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 This paper deals with the development of an inventory model for time varying demand and 
constant demand; and time dependent holding cost and constant holding cost for case 1 and case 
2 respectively. Previous models incorporating that the holding cost is constant for the entire 
inventory cycle. Mathematical model has been developed for determining the optimal order 
quantity, the optimal cycle time and optimal total inventory cost for both cases. Differential 
calculus is used for finding optimal solution. Numerical examples are given for both cases to 
validate the proposed model. Sensitivity analysis is carried out to analyze the effect of changes in 
the optimal solution with respect to change in various parameters. 
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1. Introduction  
 
It is important to find the optimal stock and optimal cycle time of inventory to meet the future demand. 
The main objective of inventory management is to minimize the inventory carrying cost. In traditional 
EOQ model, the demand rate is assumed to be constant. In real life, it is frequently observed that 
demand for a particular product can be influenced by internal factors such as price, time and 
availability. The change in the demand in response to inventory or marketing decisions is as demand 
elasticity. Thus, when the demand rate is constant, the effect of variability of the holding cost of the 
total inventory cost functions of such models has also been considered. Two types of demand and 
holding cost have been considered (i) time–dependent demand rate and time-dependent holding cost for 
case 1 (ii) constant demand rate and constant holding cost for case 2. An algorithm that minimizes the 
total inventory cost is developed. 

Various models have been proposed for constant demand rate with constant holding cost. Teng et al. 
(2005) developed an EOQ model on optimal pricing and ordering policy under permissible delay in 
payments by assuming that the selling price is necessarily higher than the purchase cost. They 
established an appropriate model for a retailer to found its optimal price and lot size, simultaneously, 
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when the supplier offered a permissible delay in payment. Goyal (1985) developed an EOQ model 
under permissible delay in payments but ignored the difference between the selling price and the 
purchase cost. Aggarwal and Jaggi (1995) extended Goyal’s model for deteriorating items and Liao et 
al. (2000) developed an EOQ model for stock–dependent demand rate under permissible delay in 
payment. Muhlemann and Valtis-Spanopoulos (1980) investigated the constant rate EOQ model but 
with variable holding cost expressed as a percentage of the average value of capital investigated in 
stock. Vander Veen (1967) presented an EOQ inventory system with the holding cost as a nonlinear 
function of inventory. Weiss (1982) investigated traditional EOQ model with the holding cost per unit 
modified as a nonlinear function of the length of time an item was held in stock. Goh (1994) presented 
an EOQ model with general demand and holding cost function and demand rate for an item was 
considered as a function of existing inventory level and carrying cost per unit was allowed to change. 

Alfares (2007) presented the step structure of the holding cost by considering the inventory policy for 
an item with a stock–level dependent demand rate and a storage-time dependent holding cost. The 
holding cost per unit of item per unit time was assumed an increasing function of the time spent in 
storage. The holding cost was assumed to be varying over time in only few inventory models. Giri et al. 
(1996) presented generalized EOQ model for deteriorating items with shortages, in which both the 
demand rate and the holding cost were continuous function of time. Datta and Pal (1990) developed an 
infinite time horizon deterministic inventory system without shortage, which has a level-dependent 
demand rate up to a certain stock-level and a constant demand for the rest of the cycle. Pal et al. (1993) 
presented a deterministic inventory model assuming that the demand rate was stock-dependent and that 
the items deteriorate at a constant rate. The total profit over one production run is maximized by 
numerically solving two non – linear equations.  

