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Humanitarian relief Logistics considering two objectives. The first one minimizes the average response time and the second

Disaster one minimizes the total operational cost including the fixed cost of establishing warehouses, the

Bi-objective optimization holding cost of unused supplies and the penalty cost of unsatisfied demand. The survival of pre-

g”;er ;"imy positioned supplies, demand amount and routes condition following an event are considered
oous

under uncertainty in the model solved by a robust scenario-based approach. The robust
approach is applied to reduce the effects of fluctuations of the uncertain parameters with
regards to all the possible future scenarios. The research demonstrates the applicability and
usefulness of the proposed model on a case study on earthquake preparation in the Seattle area
in USA. In addition, the work applies the Reservation Level Tchebycheft Procedure (RLTP)
method to solve the bi-objective model in an interactive way with decision maker. This work
provides practitioners, specifically planning teams, with a new approach to assist with disaster
preparedness and to improve their logistics decisions.
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1. Introduction

In recent years, death toll of natural and man-made disasters has increased at an alarming rate; today
about 70,000 people die and 200 million people are affected by disasters each year (Duran et al,
2011). For instance, 222,570 individuals lost their lives in Haiti Earthquake in 2010
[http://reliefweb.int/sites/reliefweb.int/files/resources/2012.07.05.ADSR_2011.pdf, accessed 18 July
2013]. Thus, the necessity for appropriate measures to control such terrible disasters is extremely
understood.

Altay and Green III (2006) surveyed the literature to address potential research directions in disaster
operations. They identified that one of the main activities in disaster areas is the HRL operations,
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which can be defined as “the process of planning, implementing and controlling the effective, cost-
efficient flow and storage of goods and materials as well as related information, from the point of
origin to the point of consumption for the purpose of meeting the end beneficiary’s requirements”
(Thomas and Mizushima, 2005).

Trestrail et al. (2009) recommended the pre-positioning to promote the efficiency of HRL operations.
Indeed, relief organizations can efficiently respond to emergency conditions if they develop a pre-
positioned network, in which the quantity of supplies and location of warehouses are certain (Duran
et al., 2011). Caunhye et al. (2012) characterized the problem of location with relief distribution and
stock pre-positioning (LRDSP). In this category, Balcik and Beaman (2008) proposed a maximal-
covering model that determines the number and locations of the distribution centers and the quantity
of stocked supplies at each distribution center. They considered uncertainty in the location of
disasters and the demand by a scenario-based approach, assuming that multiple scenarios would not
occur simultaneously. Rawls and Turquist (2008) proposed a two-stage stochastic mixed-integer
programming model that combines facility location, decision on stocking levels for emergency
supplies with uncertainty about demand, survival of pre-positioned stocks and transportation network
condition, following the occurrence of an event. Mete and Zabinsky (2010) developed a two-stage
stochastic programming model for a preparedness phase and determined warehouses locations and
their inventory levels. The objective functions to be minimized were the transportation duration and
the unsatisfied demands. Duran et al. (2011) proposed a mixed-integer programming model that
estimates the frequency, location and magnitude of potential demand based on historical data. The
model optimizes the location of warehouses and inventory allocation under considered constraints. It
also minimizes the average response time as an objective function. Tofighi et al. (2011) presented a
two-stage fuzzy stochastic model for pre-positioning and distribution of emergency supplies in the
humanitarian relief chain. In the first stage, locations for warehouses among the potential candidates
are determined along with their inventory levels. In the second stage, a distribution policy in response
to different disaster scenarios is identified.

Although there are some studies in the literature that propose multi-objective models for HRL
problem (Lin et al., 2011; Bozorgi-Amiri et al., 2013; Najafi et al., 2013; Zhang and Jiang, 2013),
multi-objective optimization that considers simultancously time and cost as objectives in the specific
category of LRDSP in HRL has never been addressed.

This paper presents a novel bi-objective mixed-integer programming model for a HRL problem in the
specific category of LRDSP. This model considers two objectives: (1) minimizing the average
response time, and (2) minimizing the total cost (i.e., the establishing warehouses, unused supplies,
and unsatisfied demand costs). In fact, in an emergency situation, responsiveness appears to be a
major concern (Caunhye et al., 2012). Hence, we minimize the average response time (objective 1)
and the penalty of unmet demands (i.e., objective 2) in order to consider the responsiveness issue.
Funding after the occurrence of a disaster is much easier to obtain than for a pre-disaster management
(Murray, 2005). Therefore, the model minimizes the total cost of preparedness and the other
operational costs in objective function 2.

In disaster areas, people expect to see fairness in distributing relief items among demand points. If the
minimum fairness level is not satisfied, it may lead to a social disaster in addition to the humanitarian
crisis. To avoid this problem, we propose a fairness level constraint as a novelty in the LRDSP
category. This constraint ensures distribution of relief items among demand points in a fair way.

Kovacs and Spens (2007) described the specific characteristics of HRL. HRL problems inherently
have uncertainty in their input data (Tofighi ef al., 2011). Balcik and Beamon (2008) described the
main characteristics of the relief chain network design, such as uncertainty and unpredictability of
demand (in terms of type, size, location and timing) and lack of resources and infrastructure (e.g.,
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money, transportation capacity and supply). Hence, HRL problem similar to many real-world
planning problems involve noisy, incomplete or inaccurate data. In the literature, different approaches
have been applied to deal with different forms of uncertainty. Mathematical programming and
stochastic approaches were applied to formulate uncertainty in HRL problem (Rawls & Turnquist,
2010; Mete and Zabinsky, 2010). Another approach to incorporate uncertainty in HRL models is
fuzzy approach (Tofighi et al., 2011). Recently, robust optimization model, strong technique to
contrast uncertainty, was applied to deal with uncertainty in the disaster area (Lin et al., 2011;
Bozorgi-Amiri et al., 2013; Najafi et al., 2013; Zhang & Jiang, 2013). Robust optimization can be
very efficient and capable since generation of the proper and stable solutions for any possible
occurrences of uncertain parameters (Mulvey ef al., 1995).

