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 This paper considers a multi-objective integrated production-distribution problem (IPDP) for 
multi-product and multi-production facility with limited capacity vehicles over a multi-period 
horizon in a two-level supply chain. In order to consider uncertainty of a real supply chain, 
some fuzzy parameters are considered for costumer demands, machine and labor levels of each 
manufacturer. The proposed model minimizes total production, inventory and distribution costs 
and total delivery time simultaneously, and the performance of the proposed model is evaluated 
on several randomly generated instances. The results show that integrating production and 
distribution decisions is more efficient than making these two decisions, separately.  
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1. Introduction 

Supply chains are generally viewed as a network of materials and information flows among different 
facilities, including manufacturing and assembly plants and distribution centers (Thomas, & Griffin, 
1996; Sabri & Beamon, 2000). Distribution costs often represent a significant fraction of the actual 
cost of a finished product. In some sectors, they even dominate production costs. Ideally, this is why 
any cost reduction effort should encompass production planning and distribution planning (Boudia et 
al., 2007). It is a challenging problem for manufacturers to optimize their supply chain (Bard & 
Nananukul, 2010). A vehicle routing problem (VRP), for instance, is deeply analyzed (Toth & Vigo, 
2002). For even stochastic model, there are many studies (Gendreau et al., 1996). A few studies 
include inventory constraints (Christiansen & Nygreen, 1998; Dror & Ball, 1987). However, there are 
few studies that contain both production and distribution decisions (Zubair, 1999; Vidal & 
Goetschalckx, 1997). On the other hand, production planning has been studied widely and deeply 
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without enough consideration on distribution part (Mula et al., 2006). Bhatnagar and Chandra (1993) 
classified general coordination research into three categories, each representing attempts to 
coordinate different operations of the firm. These categories represent an integration of decision 
making as (1) supply and production planning, (2) production and distribution planning, and (3) 
inventory and distribution planning, respectively. 
 
To make production and distribution decisions in a supply chain, there are two approaches, namely 
(1) solving production and distribution problems separately and (2) integrating production and 
distribution problems. The first approach is widely investigated in the literature. In recent studies, the 
integration of these two main supply chain problems is developed (Bard & Nananukul, 2010; 
Armentano et al., 2011; Bauso et al., 2010; Bilge, 2010; Shiguemoto & Armentano, 2010). Fig. 1 
shows a sample of production and distribution problem. In this study, we compare these two 
approaches and represent the associated results. 
 
Note that the considered problem belongs to a class of NP-hard ones and it is reduced to the VRP, 
which is a well-known NP-hard problem, in a single period case (Boudia et al., 2007). Lei et al. 
(2006) formulated the production, inventory and distribution routing problem as a mixed-integer 
model. The main advantage lies in its ability to simultaneously coordinate the production, inventory 
and transportation operations of the entire planning horizon, without any need to aggregate the 
demand or relax constraints on transportation capacities. Boudia et al. (2007) developed a similar 
production, distribution problem for one product over a multi-period horizon and used the GRASP 
method with path relinking. Boudia and Prins (2009) used a memetic algorithm with population 
management to solve the model and compared the results with a two-phase heuristic and GRASP. 
 

Products CostumersManufacturers

Costumer

Type of Product

Guide

Route

Manufacturer

 

Fig. 1. A production and distribution model 
Dealing with real-world situations requires assuming more actual assumptions on the model. In this 
study, the presented model considers uncertainty in the costumers demand and machine and labor 
level at manufacturers as fuzzy parameters. There are some studies to consider the decision makers’ 
interest or assume uncertainty as fuzzy parameters. Selim et al. (2008) developed a multi-objective 
linear programming model. In order to reflect the collaborative planning issues to their model and to 
provide a more realistic model structure, decision makers' imprecise aspiration levels for the goals are 
incorporated into the model using a fuzzy goal programming approach. Aliev et al. (2007) developed 
a fuzzy integrated multi-period and multi-product production and distribution model since there is a 
need for a joint general strategic plan for production and distribution model in a supply chain. In the 
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current study, our proposed fuzzy parameters and objective functions are very close to Liang (2008, 
2011). The main differences are the formulation of objective functions and the approach of involving 
fuzzy parameters in the model. 
 
The remainder of this paper is as follows. Section 2 explains the problem statement and develops the 
mixed-integer linear model. A defuzzification procedure and aggregation of objective functions are 
represented in Section 3. Section 4 contains computational experiments and sensitivity analysis. 
Finally, Section 5 presents the conclusion. 