In the study of EOQ model, the effect of inflation cannot be ignored. In this direction Hou and Lin 
(2009) presented a cash flow oriented EOQ model with deteriorating items under permissible delay in 
payments. In this study, they also considered cash flow as part of their modeling formulation. Tripathi 
et al. (2010) extended Hou and Lin (2009) model by considering time–dependent demand rate. Liao et 
al. (2000) presented an inventory model with deteriorating items under inflation and permissible delay 
in payment presented. Liao et al. (2000) developed an inventory model for initial stock–dependent 
consumption rate when a delay in payment was permissible. Hou et al. (2006) developed an inventory 
model for deteriorating items with stock–dependent consumption rate and shortages under inflation and 
time discounting. Hou (2006) presented a finite planning horizon inventory model for deterioration 
items with stock–dependent consumption rate and shortages with the effect of inflation and time–value 
of money on replenishment policy. In this direction, Jaggi et al. (2007) presented a model retailer’s 
optimal ordering policy under two-stage trade credit financing. They also developed an inventory 
model under two levels of trade credit policy by assuming the demand was a function of credit period 
offered by the retailer to the customers using discounted cash flow (DCF) approach. A DCF approach 
permits a proper recognition of the timing of cash flows connected with an inventory system under the 
trade credit. Dye et al. (2007) investigated inventory and pricing strategies for deteriorating items with 
shortages using a discounted cash flow approach. They found the optimal inventory and pricing 
strategies maximizing the net present value of the total profit over the infinite horizon. Chung and Liao 
(2009) developed an optimal ordering policy of EOQ model under trade credit depending on the 
ordering quantity from the DCF approach. They discussed the optimal order quantity of the EOQ 
model that is not only dependent on the inventory policy but also on firm credit policy using discounted 
cash- flow (DCF) approach and trade credit depending on the quantity ordered. 

Researchers in the past have established their inventory lot–size models under trade credit financing by 
assuming that the demand rate is constant (Jaggi et al., 2011; Hsu, 2012; Roy et al., 2012). Recently, 
Teng et al. (2012) established an EOQ model with trade credit financing for non–decreasing demand 
and optimal solution and relevant managerial phenomena was also calculated. An EOQ model with 
delay in payments and time varying deterioration rate was discussed and developed by Sarkar (2012) 
where the retailers were allowed a trade-credit offer by suppliers to buy more items with different 
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discount rates on the purchasing cost. Hung (2011) developed an inventory model with generalized 
type demand, deterioration and backorder rates. Hung (2011) extended their model from ramp type 
demand rate and Weibull deterioration rate to arbitrary demand rate and arbitrary deterioration rate in 
the consideration of partial backorder. Khanra et al. (2011) presented an EOQ model for a deteriorating 
item with time–dependent quadratic demand under permissible delay in payment. In this paper, an 
effort has been made to analyze an EOQ model for deteriorating item considering quadratic time 
dependent demand rate and permissible delay in payment. Sana (2010) formulated optimal selling price 
and lot size with time varying deterioration and partial backlogging. In this work, an EOQ model over 
an infinite time horizon for perishable item where demand is price dependent and partial backorder 
permitted is discussed. Deterministic inventory model for deteriorating items with trade credit 
financing and capacity constraints is developed by Liao and Huang (2010) and they presented an 
inventory model for optimizing the replenishment cycle time for a single deteriorating item under a 
permissible delay in payments and constraints on warehouse capacity. 

In this paper, we consider the demand rate is time varying and holding cost is time–dependent for case 
1; and demand rate and holding cost both are constant for case 2. The main objective of this paper is to 
obtain minimum total inventory cost (TIC), order quantity and corresponding order cycle for both 
cases. The remainder of the paper is organized as follows. Relevant notation and assumptions are given 
in the next section. This is followed by mathematical formulation in the section 3. Algorithm and 
numerical example is given in section 4 and 5, respectively followed by sensitivity analysis is in section 
6. Finally, suggestions and concluding remarks are given in section 7. 

2. Notations and Assumptions 

The following notations are used throughout the manuscript: 
k                :  ordering cost per order 

0              :  constant annual demand rate 

I(t)             :  on-hand inventory level at time ‘t’   
h                :  holding cost of the item for case 2 
h(t)            :  time dependent holding cost of the item at time t, h(t)  h .t  
T                : cycle time 
β                :  demand parameter indicating elasticity, 0 < β < 1 
R(t)            : time varying demand i.e. R(t) = 0t

  , for case 1  0> 0,       0 < < 1,       0 t T     

T*              : optimal cycle time foe case 1 
T**            : optimal cycle time foe case 2 
TIC            : total inventory cost per cycle 
TIC*          : optimal total inventory cost per cycle for case 1 
TIC**         : optimal total inventory cost per cycle for case 2 
TIC1*         : optimal total inventory cost per cycle for case 1 as β→ 0 
Q                : ordering quantity 
Q1*            : optimal ordering quantity for case 1 
Q2*            : optimal ordering quantity for case 2 
Q11*           : optimal ordering quantity as β→ 0 
 