Mulvey et al. (1995) introduced the concept of robust optimization in operation research. They
presented a robust counterpart approach with a nonlinear regularization function penalizing the
constraint violations and uncertainties are considered via a set of discrete scenarios. Robust
optimization has resulted in series of solutions that are progressively less sensitive to realizations of
the data in a set of scenarios. The optimal solution of robust optimization model is robust with
regards to optimality if it remains ‘close’ to the optimal if input data change: this is termed solution
robustness. The solution is also robust with regards to feasibility if it remains ‘almost’ feasible for
low level changes in the input data: this is called model robustness. The traditional stochastic linear
program fails to determine a robust solution despite the presence of a weak robust point (Bai et al.,
1997). Bai et al. (1997) examined features of risk-averse utility functions in robust optimization.
They inferred that a concave utility function should be incorporated in a model whenever the decision
maker tends to be a risk averse. Ben-Tal and Nemirovski (1998) presented a robust optimization
approach to formulate continuous uncertain parameters. Ben-Tal and Nemirovski (2002), Ben-Tal
and Nemirovski (2002) and Ben-Tal et al. (2002) proposed robust theory of linear, quadratic and
conic quadratic problems. Their approaches are applied in engineering and design problems at high
level. Bertsimas and Sim (2002) and Bertsimas and Thiele (2003) developed robust optimization
methods for discrete optimization in continuous spaces.

Bozorgi et al. (2013) presented a multi-objective robust stochastic programming model for disaster
relief logistics. They considered demands, supplies, cost of procurement and transportation as the
uncertain parameters. Moreover, they attempted to minimize the expected value and the variance of
the total cost of the relief chain, and the maximum shortages in the affected areas. Najafi et al. (2013)
proposed a multi-objective, multi-mode, multi-commodity, and multi-period stochastic model to
manage the logistics of both commodities and injured people in the earthquake response. They
applied a robust approach to make sure that the distribution plan performs well under the various
conditions that can follow a disaster. Zhang and Jiang (2013) presented a bi-objective robust program
to design a cost-responsiveness efficient emergency medical services (EMS) system under
uncertainty. They developed a robust counterpart approach to cope with the uncertain parameters in
the EMS system. Eventually, the present paper develops a robust stochastic multi objective
mathematical model for HRL problem in LRDSP category that two significant differences in
comparison with similar works (Bozorgi-Amiri et al., 2013; Zhang and Jiang, 2013); (1) considering
time in the mathematical model, and (2) introducing fairness level constraint for considering fair
factor.

Another contribution of this paper is the development of an efficient Reservation Level Tchebycheff
Procedure (RLTP) that is applied to solve the presented bi-objective model in an interactive way with
decision maker. Table 1 shows the differences of the present work with the other works in the
LRDSP category in detail.
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Table 1
Objectives, constraints, and other decisions for location models with relief distribution and stock pre-
positioning
References Objectives Constraints Other decisions
Cost Time Capacity Requirements and Other
bounds
Chang et al., 2007 Transportation, facility opening, - Facility - Prioritized facility Storage,
equipment rental, penalties, allocation shortage/surplus,
shipping distance rescue center
of rescue equipment grouping
Duranet al., 2011 - Response - Number of facilities, - -
total
inventory
Takovou et al., 1997 Facility opening, operations, - Facility Critical time to meet - -
transportation demand
McCall , 2006 Transportation, shortages Facility Number of kits to pre- Investment budget Unmet demand
position
Mete & Zabinsky, 2010 Warehouse operations, unmet Transportation Vehicle Inventory shortage upper - Unmet demand
demand bound threshold
Psaraftis et al., 1986 Facility opening, stock - - - - Unmet demand
acquisition,
transportation, operations,
unmet demand, delay
Rawls & Turnquist, Facility opening, transportation, - Facility, - - -
2010 unmet demand, holding link
Rawls & Turnquist, Facility opening, transportation, - Facility, Average distance limit, - -
2011 unmet demand, holding link Demand requirements
for scenarios
Rawls & Turnquist, Facility opening, transportation, - Facility, - - -
2012 unmet demand, holding link,
dispatch
Wilhelm & Srinivasa, Facility opening and expansion, Facility Time-phased cleanup - Capacity addition
1996 stock acquisition, operations requirement
Bozorgi-Amiri et al., Facility opening, Warehouse - Facility - - Unmet demand,
2013 operations, unmet demand, Unused stock
holding
Zhang & Jiang, 2013 Facility opening, Warehouse - - - - Vehicle
operations, unmet demand,
transportation
Present Work Warehouse Facility opening, Response Facility, Fairness level upper Investment budget Unmet demand,
operations, unmet demand, link bound threshold Unused stock,
holding Vehicle

The structure of the paper is as follows. In Section 2, the HRL problem is described and a bi-
objective mathematical model is developed. The robust model is described in Section 3. In Section 4,
the RLTP method is elaborated. In Section 5, a case study is described and its computational results
are presented in Section 6. Finally, Section 7 presents the conclusion and future research directions.

2. Problem description and formulation

There are different scenarios based on location and time of the occurrence of a disaster. The relief
organization should be prepared to face these probable different situations, and manage them in an
effective way. Therefore, the organization needs pre-planning on required equipment and supplies.
Medical supplies are one of the required items. Hence, it is necessary to prepare the required amount
of these medical items, put in the suitable locations, and pre-position required equipment (i.e.
vehicles) in order to distribute the supplies according to the specific and important purposes deemed
important by the humanitarian intervention (i.e., minimum response time and operating cost). A bi-
objective mathematical model is presented for this relief items storage and distribution problem at a
city area. The model determines optimal pre-disaster policy including location of warehouses,
quantity of the relief items that should be held at each warehouse and, distribution plan of the relief
items to demand points. In addition, the model considers inherent uncertainty of the HRL problem
(i.e., about roads, demands, relief items, transportation time and priority) about the occurrence of the
different disaster scenarios based on time and location. The following assumptions are considered for
the problem:

