
Overall, SPEA2 is an excellent benchmark algorithm for multiobjective hydrologic

model calibration. SPEA2 attained competitive to superior results for most of the prob-
lems tested in this study. ε-NSGAII appears to be superior to MOSCEM-UA and com-
petitive with SPEA2 for hydrologic model calibration. The largest challenge in using15

SPEA2 is effectively sizing the algorithm’s archive without prior knowledge of the true
solution set. Trial-and-error analysis is required for maximizing the SPEA2’s perfor-
mance. ε-NSGAII’s primary strength lies in its ease-of-use due to its dynamic popula-
tion sizing and archiving which lead to rapid convergence to very high quality solutions
with minimal user input. MOSCEM-UA is best suited for hydrologic model calibration20

applications that have small parameter sets and small model evaluation times. In gen-
eral, it would be expected that MOSCEM-UA’s performance would be met or exceeded
by either SPEA2 or ε-NSGAII.
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Table 1. Suite of test functions.

Names of Number of Decision Variables Main Features of the Pareto
Test Functions and Parameter Ranges optimal front

T1 m=30; [0, 1] Convex
T2 m=30; [0, 1] Non-Convex counterpart to T1
T3 m=30; [0, 1] Discreteness: Multiple non-contiguous

convex parts
T4 m=10; [0, 1] for the first variable, Multimodality: 219 local fronts

[−5, 5] for others
T6 m=10; [0, 1] Solutions are non-uniformly distributed;

Solution density is lowest near the
front and highest away from the front
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Table 2. Parameters being optimized in the Shale Hills case study.

Parameters Description Units Min. Max. Kernel

Ks Saturated hydraulic conductivity m/h 0.000035 0.15 Zone
η Surface time scale 1/h 0.08 1 Zone
α Empirical constant 1/m 0 7 Zone
β Empirical constant 1.1 2 Zone
n Manning’s coefficient 0.02 0.08 River Section

Ksr Saturated hydraulic conductivity m/h 0.000035 0.3 River Section
of river section
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Table 3. Test function results for the ratios of top trial runs for each configuration of the algo-
rithms based on the binary ε-indicator metric ranking. The values highlighted by bold font are
the best values among the configurations within a specific algorithm, the values indicated by
bold font with underscore are the best values across algorithms.

MOEA Configurations
Top Ranking Ratios

T1 T2 T3 T4 T6

ε-NSGAII (N=10) 50/50 50/50 50/50 50/50 50/50

SPEA2
(N=100) 50/50 9/50 50/50 1/50 47/50
(N=250) 50/50 6/50 45/50 0/50 27/50

MOSCEM-UA

(N=100, C=2) 0/50 0/50 0/50 0/50 6/50
(N=250, C=2) 1/50 0/50 0/50 0/50 12
(N=250, C=5) 0/50 0/50 0/50 0/50 14/50

(N=1000, C=5) 11/50 0/50 0/50 0/50 20/50
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Table 4. Averages and standard deviations of the unary metrics for each algorithm’s best
configuration. AVG stands for mean, STD stands for standard deviation, and bolded entries
highlight the best value attained.

MOEA
Hypervolume ε-Indicator Time (s)

AVG STD AVG STD AVG STD

ε-NSGAII 0.000143 0.000075 0.004119 0.002017 1.90 1.22
T1 SPEA2 0.013144 0.002119 0.016089 0.002391 21.75 0.84

MOSCEM-UA 0.669011 0.473327 0.362347 0.196693 397.42 165.54
ε-NSGAII 0.000291 0.001579 0.009849 0.022170 1.14 0.86

T2 SPEA2 0.530147 0.163352 0.530147 0.495096 11.33 0.79
MOSCEM-UA 0.510789 0.222421 0.460137 0.180662 296.24 18.45
ε-NSGAII 0.037842 0.055236 0.170834 0.210332 1.70 1.18

T3 SPEA2 0.026059 0.009598 0.030789 0.022817 21.18 0.60
MOSCEM-UA 1.075623 0.430695 0.750717 0.348724 307.34 22.14
ε-NSGAII 0.017256 0.042293 0.023307 0.048349 2.34 1.61

T4 SPEA2 1.652341 0.606150 1.934984 0.659157 23.38 0.64
MOSCEM-UA 51.030919 6.691913 49.399170 7.289342 732.71 89.64
ε-NSGAII 0.015059 0.001569 0.280904 0.000168 1.42 0.79

T6 SPEA2 0.042271 0.004423 0.280775 0.000000 26.24 2.9
MOSCEM-UA 1.478574 1.066505 0.784151 0.339040 551.93 167.39
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Table 5. Leaf River case study’s ratios of top trial runs for each configuration of the algorithms
based on the binary ε-indicator metric ranking. The best performing algorithm is highlighted in
bold.