In addition, the following assumptions are being made to develop aforesaid model: 
 

1. The demand rate R(t)  is decreasing function of time with increase of ‘β’ for case 1 
2. The demand 0 rate is constant for case 2 

3. The holding cost is time dependent and holding cost parameter ‘h’  i.e. h(t)   h .t 
4. Shortages are not allowed 
5. The inventory system under consideration deals with single item 
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6. The planning horizon in infinite and lead time is zero 
7. The demand rate (for case 1) R(t) is decreasing function of time is expressed as  

R(t) = 0t
  , 0 > 0,       0 < < 1,       0 t T     (1) 

3. Mathematical Formulation 

The objective is to minimize the total inventory cost (TIC) per unit time, which contains two 
components: (a) the ordering cost and (b) the holding cost. The ordering cost per unit time is (k/T), 
since one order is made per cycle. The total holding cost per cycle is the integral of the product of the 
holding cost h(t) and inventory level I(t) over the whole cycle ‘T’. 

k
TIC

T


0

1
( ). ( )

T

h t I t dt
T

   
(2) 

Since the demand rate is equal to the rate of inventory level decrease, the rate of change of inventory 
level is governed by the following differential equation: 

0 0

( )
, > 0,       0 < < 1,       0 t T  

dI t
t

dt
       

(3) 

The on-hand inventory level at time ‘t’ I(t), can be evaluated on solving (3) with the initial condition 
I(T) = 0, we obtain 

1- 1-0( )  (T - t ) 
(1 )

I t  





 
(4) 

and the order quantity is 
1

0Q = 
1

T 





 ,       0 < β < 1 

(5) 

From (3), we obtain 

1
(1 )

0

(1 )Q
T




 
  
 

 
(6) 

3.1. Case 1. Time dependent demand rate and Time dependent holding cost 

In this case, holding cost h is assumed to be an increasing step function of storage time. The holding 
cost depends on the length of the storage used in this case. The total inventory cost per unit time is 
expressed as 

2
0

0

1
. . ( )

2(3 )

T h Tk k
TIC h t I t dt

T T T






   
  

(7) 

 Using Eq. (6) in Eq. (7) yields, 
(2 )1

(1 )(1 ) (2 )1
(1 ) (1 )0 0

0

1

1 2(3 )

h
TIC kQ Q


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  
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The optimal (minimum) Q =Q* is obtained by solving   
( )

0
d TIC

dQ
 , for Q, we obtain 

(1 )2
(3 ) (3 )

0 2 (3 )
*

1 (2 )

k
Q Q

h


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 


  

     
 

(11) 

If β→ 0, the optimal Q = Q*= Q11* reduces to  
1

32
3

1 0

3
*

k
Q Q

h
     

 
 

(12) 

and   TIC = TIC1* =   
2

0

6

h Tk

T


  

(13) 

3.2 Case 2. Constant demand rate and constant holding cost 

The objective is to minimize the total inventory cost (TIC) per unit time. The total inventory cost (TIC) 
contains the same components as stated in case 1. Since the demand rate is equal to the rate of 
inventory level decrease, we can describe I(t) by the following differential equation: 

0

( )dI t

dt
       , 0 > 0   , 0 t T   

(14) 

The solution of (13)   with I(T) = 0, is given by 

0( ) ( ),0I t T t t T     (15) 

The order quantity Q = I(0) = 0T  (16) 

Thus,
0

.
Q

T


  
(17) 

In this case, the TIC per unit time can be expresses as 

0

1
. ( )

Tk
TIC h I t dt

T T
    

(18) 

Substituting I(t) from Eq. (15) into Eq. (18) yields, 

0
0

0

1
. ( )

2

T h Tk k
TIC h T t dt

T T T

      
(19) 

Substituting the values of T from Eq. (17) into Eq. (19) yields, 

0( )
2

k hQ
TIC Q

Q


   

(20) 