2.1. Assumption
e Number and location of candidate warehouses are known.
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e Location and number of potential demand points are known.
e Demand of points can be satisfied by any warehouse.
e Multiple relief items are considered.
e Amount and priority of relief items in each demand point are uncertain following an event.
e Amount of survival relief items in each warehouse are uncertain following an event.
e Just one specific route exists between each demand point and warehouse.
e Unusable routes are uncertain following an event.
2.2. Indices
i index of possible pre-positioning warehouses (i=1,2,...,1),
j index of demand points (j=1,2,...,J),
k index of relief items (k=1,2,...,K),
S index of scenarios (s=1,2,...,9).
2.3. Parameters
Ds probability of occurrence of scenario s,
Lijks time to satisfy demand for item type k from warechouse i to demand point j in scenario s
(hours),
F; fixed cost of establishing warehouse i ($),
piks  proportion of stocked material of relief item type & at location i that remains usable in
scenarios; (0< pi<1),
Tiks penalty cost of each unsatisfied item type k for demand point j in scenario s,
Vik capacity of warehouse i for item type £,
hi additional unit holding cost of item type £,
djks amount of demand for demand point j for item type & in scenario s,
B maximum of available budget for establishing warehouses,
E maximum amount available of each relief item type,
W maximum of tolerable proportion of shortage at each demand point,
Cap capacity of each vehicle,
A,;,  maximum acceptable difference of fairness level between two demand points p and g (p#q).
2.4. Decision variables
Xjks  quantity of item type k sent to demand point j from warehouse 7 in scenario s,
qik amount of item type k pre-positioned at warehouse i,
Ziks amount of item type kin warchouse i that is not used in scenario s,
wirs  shortage of item type k at demand point j in scenarios,
®; amount of weighted shortage at demand point j,
Rjs number of vehicle pre-positioned at warehouse 7 in scenarios,
Vi 1 if the warehouse i is opened, 0; otherwise.

Based on the above-mentioned definitions, we develop the following bi-objective mixed-integer
mathematical model.

2.5. Mathematical model

min z, = Zps

I K

S J Z xijlmtijlm
i=1 k=1
—x (1)
j=

2k

k=1

s=1
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Xpe 20 Viefl,. I}, jell,., Jhkell,..,K},sefl,.., S} (13)
q, 20 Vie{l,.,I},kell,. ., K} (14)
z,, 20 Vie{l,., I}, kefl,.,K},sedl,.., S} (15)
w20 Vjell,.,Jhkell,...K},sell,.., S} (16)
ns: >0 Vie{l,.,I},se{l,..,S} (17)
y, e{0.l} Viefl,.,I} (18)

The objective function (1) minimizes the average weighted response time over all scenarios. The
weights correspond to the proportions of demand satisfied from the warehouses. The response time is
the time required for shipment to reach the demand location, which depends on the distance and
duration time between the warehouse and the demand point. This objective tries to select the
warehouses that satisfy the demand points with the least time. The objective function (2) minimizes
the total cost consisting of the fixed cost of establishing warehouses (i.e., term 1), additional holding
cost for unused supplies (i.e., term 2), and total penalty cost of unsatisfied demand that considers the
priority of each demand point for each supply implicitly by value of penalties (i.e., term 3).

Funding is easy to obtain after disaster has occurred because of governmental and international
subsidies; however, obtaining funding for pre-disaster is considerably more difficult (Murray et al.,
2005). Therefore, the model tries to minimize the total cost of preparedness and the other operational
cost by objective function (2) (i.e., term 1 and 2).

Eq. (3) limits the sum of supplies delivered to each demand point and the amount of unsatisfied
demand to the demand amount of each demand point. Eq. (4) shows that, if warchouse i is opened,
the corresponding amount of items type £ cannot exceed the warehouse capacity. The limitation on
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the availability of the relief items for storage in the warehouses is shown in Eq. (5). Eq. (6) ensures
that the sum of the shipped supplies and unused supplies are equal to the amount of usable stocked
material. Eq. (7) ensures that the shipped supplies are sent through usable routes (if a route is not
usable, its duration time is considered as zero). Eq. (8) shows the budget limitation for establishing
each warehouse. All operational costs such as personnel, maintenance, etc. are considered in the
parameter F; for each warehouse i.

To ensure a consequent fairness level, the constraint (9) is introduced for the first time in the LRDSP
problem category. Therefore, for each demand point, we define total penalty cost of unmet demands
(10) as a fairness level. Penalty cost of each unmet demand £ is considered based on its priority in
demand point j following an event s (zj,). Constraint (9) ensures that difference of weighted
unsatisfied demands between two demand points does not exceed a maximum considered amount of
fairness level defined by experts. On the other hand, this constraint ensures the distribution of relief
items among demand points in a fairly way.

The model considers the maximum amount of unmet demands for each demand point by equation
(11). The number of vehicles to be prepositioned in each warehouse following each scenario is
determined by Eq. (12). Egs.s (13-17) are non-negativity limitations, and Eq. (18) indicates that
opening a warchouse location is a binary decision.

3. Robust optimization model for the humanitarian relief logistics network planning problem

3.1 Framework of robust optimization model

Robust optimization is used to obtain a set of solutions that are robust against the fluctuation of
parameters or input data in future. Mulvey et al. (1995) presented the robust optimization approach.
The framework of robust optimization approach is briefly described. The primary optimization LP
model is as follows:

Min c'x +d'y (19)
subject to
Ax=b, (20)
Bx+ Cy=e, (21)
x,y>0, (22)

where y is the vector of control variables and x is the vector of decision variables. Constraint (20) is
the structural constraint whose coefficients are free of noise and deterministic. Constraint (21) is the
control constraint whose coefficients are subject to noise and random. Uncertain parameters are
modeled with a set of scenarios Q = {1,2,,...,s} in robust optimization. So that, the set {B;s, Cs, es, ds}
is the set of uncertain parameters under each scenario s and Y p; = 1 where p, shows the probability
of scenario s. The scenario based robust optimization approach is described as follow:

min c¢Tx + Z dI + yo + 26(y1, V2, .., ¥5) + wp (84, 85, ..., 65)

