O

proceedings

User-guided Repairing of Inconsistent Knowledge Bases

Abdallah Arioua*
University Lyon 1 & CNRS Liris
abdallah.arioua@univ-lyonl.fr

ABSTRACT

Repairing techniques for relational databases have leveraged in-
tegrity constraints to detect and then resolve errors in the data.
User guidance has started to be employed in this setting to avoid a
prohibitory exploration of the search space of solutions. In this pa-
per, we present a user-guided repairing technique for Knowledge
Bases (KBs) enabling updates suggested by the users to resolve
errors. KBs exhibit more expressive constraints with respect to
relational tables, such as tuple-generating dependencies (TGDs)
and negative rules (a form of denial constraints). We consider
TGDs and a notable subset of denial constraints, named contra-
diction detecting dependencies (CDDs). We propose user-guided
polynomial-delay algorithms that ensure the repairing of the KB
in the extreme cases of interaction among these two classes of
constraints. To the best of our knowledge, such interaction is so
far unexplored even in repairing methods for relational data. We
prove the correctness of our algorithms and study their feasibility
in practical settings. We conduct an extensive experimental study
on synthetically generated KBs and a real-world inconsistent KB
equipped with TGDs and CDDs. We show the practicality of our
proposed interactive strategies by measuring the actual delay time
and the number of questions required in our interactive framework.

1 INTRODUCTION

Integrity constraints have been used in relational databases to
detect inconsistencies and thus repair error-prone data within
tables. Notable classes of these constraints are represented by
functional dependencies (FDs) and conditional functional depen-
dencies (CFDs) that are both table-level constraints as they express
conditions without or with predicates on entire relations. Denial
constraints (DCs) [7] are more general first-order formulas that
encompass FDs and CFDs and strike a balance between expres-
siveness and complexity. Denial constraints are, however, difficult
to understand for end users and their intractability and prohibitive
search space make them unattractive for repairing algorithms [3].
In this paper, we focus on a subset of denial constraints, which
we call contradiction-detecting dependencies (CDDs) capturing
contradictions in the data. CDDs correspond to denial constraints
restricted to equality predicates in their respective bodies. They
are used mainly to capture contradictions and disjointness between
relations. They differ from other subfamilies of DCs such as keys,
functional dependencies and equality-generating dependencies.
Knowledge Bases (KBs) typically rely on the interaction of CDDs
(also known as negative rules or negative constraints) with tuple-
generating dependencies (also called existential rules) [5, 11]. The
following example underlines the importance of CDDs.

*Supported by PALSE Impulsion.
TPartially supported by CNRS Mastodons MedClean and PALSE Impulsion.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

133

Angela Bonifati'
University Lyon 1 & CNRS Liris
angela.bonifati @univ-lyonl.fr

Example 1.1. Figure 1 (a) shows our running example. Let ¥
contain the set of facts of a KB describing the prescriptions of
patients at a hospital and X ¢ the set of CDDs. Aspirin is prescribed
to John who is allergic to it, whereas Mike has an allergy against
Penicillin. The CDD in 3¢ dictates that prescribing a drug to a
person who has an allergy against it leads to a contradiction.

Several approaches to repair KBs exist, such as deletion-based
repairing, which amounts to remove the inconsistencies in order to
satisfy the constraints. However, the generated repairs are not com-
patible, as a consequence, choosing among them is not feasible
for end-users, as shown by the following example.

Example 1.2. Following the deletion-based repairing approaches,
one can either remove prescribed(Aspirin,John) or hasAllergy(John,
Aspirin) as either one of them is false according to the CDD. The
first one gives us the repair 7 that conveys the information that
Aspirin is prescribed to John. Conversely, the second repair 7>
would lead us to conclude that John has an allergy against Aspirin.
Moreover, none of the above repairs preserves as much informa-
tion as possible. The information about John having an allergy
that could be against Aspirin or any other drugs is indeed lost in
%1 whereas the information that Aspirin is prescribed to someone
which could be John or someone else is also lost in F;,. This ex-
ample also shows the impossibility for an end-user of making a
choice between these two repairs.