Differentiating (20) w.r.t. ‘Q’ two times, we obtain 

0
2 2

kdTIC h

dQ Q


     and 

2
0

2 3

2
0

kd TIC

dQ Q


   

(21) 

The optimal (minimum) Q = Q2* is obtained by solving 
( )

0
d TIC

dQ
  from (21) for Q, we obtain 

0
2

2
*

k
Q Q

h


   

(22) 

4. Numerical Examples  

Example 1: Let λ0 = 500 units/ year, k = $ 400 per order, β = 0.1. 
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Table 1  
Values of optimal T = T*, Q = Q1* and TIC = TIC* for different values of ‘h’ 

h Q = Q1* T = T* TIC = TIC* h Q = Q1* T = T* TIC = TIC* 
10 358.693 0.615012 992.705 37 238.993 0.391699 1558.661 
11 348.239 0.595129 1025.873 38 237.023 0.388113 1573.061 
12 338.961 0.577538 1057.119 39 235.120 0.384653 1587.214 
13 330.645 0.561816 1086.703 40 233.280 0.381310 1601.132 
14 323.127 0.547640 1114.831 41 231.499 0.378076 1614.823 
15 316.282 0.534765 1141.672 42 229.774 0.374947 1628.297 
16 310.010 0.522996 1167.364 43 228.102 0.371917 1641.563 
17 304.232 0.512176 1192.025 44 226.481 0.368982 1654.628 
18 298.883 0.502180 1215.752 45 224.907 0.366133 1667.914 
19 293.909 0.492903 1238.631 46 223.378 0.363369 1680.186 
20 289.268 0.484263 1260.734 47 221.892 0.360684 1692.692 
21 284.921 0.476184 1282.124 48 220.447 0.358075 1705.026 
22 280.837 0.468606 1302.857 49 219.041 0.355538 1717.192 
23 276.989 0.461477 1322.982 50 217.672 0.353070 1729.196 
24 273.355 0.454755 1342.541 51 216.338 0.350670 1741.044 
25 269.914 0.448399 1361.573 52 215.038 0.348326 1752.741 
26 266.648 0.442374 1380.112 53 213.771 0.346047 1764.292 
27 263.543 0.436654 1398.190 54 212.534 0.343823 1775.700 
28 260.585 0.431212 1415.835 55 211.327 0.341654 1786.971 
29 257.763 0.426027 1433.071 56 210.149 0.339538 1798.109 
30 255.065 0.421075 1449.922 57 208.997 0.337471 1809.117 
31 252.483 0.416341 1466.409 58 207.873 0.335455 1820.000 
32 250.007 0.411807 1482.551 59 206.773 0.333483 1830.759 
33 247.631 0.407461 1498.366 60 205.697 0.331555 1841.400 
34 245.347 0.403287 1513.870 65 200.650 0.322529 1892.934 
35 243.150 0.399277 1529.078 70 196.088 0.314392 1941.928 
36 241.034 0.395418 1544.004 80 188.128 0.300244 2033.434 

 

Table 2  
Values of optimal T = T**, Q = Q2* and TIC = TIC** for different values of ‘h’ for example 2 (Case 2) 