SEQ

subject to
Ax=b,
Bx+ Cyy+ 65 = e
X, y5=>20 s€

The purpose of this model is to balance the tradeoff between model robustness and solution
robustness. The optimal solution of this model will be robust regarding optimality if it remains ‘close’
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to optimality for any realization of each scenario s € (1 (solution robustness). The solution is also
robust regarding feasibility if it remains ‘almost’ feasible for any realization scenario s (model
robustness). The parameter 8¢ is defined for model robustness, which measures the infeasibility
allowed in the control constraints under scenario s. For more details on solution robustness and model
robustness features, readers are referred to Yu and Li (2000). Mulvey et al. (1995) proposed a
quadratic form and Yu and Li (2000) developed an absolute form for the term a(y;, 5, ..., Vs)-

3.2. Proposed robust optimization model

Robust optimization approach proposed by Mulvey et al. (1995) and Yu and Li (2000) is applied to
formulate the two-stage humanitarian relief logistics network planning problem. In this paper, an
absolute penalized form is used for obtaining the solution robustness measure in objective function.
The developed robust optimization model for the mentioned problem can be stated by:

N = +20,, (24)

S
+20,, |+ @) p,0,

3 J K s J K
s=1 s'=1 s=1
erjkijks erjkv'wjks' (25)
dyy =W =D %5 =6, Vjell.,Jhkell,.,K}sefl.,S} (26)

Z’: io o —ipsi Sia 426,20 27)

k=1 L k=1
I K J K S I K J K
[Zthzﬂm +ZZZ’ﬂmW ks —Zps,[Zthzﬂm, +erjkswjks’n+292s >0 (28)
i=l k=1 Jj=lk=1 s'=1 i=l k=1 Jj=lk=1
91s, 92s 75s Z 0 (29)

with constraints (4)—(18).
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The first and second terms in objective function (24, 25) are the mean value, and the second and third
terms in them are variance of total costs respectively, and they measure solution robustness. The forth
term in Eq. (25) measures the model robustness with regards to infeasibility associated with control
constraints Eq. (26) under scenario s.

4. Solution methodology

4.1. Selection of appropriate multi-objective programming technique

HRL decisions are linked to the choice of the decision maker (DM). A DM in charge of the network
design project is considered in this work. Hence, the bi-objective mixed integer model should be
solved to obtain non-dominated solutions, considering the DM’s preferences. Considering the bi-
objective mathematical model and the necessity of interactivity relation with the DM in the decision-
making process (selecting the efficient policies or non-dominated solutions), interactive multi-
objective programming (MOP) methods are adapted to the problem (Alves & Climaco, 2004).

It is difficult for the DM to specify accurately her/his preference on the goals in multi-objective
optimization problems (Huang et al., 2005). The most effective methods are interactive procedures
that generally include solution generation and evaluation phases (Gardiner & Steuer, 1994). There are
three important points in the interactive MOP methods (Sun et al., 1996): (1) how to imply preference
information from the DM over a set of candidate solutions, (2) how to systematically represent the
DM’s preference, and (3) how to use the DM’s preference to improve solutions. Some of the popular
interactive MOP methods include the Geoffrion-Dyer-Feinberg procedure, the Tchebycheff method,
the visual interactive approach, STEM, the Zionts-Wallenius method, the reference point method
(Gardiner and Steuer, 1994), the interactive FFANN procedure (Sun et al., 1996; Sun et al., 2000)
and the [IMOM procedure (Huang et al., 2005). Furthermore, different scalarization methods are
possible (Alves & Climaco, 2004; Sun et al., 2000). Some of these methods are not suitable for the
real life problems when they consider discrete decision variables (hence, the set of non-dominated
solutions is not convex), while they are adapted only for problems with a convex feasible region and
concave objective functions (Demirtas & Ustiin, 2008). In addition, the methods that use weighted
sums of the objective functions cannot provide every non-dominated solution of the problems
(Demirtas & Ustiin, 2008). Non-dominated solutions contain both supported and unsupported non-
dominated solutions. Unsupported solutions are dominated by convex combination of other non-
dominated solutions. Tchebycheff metric-based programs provide a way of reaching every non-
dominated solution in comparison with weighted sums programs (Demirtas & Ustiin, 2008). A
Tchebycheff scalarizing program is one of the reference point approaches that compute the weak non-
dominated solution closest to a reference point (e.g. the ideal solution). The reference point
approaches, considering discrete variables or not, depends on the definition of an achievement
scalarizing function by reference point (aspiration levels) for the objective functions (Demirtas &
Ustiin, 2008; Wierzbicki, 1980). These approaches, by minimizing the distance from the reference
point, attempt to provide non-dominated set.

Among the interactive weighted Tchebycheff procedure (IWTP) or other achievement scalarizing
functions for a multi-objective mixed-integer linear programming problem (MOMILP) (Alves &
Climaco, 2004; Steuer, 1986; Steuer & Choo, 1983; Karaivanova et al., 1993; Karaivanova et al.,
1995; Vassilev & Narula, 1993; Narula & Vassilev, 1994), Steuer and Choo (1983) use lexicographic
weighted Tchebycheft program that have the advantage of presenting every efficient solution of the
non-concave MOP and being non-dominated. Reeves and Macleod (1999) presented RLTP as an
alternative to decrease the set of non-dominated solutions in a Tchebycheff framework. The RLTP
method uses the systematic mechanism for reducing non-dominated solution till it achieves the most
preferred solutions for the DM. This method applies reservation levels (RLs) based upon the DM’s
opinion to reduce the objective space. Reeves and Macleod (1999) conducted several experiments to
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compare the performance of the RLTP and IWTP, and those experiments showed that the RLTP is
more flexible than the original IWTP and produce solutions of similar quality. Hence, this paper
suggests the RLTP method for three main reasons as follows:

» The need for an interactive MOP method (necessity of using the DM’s preferences;
reservation levels),
» lts efficiency considering the non-convex nature of the HRL problem, and
» Its optimality in comparison with the other IWTP methods.
The RLTP method is elaborated as follows:

4.2. Reservation Level Tchebycheff Procedure (RLTP) method

The IWTP (Steuer & Choo, 1983) is a weight space reduction method. The RLTP method is an
alternative approach to reduce a set of non-dominated solutions. The RLTP method is shown to be
more flexible than the original IWTP, while producing solutions of similar high quality. The RLTP
method can be described in terms of four steps as follows (Reeves & Macleod, 1999):

1. Initialization

1.1. Determine the number of solutions, N to be presented to the DM at each iteration, where
N>P, and P is the number of objective functions.