 
2. Problem statement 
 
In this section, a new mixed-integer linear programming (MILP) model is presented to find out the 
best strategy for production, inventory levels and distribution, simultaneously. 
 
2.1. Model assumptions 
 
The following assumptions are considered in the presented model. 

 Each manufacturer can produce all types of products. 
 Delivery time and capacity of each vehicle are limited. 
 Time limitation of the vehicle is less than a time period and costumers receive distributed 

products of each period on the same period. 
 Vehicles load products from one manufacturer and distribute them between one or more 

costumers and vehicles cannot visit more than one manufacturer at each period. 
 Storage capacity at each facility is limited. 
 Costumers' demand, machine and labor levels at each manufacturer assume as fuzzy 

parameters. 
 All the vehicles are available at each period. 
 Shortage is not allowed, costumers demand must be supplied. 

 
2.2. Notations and parameters 
 
In the development of the model, these following notations are used. 
 
j Set of products 
i Set of manufacturers 
k Set of costumers 
w Set of manufacturers and costumers  
v Set of homogeneous vehicles 
t Set of time periods parameters 
Cij

p Production cost for each production unit of product j at manufacturer i  
hij

s Unit holding cost of product j at manufacturer i  
hkj

c Unit holding cost of product j at costumer k  
fij

p Production setup cost of product j at manufacturer i 
cwk Distribution cost between node w to k  
tlwk Time that vehicles spend to travel from node w to k (hour) 
 ෩jkt Fuzzy demand of product j from costumer k at time period t (unit)ܦ
lij Hour of labor per unit to produce product j at manufacturer i (man-hour/unit) 
෨ܮ i Fuzzy maximum labor levels available on manufacturer i (man-hour) 
rij Hour of machine per unit to produce product j at manufacturer i (machine-hour/unit) 
෩ܯ i Fuzzy maximum machine levels available on manufacturer i (machine-hour) 
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Ui Maximum inventory that can be held by manufacturer i 
Uk Maximum inventory that can be held by costumer k 
M1 Large enough number 
M2 Large enough number 
Cap Capacity of vehicles 
Pt Length of time period(hours) 
 
2.3. Decision variables 
 
Pijt Production quantity of product j at manufacturer i on time period t 
Iijt Inventory level of product j at manufacturer i on time period t 
Ikjt Inventory level of product j at costumer k on time period t 
Rjkt Total amount of product j delivered to costumer k on time period t 
yijt 1 if manufacturer in produce product j on the time period t; 0 otherwise 
xwjkt

v Total amount of product j transported from node w to k by vehicle v on time period t 
zwkt

v 1 if vehicle v travel from node w to k on time period t; 0 otherwise. 
 
2.4. Basic model 
 
Based on the above-mentioned notations and variables, the model for the integrated production-
distribution problem (IPDP) is formulated as follows. 
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The first objective function (1) attempts to reduce the total cost including setup and production costs 
at manufacturer inventory costs at both manufacturer and costumers and distribution costs. The 
second objective function (2) attempts to minimize the total delivery times. Constraint (3) ensures the 
equilibrium of produced and stored products and delivered products. Constraint (4) represents fuzzy 
demands of costumers are supplied by delivering products and inventories. Constraints (5) and (6) 
show that manufacturer cannot produce more than their resource. Constraint (7) shows the setup cost 
when production happens. Constraint (8) shows that a delivery may happen to or from a costumer but 
the net delivered products are constant. Constraint (9) shows the total delivery time of each vehicle 
must be less than period time. Constraint (10) ensures that if there is a delivery between two routes, 
distribution cost should be considered. Constraint (11) shows that each vehicle cannot carry more 
than their capacity. Constraint (12) considers that each vehicle cannot visit more than one costumer 
the same time. Constraint (13) ensures that all vehicles must distribute the products in a cycle graph. 
Constraint (14) considers an upper bound for inventory at each facility. Constraint (15) defines types 
of each variable. 
 
3. Solution procedure 
 
To solve the proposed IPDP model, first, fuzzy constraints convert to the equivalent crisp constraints, 
then a fuzzy solution approach uses to solve the model. 
 