h Q = Q2* T = T** TIC =TIC** h Q = Q2* T = T** TIC = TIC** 
1 632.456 1.264911 632.456 36 105.409 0.210818 3794.733 
5 282.843 0.565685 1414.214 37 103.975 0.207950 3847.0768 
10 200.000 0.400000 2000.000 38 102.598 0.205200 3898.718 
11 190.693 0.381385 2097.618 39 101.274 0.202548 3949.684 
12 182.574 0.365148 2190.890 40 100.000 0.200000 4000.000 
13 175.412 0.350823 2280.351 41 98.773 0.197546 4049.691 
14 169.031 0.338062 2366.432 42 97.590 0.195180 4098.780 
15 163.299 0.326599 2449.490 43 96.449 0.192897 4147.288 
16 158.114 0.316228 2529.822 44 95.346 0.190693 4195.235 
17 153.393 0.306786 2607.681 45 94.281 0.188562 4242.641 
18 149.071 0.298142 2683.282 46 93.250 0.186501 4289.522 
19 145.095 0.290191 2756.810 47 92.253 0.184506 4335.897 
20 141.421 0.282843 2828.427 48 91.287 0.182574 4381.780 
21 138.013 0.276026 2898.275 49 90.351 0.180702 4427.189 
22 134.840 0.269680 2966.479 50 89.443 0.178885 4472.136 
23 131.876 0.263752 3033.150 51 88.561 0.177123 4516.636 
24 129.099 0.258199 3098.387 52 87.706 0.175412 4560.702 
25 126.491 0.252982 3162.278 53 86.874 0.173749 4604.346 
26 124.035 0.248069 3224.903 54 86.0663 0.172133 4647.580 
27 121.716 0.243432 3286.335 55 85.280 0.170561 4690.416 
28 119.523 0.239046 3346.640 56 84.515 0.169031 4732.864 
29 117.444 0.234888 3405.877 57 83.771 0.167542 4774.934 
30 115.470 0.230940 3464.102 58 83.045 0.166091 4816.638 
31 113.592 0.227185 3521.363 59 82.339 0.164677 4847.983 
32 111.803 0.223607 3577.709 60 81.650 0.163299 4898.979 
33 110.096 0.220193 3633.180 65 78.446 0.156893 5999.018 
34 108.465 0.216930 3687.818 70 75.593 0.151186 5291.499 
35 106.904 0.213809 3741.657 80 70.711 0.141421 5656.861 

 

5. Sensitivity Analysis  
 
To find sensitivity analysis, the effect of parameters ‘h’, ‘k’ and ‘β’ on the optimal solution, the set of 
values of ‘h’,  ‘k’ and ‘β’ are assumed to as h = 60 ,55 , 50, 45, 40 , 35, ‘k’= 410 , 420, 430 , 440, 450, 
460, 470, and 480, and  ‘β’= 0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.  
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Meanwhile the other parameter values follows those data mentioned above in the numerical example 1. 
The results of sensitivity analysis are given in Tables 3, 4, and 5. 

(i) Sensitivity Analysis: (for case 1).  

Table 3 
Variation of optimal solution of Q = Q1*, T = T* and TIC = TIC* with the variation of ‘h’ and ‘β’, 
keeping all the parameters same as in Example 1. 
h 
↓ 

β→ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 
60 

Q 251.757 314.687 403.868 536.492 747.455 1119.077 1900.104 4338.992 
T 0.320905 0.310055 0.299021 0.287824 0.276495 0.265076 0.253622 0.242208 
TIC 1938.962 2048.974 2173.765 2316.230 2480.018 2669.768 2891.445 3155.787 

 
55 

Q 258.094 321.866 412.059 545.910 758.374 1131.850 1915.193 4357.007 
T 0.331034 0.320209 0.309196 0.298018 0.286704 0.275296 0.263853 0.252454 
TIC 1879.633 1983.996 2102.222 2237.002 2391.716 2570.654 2779.319 3024.850 

 
50 

Q 265.219 329.919 421.223 556.416 770.517 1146.009 1931.86 4376.827 
T 0.342492 0.331715 0.320742 0.309599 0.298319 0.286944 0.275536 0.264176 
TIC 1816.728 1915.182 2091.508 2153.323 2298.596 2466.306 2661.482 2890.633 

 
45 

Q 273.324 339.055 431.590 568.265 784.167 1161.867 1950.452 4398.841 
T 0.355629 0.344915 0.334006 0.322925 0.311707 0.300395 0.289052 0.277768 
TIC 1749.637 1841.886 1946.073 2064.459 2199.870 2305.882 2537.0244 2749.103 

 
40 

Q 282.679 349.568 443.482 581.811 799.712 1179.854 1971.449 4423.582 
T 0.370909 0.360294 0.349485 0.338504 0.327385 0.316178 0.304949 0.293793 
TIC 1677.565 1763.565 1859.881 1960.045 2094.515 2238.268 2452.032 2599.234 

 
35 

Q 293.672 361.882 457.360 597.558 817.710 1200.584 1995.527 4451.800 
T 0.389026 0.378551 0.367902 0.357076 0.346117 0.335078 0.324032 0.313081 
TIC 1599.440 1678.182 1766.772 1867.018 1981.163 2112.021 2263.151 2439.103 