1.2. Compute a reference objective vector (), by solving P single objective problems for use in
solving the Tchebycheff program in Step 3.

N z(yf‘,yg‘,...,y;‘,): ye=min{f,(x);xe X} -¢  Vk=1to P
where g, are small positive scalars used in the solution procedure of Tchebycheff programs.

1.3. Set RL;=+o0 for k=1,...,P.
1.4. Specify the maximum number of iterations.

2. Sampling
With the use of formulation (30), generate a group of 2N dispersed weight vectors (Steuer,
1986; Steuer & Choo, 1983).

Az{/leRP

Aoe(01).34, =1} (30)

3. Solution
In this step, solve the associated Tchebycheff program (31-34) for each weighted vector A that
is generated in Step 2.

nﬂn{a—pgﬂ (x)} (31)

subject to

x€X (32)
az A (fi(x)-vi) Vk=L..P (33)
fi(x)SRL, Vk=1.., P (34)

According to Steuer and Choo (1983), p is a small positive scalar suggested to be between 0.0001
and 0.01.
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Present the N maximally dispersed solutions to the DM using the method presented in (Steuer,
1986; Steuer & Choo, 1983). If the DM decides to continue to search for a better solution,
proceed to Step 4. Otherwise, the DM selects the most his/her preferred solution and stop.

4. Adjustment

In this step and Step 3 of final iteration, the DM participates more actively on interactive way to
adjust RLs. According to the DM’s considerations, the current solutions should be divided to
more and less preferred subset, adjust RLs and return to Step 2.

There are two points for adjusting RLs: (1) RLs for each £ must be set worse than or equal to the
worst value for that objective among the current more preferred solutions, (2) at least one RL
must be set better than an objective value of a current less preferred solution. If the DM accepts,
the RLs can be adjusted automatically by RLTP rather than by the DM (see Eq. (35)):

RL: = MPWV; — » (MPWV, — CSWV,) (35)

where:

CSWV;  The worst value over the set of all current solutions,

MPWYV, The worst value over the subset of the most preferred current solutions,

r  Reduction factor between 0 and 1(smaller values for » correspond to faster rates of objective
space reduction).

5. Case study

This paper demonstrates our approach by a case study originally developed by Mete and Zabinsky
(2010). The case is based on discussions with an emergency management coordinator of a large
Seattle medical center about possible Seattle earthquake and the needs for medical supplies.
Historical disaster data and statistical analyses on two causes of disasters in Seattle
[http://seattlescenario.eeri.org/documents/EQScenarioFullBook.pdf, accessed 30 May 2013 and
http://www.crew.org/sites/default/files/f CREWCascadiaFinal.pdf, accessed 18 July 2013] are used to
generate scenarios and face the problem in much more realistic way.

There are two faults, Seattle fault and Cascadia fault, which are expected to cause an earthquake in
Seattle city. Their magnitudes are expected to be 6.7 and 9.0, respectively
[http://seattlescenario.eeri.org/documents/EQScenarioFullBook.pdf, accessed 30 May 2013 and
http://www.crew.org/sites/default/files/ CREWCascadiaFinal.pdf, accessed 18 July 2013]. According
to their impact, people will need medical supplies in the nearest hospitals to them in the aftermath of
the earthquake.

The demand of hospitals depends on the occurrence location of the disaster and the time of day. For
instance; Cascadia is a residential area and many people are there at non-working hours of the day. If
the disaster strikes during non-working hours, the demand of hospitals in Cascadia is expected to be
extremely high. On the other hand, if the disaster strikes in the Seattle area during working hours, a
huge demand is expected in the nearby hospitals. Hence, the case study considers six scenarios
according to time (working (denoted W), rush (denoted R) and non-working (denoted N) hours) and
location of the disaster (Seattle fault and Cascadia fault). The case study assumes 168 hours in a week
include 48 working hours (Monday to Saturday; 6 days x 8 working hours), 30 rush hours (6 days x 5
rush hours) and 90 non-working hours (6 days x 11 non-working hours + Sunday; 24 hours).
According to the occurrence probabilities of Seattle fault and Cascadia fault (0.4 and 0.6), the
probabilities of the six scenarios are presented in Table 2.
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Table 2
Probabilities of scenarios

Scenari Seattle fault Cascadia fault
cenario W R N W R N
Probability 0.11 0.07 0.22 0.17 0.11 0.32

In this case study, ten hospitals (demand points) are certain and marked in yellow in Figure 1. The
demand of each demand point is estimated based on both population density and predicted damage in
each scenario. Population density; in Seattle city, people are in downtown (vulnerable to Seattle fault)
in working hours and they are in residential areas, the northern part of Seattle (is vulnerable to
Cascadia fault), in non-working hours. The demand is then expected to be high for hospitals near
residential areas in non-working hours for the Cascadia fault. On the other hand, it is predictable that
hospitals near downtown will need huge medical supplies in working hours. The case assumes that
the demand is balanced in whole parts of the city in rush hours. Table 3 provides estimated demand of
hospitals in each scenario. Five candidate warehouses are considered in the case and marked in Figure
1. Warehouse opening cost (including personnel, equipment and maintenance cost) and capacity, and
the cost/capacity ratio (additional measure is defined for analyzing the results in next section) are
showed in Table 4.
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Table 3
Hospitals demand (d)
Hospital Seattle fault Cascadia fault
ospita W R N W R N
1 6313 6042 9491 9234 8306 13,624
2 3409 3857 3994 5296 3958 7149
3 4969 3732 6466 5922 5147 9357
4 1532 3454 4254 5422 7114 7507
5 2293 3487 4836 7185 8750 10,258
6 3129 2508 2913 3801 1814 2112
7 10,021 5932 3869 12,410 6830 7639
8 7342 4617 4213 9134 3803 5924
9 5723 3686 1773 6784 4036 4382
10 5214 3498 2189 6048 3006 3861
Table 4
Warehouse capacities and fixed cost (£, yix)
Warehouse Capacity (10’ units) Cost (810°) Cost/capacity ($10*unit)
1 20 25 0.125
2 25 20 0.080
3 30 12 0.040
4 10 6 0.060
5 5 12 0.240