3.1. Equivalent crisp constraints 
 
In this research, the proposed MILP model with fuzzy parameters is converted into an equivalent 
auxiliary crisp model by applying an efficient method by hybridizing the novel methods of Jimenez et 
al. (2007). In the literature, several methods have been developed to deal with parameters (e.g., 
Jiménez, 2007; Lai, & Hwang, 1993; Wang & Liang, 2005; Inuiguchi & Ramı ́k, 2000; Arenas Parra 
et al., 2005). We use Pishvaee and Torabi's method (2010), which is based on a close-loop supply 
chain network design model. The proposed model uses a hybridizing based on Jimenez et al. (2007) 
and Parra et al. (2005). We use this method to convert the proposed fuzzy mixed-integer linear model 
into an equivalent auxiliary crisp model. As Pishvaee and Torabi (2010) discussed, it is based on the 
Jimenez’s method (2007) because of its computational efficiency and using for different kinds of 
membership functions. 
 
There are some recent studies in supply chain that Jimenez’s method (2007) is used (e.g, Pishvaee & 
Torabi, 2010; Peidro et al., 2010). The method is based on ‘expected value’ and ‘expected interval’ of 
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a fuzzy number. Let ܿ̃ be a triangular fuzzy number (see Fig. 2), in which the following equation can 
be defined as a membership function of ܿ̃. 
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1                                      ݂݅ ݔ ൌ ܿ௠
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ܿ௢ െ ܿ௠                                  ݂݅ ܿ௠ ൑ ݔ ൑ ܿ௢

   0                                             ݂݅ ݔ ൑ ܿ௣ ݎ݋ ݔ ൒ ܿ௢

 

 

 

(16)  

 
 

  

  

 

 

Fig. 2. Fuzzy triangular membership function 

According to Jimenez (1996), for triangular fuzzy number ܿ̃, we can define the expected value (EV) 
and expected interval (EI) as follows: 
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The same equations can be used for a trapezoidal fuzzy numbers. According to the ranking method of 

Jimenez (2007), Eq. (19) can be defined for any pair of fuzzy numbers ෤ܽ and ෨ܾ where the degree ෤ܽ is 

bigger than ෨ܾ. 
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(19)  

μெ൫ ෤ܽ, ෨ܾ൯ ൑  shows that ෤ܽ is smaller than or equal to ෨ܾ at least in degree of α, this is represented as ߙ

෤ܽ ൑ఈ
෨ܾ. In proposed model, the fuzzy constraints can be formulated in general by: 

෤ܽݔ ൑ ෨ܾ, ݔ ൒ 0 (20)  
According to Eq. (19), the equation ෤ܽݔ ൑ ෨ܾ can be written as follow: 
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The above equation can be written as follow: 
ሾሺ1 െ ଶܧሻߙ

௔ ൅ ଵܧߙ
௔ሿݔ ൑ ଶܧߙ

௕ ൅ ሺ1 െ ଵܧሻߙ
௕ (22)  

According to above, proposed fuzzy constraints of IPDP can be written as equal crisp form: 

μ௖ cm cocp

1 

x 
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3.2. Fuzzy solution approach 
 
These two objective functions are aggregated as an aggregate objective function, in which the 
weighted-compromise function is used. 
 
ெ௜௡ ௭భୀஜభ
ெ௜௡ ௭మୀஜమ

ݖ ݊݅ܯ{ ൌ μଵ
௦ ൅ ܾμଶ

௦  (26)  

According to the Messac et al. (2007), parameters b>0 and s are positive integers. This aggregate 
objective function is chosen because it offers the required flexibility to change its curvature and 
orientation by adjusting the free parameters for capturing Pareto-optimal points. Additionally, it is 
locally admissible in the first quadrant and globally admissible for s odd. b adjusts the units of two 
objective functions and applies interest of the decision makers. For s=1, the aggregate objective 
function becomes the weighted-sum of the objectives, and other Pareto-optimal corner points lie on 
the concave part of the Pareto frontier and cannot be captured. In this paper, the proposed IPDP 
model is solved by combination of Jimenez et al. (2007), Parra et al. (2005), Pishvaee and Torabi 
(2010) and Messac et al. (2000). This Method is represented by the following steps: 
 
Step 1: Determine the appropriate triangular possibility distributions for fuzzy parameters, and 
formulate the multi-objective MILP model for the IPDP problem. 
Step 2: Determine the minimum acceptable feasibility degree of decision vector α, convert the fuzzy 
constraints into crisp ones, and formulate the equivalent auxiliary crisp multi-objective MILP model. 
Step 3: Convert multi-objective functions into a  single-objective function using the aggregation 
function presented in Messac et al. (2000). 
Step 4: Solve the single objective MILP model. If the decision maker is satisfied with the current 
solution, stop the algorithm; otherwise, provide another solution by changing the value of b and α, 
and then go to Step 2.  
 