 
30 

Q 306.895 376.638 473.923 616.268 838.990 1224.968 2023.688 4484.599 
T 0.411043 0.400804 0.390375 0.379786 0.369077 0.358305 0.347550 0.336927 
TIC 1513.764 1583.152 1665.067 1755.374 1857.914 1975.108 2110.003 2266.474 

 

(ii) Sensitivity Analysis: (for case 1)  

Table 4  
Variation of optimal solution of Q = Q*, T* and TIC* with the variation of ‘h’ and ‘k’, keeping all the 
parameters same as in Example 1. 
h 
↓ 

k→ 410 420 430 440 450 460 470 480 

 
60 

Q 207.279 208.835 210.366 211.872 213.355 214.815 216.254 217.672
T 0.33439 0.337181 0.339928 0.342633 0.345299 0.347926 0.350516 0.353069 

TIC 1871.435 1901.212 1930.750 1960.053 1989.123 2017.974 2046.608 2075.037 
 

55 
Q 212.953 214.552 216.124 217.672 219.195 220.695 222.173 223.630 
T 0.344576 0.347451 0.350282 0.353069 0.355816 0.358523 0.361192 0.363823 

TIC 1787.094 1845.016 1873.679 1902.117 1930.329 1958.327 1986.114 2013.702 
 

50 
Q 219.346 220.993 222.612 224.206 225.775 227.321 228.843 230.343 
T 0.356089 0.359060 0.361985 0.364866 0.367704 0.370502 0.373260 0.375979

TIC 1757.397 1785.364 1813.102 1840.618 1867.920 1895.011 1921.901 1948.596 
 

45 
Q 226.637 228.338 230.012 231.658 233.280 234.876 236.449 237.999 
T 0.369264 0.372345 0.375378 0.378366 0.381309 0.384210 0.387070 0.389890 

TIC 1694.695 1721.663 1748.413 1774.946 1801.274 1827.399 1853.330 1879.072 
 

40 
Q 235.074 236.838 238.575 240.283 241.965 243.621 245.252 246.860 
T 0.38457 0.387779 0.390938 0.394049 0.397115 0.400136 0.403114 0.406052 

TIC 1627.245 1653.139 1678.823 1704.302 1729.580 1754.666 1779.566 1804.281 
 

35 
Q 245.021 246.860 248.669 250.450 252.203 253.929 255.629 257.305 
T 0.402692 0.406052 0.412618 0.412618 0.415828 0.418991 0.422110 0.425186 

TIC 1554.016 1578.746 1627.605 1627.605 1651.746 1675.705 1699.482 1723.086
 

30 
Q 257.027 258.957 260.855 262.722 264.561 266.372 268.156 269.914 
T 0.424676 0.428219 0.431708 0.435144 0.438529 0.441865 0.445154 0.448398 

TIC 1473.569 1497.020 1520.277 1543.349 1566.241 1588.958 1611.506 1633.887 
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(iii)Sensitivity Analysis: (for case 2).  

Table 5  
Variation of optimal solution of Q = Q2*, T = T** and TIC = TIC** with the variation of ‘h’ and ‘k’, 
keeping all the parameters same as in Example 1. 
h 
↓ 

k→ 410 420 430 440 450 460 470 480 

 
60 

Q 82.664 83.666 84.656 85.635 86.603 87.560 88.506 89.443 
T 0.165328 0.167332 0.169312 0.171270 0.173205 0.175119 0.177012 0.178885 

TIC 4959.838 5019.960 5079.375 5138.090 5196.154 5253.570 5310.371 5366.570 
 

55 
Q 86.340 87.386 88.421 89.443 90.453 91.453 92.442 93.420 
T 0.172679 0.174773 0.176841 0.178885 0.180907 0.182906 0.184883 0.186840 

TIC 4748.690 4806.240 4863.126 4919.356 4974.934 5029.908 5084.293 5138.090 
 

50 
Q 90.554 91.652 92.736 93.808 94.868 95.917 96.954 97.980 
T 0.181108 0.183303 0.185472 0.187617 0.189737 0.191833 0.193907 0.195959 