MOEA Configurations Top Ranking Ratios

ε-NSGAII (N=10) 23/50
SPEA2 (N=100) 42/50

MOSCEM-UA (N=500, C=10) 13/50
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Table 6. Leaf River case study’s results for the averages and standard deviations of the unary
metrics for each algorithm configuration. AVG stands for mean, STD stands for standard devi-
ation, and bolded entries highlight the best value attained.

MOEA
Hypervolume ε-Indicator Time (s)

AVG STD AVG STD AVG STD

ε-NSGAII 1.106633 1.040681 0.530667 0.477824 828.62 35.78
SPEA2 0.296110 0.432144 0.138678 0.230176 833.08 18.16

MOSCEM-UA 0.548759 0.649281 0.304506 0.334294 1237.91 59.52
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Table 7. Shale Hills case study’s ratios of top trial runs for each configuration of the algorithms
based on the binary ε-indicator metric ranking. The best performing algorithm is highlighted in
bold.

MOEA Configurations Top Ranking Ratios

ε-NSGAII (N=10) 14/15
SPEA2 (N=100) 15/15

MOSCEM-UA
(N=250, C=2) 4/15
(N=250, C=5) 6/15
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Table 8. Shale Hills case study’s results for the averages and standard deviations of the unary
metrics for each algorithm configuration. AVG stands for mean, STD stands for standard devi-
ation, and bolded entries highlight the best value attained.

MOEA
Hypervolume ε-Indicator

AVG STD AVG STD

ε-NSGAII 2.09E+04 1.82E+04 1.1765 0.1947
SPEA2 1.63E+04 7.17E+03 1.1173 0.0446

MOSCEM-UA 4.71E+04 1.93E+04 1.3772 0.2217
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f1 

f2 

Pareto front 

Fig. 1. Example illustration of the Pareto front for a convex, 2-objective minimization problem.
The Pareto front is indicated by the bold curve. The full set of feasible solutions includes the
Pareto front and the solutions within the non-bolded curve.
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Fig. 2. Domain decomposition of the Shale Hills test case.
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Fig. 3. Illustration of the Shale Hills calibration period where a 100 h warm up period was used.
High flow and low flow classifications were made based on the points of inflection within the
hydrograph.
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Fig. 4. Dynamic performance plot for the unary ε-indicator distance metric versus total design
evaluations for the best performing configurations of the ε-NSGAII, SPEA2, and MOSCEM.
Mean performance is indicated by a solid line, the standard deviation by a dashed line, and the
range of performance by the shaded region. The plots were generated using 50 trials for each
algorithm.
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Fig. 5. (a) Reference set generated for the Leaf River test case where RMSE(T) are the
errors for the Box-Cox transform of the hydrograph and RMSE(R) are the errors for the raw
hydrograph. The figure also shows a false front that often trapped the algorithms. (b) The
percentage of the reference set contributed by ε-NSGAII, SPEA2, and MOSCEM-UA.
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Fig. 6. Leaf River test case dynamic performance results for the unary ε-indicator distance
metric versus total design evaluations. Mean performance is indicated by a solid line, the
standard deviation by a dashed line, and the range of performance by the shaded region. The
plots were generated using 50 trial runs for each algorithm.
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Fig. 7. Dynamic performance plots showing the best performing Leaf River trial runs for each
algorithm.
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Fig. 8. (a) Reference set for the Shale Hills test case (b) projections of the reference set onto
the 2-objective planes to highlight the tradeoffs between the objectives.

2517

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2465/hessd-2-2465_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2465/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 2465–2520, 2005

Effective
multiobjective

hydrologic model
calibration

P. Reed et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

MOSCEM-UA(0%)

-NSGAII(94%)

SPEA2(6%)

 
ε

Fig. 9. The percentages of the Shale Hills reference set contributed by ε-NSGAII, SPEA2, and
MOSCEM-UA.
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Fig. 10. Shale Hills test case dynamic performance results for the unary ε-indicator distance
metric versus total design evaluations. Mean performance is indicated by a solid line, the
standard deviation by a dashed line, and the range of performance by the shaded region. The
plots were generated using 15 trial runs for each algorithm.
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Fig. 11. Dynamic performance plots showing the best performing Shale Hills trial runs for each
algorithm.
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