Since it is possible that the amount of usable medical supplies in the warchouses changes following
an event occurrence because of probable damages to the warechouses, the case study considers the
proportion of unusable supply &k in warehouse 7 in scenario s, noted pi,. This parameter is estimated
based on possible damage to the warehouses building aftermath an earthquake is occurred in the
Seattle fault or Cascadia fault and is provided based on different scenarios in Table 5.

Table 5

Proportion of unusable supplies in scenarios (pixs)
h Seattle fault Cascadia fault

Warehouse % R N % R N

1 0.082 0.069 0.091 0.080 0.0107 0.083
2 0.096 0.070 0.078 0.093 0.073 0.070
3 0.099 0.086 0.086 0.074 0.086 0.085
4 0.087 0.091 0.086 0.072 0.080 0.074
5 0.062 0.057 0.073 0.085 0.093 0.090

On the similar way, the case study estimates the transportation times between warehouses and
hospitals according to the possible damage to the routes and their usable traffic capacity following an
event based on:

[http://seattlescenario.eeri.org/documents/EQScenarioFullBook.pdf, accessed 30 May 2013 and
http://www.crew.org/sites/default/filessf CREWCascadiaFinal.pdf, accessed 18 July 2013]. These
transportation times are provided in Table 6.

To ship the medical supplies through predetermined routes, vehicles are needed after disaster. Hence,
the case study assumes there are unlimited available identical vehicles (trucks) with a capacity of
7000 units for pre-disaster planning. The bi-objective mixed integer model determines the suitable
number of vehicles that are needed to preposition in each warehouse.

To determine the upper bound of tolerable difference of fairness level between two demand points
(Apg), we consider the opinions of humanitarian logistic practitioners and set it to half of the average
of weighted unsatisfied demand of the hospitals.
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For simplicity reasons and clarity of presentation, this paper considers only a single type of medical
supplies, although if there are at least 10 medical items needed in the aftermath an earthquake
(according to the interviews with the emergency management coordinator of a large Seattle medical
center).

Table 6
Transportation times for scenarios (#;s)
. Seattle fault Cascadia fault
Warehouse Hospital W R N W R N
1 77 210 44 44 90 11
2 105 210 60 60 90 15
3 27 27 18 18 18 9
4 15 15 10 10 10 5
1 5 105 210 60 60 90 15
6 112 210 64 64 90 16
7 147 245 84 84 105 21
8 18 18 12 12 12 6
9 24 24 16 16 16 8
10 18 18 12 12 12 6
1 20 40 10 30 60 20
2 14 14 7 21 21 14
3 133 133 76 57 76 19
4 126 245 72 72 105 18
2 5 26 26 13 39 39 26
6 32 50 16 48 75 32
7 42 60 21 63 90 42
8 133 245 76 76 105 19
9 140 245 80 80 105 20
10 119 245 68 68 105 17
1 98 245 56 56 105 14
2 112 175 64 64 75 16
3 112 245 64 64 105 16
4 98 245 56 56 105 14
3 5 14 14 7 21 21 14
6 8 8 4 12 12 8
7 24 24 12 36 36 24
8 45 105 30 30 70 15
9 51 105 34 34 70 17
10 15 15 10 10 10 5
1 24 24 12 36 36 24
2 34 50 17 51 75 34
3 119 119 68 51 68 17
4 119 119 68 51 68 17
5 34 34 17 51 51 34
4 6 30 50 15 45 75 30
7 40 70 20 60 105 40
8 54 90 36 36 60 18
9 57 105 38 38 70 19
10 51 51 34 34 34 17
1 147 210 84 84 90 21
2 56 56 28 84 84 56
3 154 154 88 66 88 22
4 66 66 44 44 44 22
5 81 108 27 189 189 108
5 6 72 96 24 168 168 96
7 36 48 12 84 84 48
8 69 69 46 46 46 23
9 75 75 50 50 50 25
10 63 90 42 42 56 21
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6. Computational results

In order to show the applicability and usefulness of the presented model and the solution methods,
RLTP and e-constraint are coded in general algebraic modeling system (GAMS) and integrated to the
bi-objective mixed integer model to solve the case study data. GAMS/CPLEX solver is capable of
solving mixed-integer programming (MIP) models. A PC with 1.73 GHz seven processors and
WINDOWS operating system is used as a technical platform.

6.1. RLTP method

An additive utility function based on normalized values of the objectives is applied to simulate the
DM preferences with the weight of 0.5 considered for both objectives. Although the DM can
determine RLs for any objective in the RLTP, this paper uses Equation (35) to automatically tighten
RLs at each iteration with predetermined constant rates (» = 0.3) if the DM does not tighten RLs. In
order to clarify the way the algorithm solves the problem, this paper presents step-by-step the solution
approach for the case study with use of the RLTP method and its four-step algorithm as follows

according to Fig. 2:
4 7)
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Fig. 2. Flowchart of the RLTP procedure
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Step 1. Initialization

In the first step, three solutions (N=3) are presented to the DM in each iteration where P=2. To
determine the unknown ideal solution (z°), the single objective problems are solved (z'= min {fi(xy)|
x € S}). Then, the reference objective vector () is computed by y*= min {fi(xx) | x € S} -&r, where
e1=1 and &,= 10E+11. Table 7 shows the ideal solution and the reference objective vector.