TIC 4527.689 4582.576 4636.814 4690.411 4743.412 4795.835 4847.682 4898.982 
 

45 
Q 95.452 96.609 97.753 98.883 100.000 101.105 102.198 103.280 
T 0.190904 0.193218 0.195505 0.197765 0.200000 0.202210 0.204396 0.206559 

TIC 4295.349 4347.417 4398.864 4449.722 4500.000 4549.725 4598.914 4647.580 
 

40 
Q 101.242 102.470 103.682 104.881 106.066 107.238 108.397 109.544 
T 0.202484 0.204939 0.207364 0.209762 0.212132 0.214476 0.216795 0.219089 

TIC 4049.697 4098.780 4147.292 4195.233 4242.641 4289.523 4335.895 4381.781 
 

35 
Q 108.233 109.544 110.841 112.122 113.389 114.642 115.882 117.108 
T 0.216465 0.219089 0.221682 0.224245 0.226779 0.229285 0.231763 0.234216 

TIC 3788.140 3834.058 3879.432 3924.281 3968.624 4012.481 4055.864 4098.780 
 

30 
Q 116.904 118.322 119.722 121.106 122.474 123.828 125.166 126.491 
T 0.233809 0.236643 0.239444 0.242212 0.244949 0.247656 0.250333 0.252982 

TIC 3507.136 3549.649 3591.655 3633.181 3674.234 3714.833 3754.998 3794.735 
 

Based on the results we can make the following conclusions, 

(a) Based on the observations found from Table 1 we can conclude that the optimal total inventory cost 
TIC* is directly associated with holding cost whereas the optimal order quantity Q* and optimal cycle 
time T* are inversely associated with holding cost. 

(b) Based on the results of Table 2 we can conclude that the optimal total inventory cost TIC** is 
directly associated with holding cost ‘h’ whereas the optimal order quantity Q2* and optimal cycle time 
T** is inversely associated with holding cost ‘h’. 

(c) The observation found from the Table 3 are as follows, 

(i) Any increase on ‘β’ results to an increase in optimal order quantity Q*, TIC*, whereas any decrease 
on optimal cycle time T* does not change holding cost ‘h’. 

(ii) Any increase on holding cost ‘h’ increases the optimal order quantity Q*, optimal cycle time T*, 
whereas it decreases the total inventory cost TIC*. 

(d) From Table 4, it can be easily seen that: 

(i) An increase on ordering cost ‘k’ results to an increase on optimal order quantity Q*, optimal cycle 
time T* and optimal total inventory cost TIC*, keeping holding cost ‘h’ constant. 

(ii) An increase on holding cost ‘h’ results to an increase on optimal order quantity Q*, optimal cycle 
time T*, whereas it decreases the optimal total inventory cost TIC*. 

(e) From Table 5, we observe that: 

(i) An increase on ordering cost ‘k’ results to an increase on optimal order quantity Q2*, optimal cycle 
time T**, optimal total inventory cost TIC**, keeping holding cost ‘h’ constant. 
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(ii) An increase on holding cost ‘h’ results to an increase of optimal order quantity Q2*, optimal cycle 
time T**, whereas it decreases the optimal total inventory cost TIC**, keeping ordering cost ‘k’ 
constant. 

6. Conclusion and Future Research  

In this paper, we have presented a new method for inventory system with time dependent demand and 
time dependent holding cost by considering two cases. The first case considers constant demand and 
holding cost is considered constant for the second case. Simple common optimization algorithm has 
been developed to find optimal solution and the proposed model has been examined using some 
numerical examples. The preliminary results indicate that the total inventory cost increases when we 
increase the holding cost ‘h’. It has also observed  from the sensitivity analysis that the total inventory 
cost increases with the increase of ordering cost ‘k’ and ‘β’ , whereas total inventory cost decreases 
with the increase of holding cost ‘h’ 

The model presented in this study can be extended in different ways. For instance, the model can be 
extended for variable ordering costs and non-instantaneous receipt of orders. This model can also 
extend for deteriorating items as well as shortages, freight charges etc.  
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