4. Computational results 
 
Several experiments are implemented to show the validity of the proposed model. In this section, two 
test problems are designed to compare the IPDP model results with the classic model. Table 1 shows 
the size of the test problems. 
Table 1 
Size of test problems 

Problem no. No. of manufacturers No. of products No. of costumers No. of Time periods 
1 2 2 2 4 
2 4 2 3 3 

 



  2432

According to Pishvaee and Torabi (2010), the three prominent points (i.e., the most likely, the most 
pessimistic and the most optimistic values) are estimated for each triangular fuzzy parameters, and 
two random numbers r1 and r2 are generated between 0.2 and 0.8 by using a uniform distribution, and 
the most pessimistic (cp) and optimistic (co) values of fuzzy number (ܿ̃) are calculated as follows: 
 
ܿ௢ ൌ ሺ1 ൅ ଵሻݎ כ ܿ௠ (27)  

ܿ௣ ൌ ሺ1 െ ଶሻݎ כ ܿ௠ (28)  

To compare the classic approach with the proposed IPDP model, both models are coded in the GAMS 
optimization software. The experiments have been performed on Pentium Dual at 2.66 GHz having 4 
GB of RAM. The value of b sets is set to 500 because the value can balance the essence of two 
objectives. These two models are compared in different α levels. These parameters are set for three 
test problems and the results can be illustrated in Table 2. As the results shows, if the decision maker 
uses the IPDP model instead of the classic model, its integrated objective will be improved and the 
CPU time will decrease. 
 
To show how the objective functions are sensitive to parameter b, these two models are tested 
according to the different values of b at α-level 0.5 (see Table 3). As it can be seen from the results, 
the solution procedure used for both models has diverse solutions. Whereby, the proposed solution 
method is sensitive to the value of parameter b. Finally, it can be concluded that IPDP model is more 
appropriate making production and distribution decisions in a supply chain. 
 
Table 2 
Summary of the test results according to different α-levels. 

Problem no. α-level 
IPDP model Classic model 

Integrated  
OFV 

Elapsed run 
time (s) 

Integrated  
OFV 

Elapsed run 
time (s) 

1 

0.1 117539 0.241 130446 0.846 
0.2 112859 0.813 125226 0.892 
0.3 108119 0.719 119916 0.938 
0.4 103379 0.775 114626 0.842 
0.5 98879 0.839 101670 0.890 
0.6 94019 0.902 104146 0.920 
0.7 89549 0.890 92080 0.855 
0.8 84689 0.789 87060 0.879 
0.9 79799 0.802 87348 0.905 

2 

0.1 100330 2.175 133255 1000 
0.2 96549 1.715 128115 596 
0.3 92617 1.653 122772 1000 
0.4 88994 1.025 117582 559 
0.5 85100 1.690 112332 1000 
0.6 81454 1.499 107172 1000 
0.7 77667 1.087 101982 1000 
0.8 73856 1.676 96612 1000 
0.9 70107 1.043 91569 1000 
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Table 3 
Summary of the results on the sensitivity analysis of b 

α-level 
Different value of 

b 

IPDP model Classic model 
Integrated  

OFV 
Elapsed run  

time (s) 
Integrated  

OFV 
Elapsed run  

time (s) 

0.05 

5 84649 1.640 111725 1000 
100 84737 1.119 111844 1000 
500 85100 1.651 112332 1000 
6000 90654 1.657 119042 1001 

100000 164288 1.639 202628 7.735 
 
5. Conclusion 
 
In this study, an integrated production-distribution problem (IPDP) has been considered under fuzzy 
demands of costumers as well as machine and labor levels of manufacturers. A mixed-integer linear 
programming (MILP) model has been represented for the IPDP model. To solve the presented model, 
a hybrid fuzzy solution method has been proposed. This solution method can take the decision 
makers’ preferences into account. Combination of production and distribution problems has been 
considered in recent years, and according to the literature, formulating an IPDP model under 
uncertainty is still scars. This results in having a more efficient supply chain. The results of the IPDP 
and classical models with different α-level and b values have been compared in terms of objective 
function values and CPU times. For future research, many other studies can develop the IPDP model 
for a three level supply chain that includes distribution centers among the production facilities and 
costumers. Moreover, uncertainty can be considered in other parameters, such as delivery times for 
vehicles. Developing a heuristic or meta-heuristic algorithm is needed for solving large-size 
problems.  
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