Table 7

Ideal solution and reference objective vector

The optimal solution for single objective model Z 7, (10™)

Optimal solution forZ, = (81.988 . 1.01633)

Optimal solution forZ, = (226.947 s 0.328666)
Z": ideal solution = (81.988 . 0.328666)
)" reference objective vector = (80.988 , 0.327666)

Set RL; = +oo for k= 1,2 where RL; is used as the reservation level for the i-th objective.

Step 2. Sampling

In the second step, six dispersed weight vectors (2N = 6) are generated randomly with regards to
Steuer (1986). Table 8 shows the generated dispersed weight vectors group.

Table 8

Dispersed weight vectors
k 1 2 3 4 5 6
A 0.2 0.5 0.69 0.83 0.3 0.90
A 0.8 0.5 0.31 0.17 0.7 0.10

Step 3. Solution

In the third step, the associated Tchebycheff program for each weight vector 4; is solved with
considering p = 0.01. The associated results are shown in Table 9. Fig. 3 shows increasing weight for
the average response time (Objl) causes the total cost (Obj2) to increase. Also, decreasing weight for
Objl causes Obj2 to decrease. Therefore, it seems that by raising the goal for each of the objectives,
we create more space for other objectives to be improved. It is also concluded that there are some
positive correlations between the total cost and the average response time.

Table 9
Associated results of Tchebycheff program for each weight vector
k 1 2 3 4 5 6
A 127.795044 104.311686 99.238121 92.859925 113.87898 87.78636
Z, (10") 1.01709 1.81370 2.98402 4.18384 1.18428 4.41987
140
g 130 )=0.2
£ 120
2 g 10 x:%.‘z\._ A=0.7 —
=90
g 80
0 0.5 1 15 2 2.5 3 3.5 4 45 5
Obj 2; Total Cost (10E+13 US$)

Fig. 3. Results of sensitivity analysis for IWTP coefficient
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The maximally dispersed solutions obtained by applying the filtering method, are presented to the
DM. For more information about filtering method, the reader can refer to (Steuer, 1986; Steuer &
Choo, 1983). If the DM is satisfied with these results, he/she must select his/her current most
preferred solution and the algorithm stops. Otherwise, if the DM wishes to continue to search for an
improved solution, go to Step 4.

Step 4. Adjustment

According to the DM’s considerations, the current solutions are divided to more and less preferred
subset (see Table 10).

Table 10
The subset of the most preferred current solutions
k 1 2 5
A 127.795044 104.311686 113.87898
Z, (10") 1.01709 1.81370 1.18428
Ui) 0.193 0.1525 0.1535

The DM selects solution #2 that is showed in Table 10 as the most preferred solution. The new value
for RL, is computed using Eq. (35), and RL; is adjusted by the DM as follows:
RL;=1.26925E+02, RL,=1.81370E+13-0.3 x (1.81370E+13-4.18384E+13) =2.52474E+13

After adjusting the new RLs, return to Step 2. After two iterations, the DM selects his most preferred
solution (z; = 104.166727, z, = 1.79403E+13), and the algorithm stops. Table 11 shows the most
preferred RLTP solution in the first two iterations. Table 12 shows the RLs in the each iteration.

Table 11
Most preferred RLTP solutions
Tteration 7, 7, (107) U(2)
1 104.311686 1.81370 0.1525
2 104.166727 1.79403 0.1510
Table 12
Reservation levels
iteration 1 2
RL, + o0 1.26925E+02°
RL, + o0 2.52474E+13

*RL, is tightened by the DM.

Fig. 4 shows Pareto curve that is concluded by the RLTP method. There is no optimal solution for
this problem, and the RLTP method simply presents a more preferred solution to the DM in an
interactive procedure. By changing the input parameters, different solutions are achieved by the
RLTP that the DM should include in his preference.
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2.40E+13 LN
2 2.20E+13 \\
O 2.00E+13
o 1.80E+13 \
O 1.60E+13
1.40E+13 SN /
1.20E+13 S~
1.00E+13
90 95 100 105 110 115 120 125 130
Obj 1; Response Time (min)

Fig. 4. Pareto curve
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5.2. Sensitive analysis

To emphasize the importance of simultaneously considering the total cost and the average response
time, as incorporated in our proposed model, the following three models are defined for sensitivity
analysis:

1. Model 1 consists of the average response time of relief logistic network (Objl) and its related
constraints;

2. Model 2 consists of the total cost of relief logistic network (Obj2) and its related constraints;

3. Model 3 IWTP model consists of the objective function (Obj3) calculated by Equation (20) and
its related constraints.

Fig. 5 shows the performance of the three Models (based on Objl) versus the changes of the fairness
level parameter (6pq). It is necessary to set a bound for the fairness level constraint because the social

disaster may happen in affected areas. Hence, it is recommended to adjust the upper bound of the
fairness level in [10° - 10°] based on Figure 5 due to simultaneously tradeoff between objectives
value and fairness factor. There is similar situation about the fairness level parameter and Obj2 (see
Fig. 6). Hence, according to this figure it is recommended to adjust parameter in [10° - 10°], too.
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In Fig. 7, a sensitivity analysis is performed for model robustness and solution robustness against the
multiplier of model robustness (Omega) in the model. As Figure 7-a demonstrates, the expected
average response time will eventually increase with an increase in the value of Omega. On the other
hand, the expected cost almost has increasing trend by increasing the value of Omega (see Figure 8-
b). It is inferred that increasing in amount of penalty (omega) leads to decreasing the amount of relief
items in the relief network, so the expected average response time to deliver relief items to demand
point will increase. Hence, the DM should here choose the best value of Omega with considering
preventing a huge increase in the expected cost and average response time values (i.e., [0.1 - 10]).
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Fig. 7. (a) Model robustness and solution robustness, (b) versus Omega

7. Analysis of results

In the previous section, the most preferable solution was presented using the RLTP method. Tables
13-16 show the results of this solution; the warehouses chosen and the amount of relief items pre-
positioned at each warehouse are shown in Table 13. The most preferable solution proposes the
warehouses 2, 3, and 4 to actively store relief items in preparation for possible earthquake scenarios.
Table 14 shows the amounts of relief items that are transported by vehicles on the routes from
warehouses to hospitals. The warehouses cannot fully satisfy the demand of the hospitals for all
scenarios in our case as shown in Table 15.

There are three important criteria considered in the decision of opening a warehouse: (1) distance to
the hospitals, (2) capacity, and (3) operating cost. As the selected warehouses are 2, 3, and 4, an
explanation is provided. Indeed, not only warehouses #3 and #4 have the first and second lowest
cost/capacity ratio, but also warehouse #3 is the nearest one to the hospital #5 and #6. Warehouse #4
has suitable condition with comparison to warchouse #1 for serving hospital #1, and helping to serve
to the middle and downtown hospitals of Seattle in shortage condition, as it is located in the center of
Seattle area. Warehouse #1 has the second highest cost/capacity ratio, and also is far from middle
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hospitals. Therefore, it cannot be selected to help the other warehouses in shortage condition in the
center of Seattle. Although, Warehouse #5 can satisfies the demand of the downtown hospitals and
can help the other warehouses to serve the hospitals in residential area, it has the highest cost/capacity
ratio in comparison with warehouse #4 (that has similar condition), so the model selects warehouse
#4. This implies that the model selects the warehouses with low cost/capacity ratio and considers at a
second level the distance between warehouses and hospitals, especially in shortage condition when
they will be used as support to the other warehouses.

Table 16 shows the number of vehicles that should be assigned to each selected warehouse for each
scenario. The total number of vehicles assigned is at most 10, which is required for one of the
Cascadia fault earthquake scenario, whereas the other scenarios require fewer vehicles. Four vehicles
are used in four out of six scenarios in warechouse 3. Warehouse #4 is in a similar situation and
requires two vehicles in four out of six scenarios. Warehouse #2 uses two vehicles in two scenarios,
but up to four vehicles in one scenario related to Cascadia fault. Because of the important role of
warehouse #2 in serving the hospitals #1 and #2 (see Table 14) and the high probability of scenario 4
to 6 in Cascadia fault, it is recommended to assign the maximum required number of vehicles (four
vehicles) to it.

Table 13
The opened warehouses and the corresponding amount of relief items
Warehouse Amount of prepositioned relief items
2 24423
3 30000
4 10000
Table 14
Transportation network and visited hospitals
. Hospital
Scenario Warehouse 1 2 3 2 3 5 7 3 9 10
1 - - _ _ - _ _ _ - _
2 4781 1877 . - - . - - . .
1 3 - - 3395 - 739 1566 8489 5810 4191 3682
4 - - - - - - - - - -
5 - - - - - - - - - -
1 - - - - - - - - - -
2 - 1363 - - - . - - . -
2 3 - - - - 1014 9 3459 - - 990
4 3569 - 1259 981 - . - 2112 1178 .
5 - - - - - - - - - -
1 - - - - - - - - - -
2 9491 3994 - - - . - - . -
3 3 - - 1872 212 4836 2884 3869 4206 1756 2168
4 - . 4595 - - . - - . -
5 - - - - - - - - - -
1 - - - - - - - - - -
2 7338 3400 4026 - - . 7953 - . -
4 3 - - - - 5283 1867 2507 7238 1194 4116
4 - . - 3507 - . - - 3694 -
5 - - - - - - - - - -
1 - - - - - - - - - -
2 3808 2113 3341 - : - . . - .
5 3 - - - - 6944 - 5024 1959 2190 1200
4 2693 . - 5308 - . - - . -
5 - - - - - - - - - -
1 - - - - - - - - - -
2 8627 4966 - - - - : 3505 : -
6 3 2750 - § 5320 8044 - 5451 : 2227 1711
4 - - 7152 - - - - 249 - -
5 - - - - - - - - - -
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Table 15

Unsatisfied demand
. Scenario
Hospital 1 3 3 4 5 5
1 - - - - - 137
2 - 21 - - 40 72
3 43 - - - - 94
4 - - 43 19 - 76
5 23 - - 6 - 102
6 32 26 30 39 8 -
7 - - - 55 - 77
8 - 32 8 - 39 60
9 - 35 18 - 41 44
10 - 35 22 36 - 39
Table 16
Number of vehicles assigned
Warehouse I 2 3 Scenarl(z‘ 5 5 Maximum Expected
2 1 1 2 4 2 3 4 2.48
3 4 1 4 4 3 4 4 3.68
4 0 2 1 2 2 2 2 1.56
Total 5 4 7 10 7 9 7.72

8. Conclusion

This paper has presented a robust bi-objective mixed-integer programming model for humanitarian
relief logistics (HRL) that determines the optimal quantity of emergency supplies and identifies the
optimal warehouse locations in a pre-disaster planning phase by considering simultaneously bi-
objectives, namely cost and response objectives. An efficient technique has been developed to solve
the presented multi-objective model: the Reservation level Tchebycheff procedure (RLTP) method.
From the application of this technique on a case study, the experiment results have concluded that the
RLTP method has been a proper method to handle the HRL problem. The use of a scenario-based
analysis has fostered the robustness of the resolution approach and taken into account the
uncertainties linked to the earthquake occurrences. Nevertheless, the model has considered different
simple occurrence scenarios rather than a more realistic situation, which could be highly complex as
it could represent simultaneous occurrence of events or unexpected chained events.

For future research directions, the mathematical model can be extended in order to integrate the
dynamic evolution of the network and the corresponding demand. In fact, in the case of earthquakes,
there are different periods of time, on which the information about the demand or situation of routes
changes. It would be interesting to consider the knowledge of personnel, who visited the affected
areas, for a better planning in different periods of time and integrate this feedback in a dynamic way.
Furthermore, optimizing the evacuation of injured people from affected areas is another interesting
aspect that can be combined with the general logistic optimization model of relief items distribution.
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