An alternative to deletion-based repairing is given by update-
based repairing [24, 28], which inspired our work. In update-based
repairing, atomic values can be modified instead of removing
entire facts from the knowledge base.

Example 1.3. By applying an update-based repairing to the
above inconsistent knowledge base, we obtain the set of facts
%3 (in which Xj is a labeled null referring to an unknown al-
lergy). Another possible repair is that John has an allergy against
Penicillin rather than Aspirin. Or, Penicillin is prescribed to John
rather than Aspirin. Clearly, all these update-based repairs pre-
serve more facts than the deletion-based ones illustrated above.

Although being beneficial, update-based repairing suffers from
the problem of choosing the positions to modify and the value
to use in repairing. For instance, do we need to change Aspirin
to Penicillin in hasAllergy(John, Aspirin) or Aspirin to a labeled
null? Clearly, user intervention is compulsory in such a case in
order to reach a repair that meets the user’s requirements and his
expertise about the domain.

The problem becomes more complex when CDDs and TGDs
are considered as shown in Figure 1 (b). Besides the fact that
already contains inconsistencies as illustrated in Figure 1 (a), we
consider X7 and the new introduced atoms in # and a new CDD
in 2¢’. In this KB, another inconsistency is raised due to the in-
teraction between TGDs and CDDs corresponding to the fact that
John was prescribed incompatible drugs, i.e. Aspirin and Nsaids.
Such a contradiction can only be discovered after applying the
TGD that results in deducing the fact John is prescribed Nsaids,
because he has Migraine pain and Nsaid is a painkiller. In such a

10.5441/002/edbt .2018.13

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.13

3¢ = {prescribed(X, Y), hasAllergy(Y, X) — L}

F = {prescribed(Aspirin, John), hasAllergy(John, Aspirin), hasAllergy(Mike, Penicillin)}

F1 = {prescribed(Aspirin, John), hasAllergy(Mike, Penicillin)}
F, = {hasAllergy(John, Aspirin), hasAllergy(Mike, Penicillin)}
F3 = {prescribed(Aspirin, John), hasAllergy(John, X;), hasAllergy(Mike, Penicillin)}

(a) An inconsistent knowledge base with only CDDs. F; are repairs.

¥ = FU {hasPain(John, Migraine), isPainKiller For(Nsaids, Migraine), incompatible(Aspirin, Nsaids)}
>t = {isPainKillerFor(X, Y), hasPain(Z,Y) — prescribed(X, Z)}
3¢’ =3c U {prescribed(X, Z), prescribed(X, Y), incompatible(Y, Z) — L}

(b) An inconsistent knowledge base with CDDs and TGDs.

Figure 1: Examples on tuple-based repairing and update-based repairing.

case, after applying the rule in X7, a new inconsistency has been
introduced. Hence, the choice of which inconsistency to handle
first and which atom to update is crucial. For instance, updating
the atom prescribed(Aspirin, John) will resolve automatically the
new inconsistency without updating other atoms, whereas updat-
ing the atom prescribed(Nsaids, John) will not. In addition, prop-
agating back the changed positions in prescribed(Nsaids, John)
should be done in order to establish consistency.

In this paper, we present a user-guided update-based repairing
framework that is capable of solving contradictions triggered by
CDDs. We study the interaction of such rules with more classi-
cal tuple-generating dependencies (or, existential rules) in KB
reasoning. The study of DCs in a relational setting has been exten-
sively conducted in the literature as witnessed by several papers
in the area [13, 24, 28]. We defer the discussion of the differences
between our work and previous work to the next subsection. In
this paper, we focus on the following problem statement, which
substantially deviates from the objectives of previous work.

(URP) Given a KB equipped with a set of TGDs and CDDs,
the User-guided Repairing Problem is to compute, by means of
user’s update fixes, an error-free KB by addressing two main
challenges: (i) minimizing user interactions and (ii) accounting
for the interplay of TGDs and CDDs. If the user is an oracle, then
the repair of the KB is also a u-repair, i.e. a repair with a minimal
(w.r.t C) set of update fixes.

Contributions. The main contributions of our paper are as follows:

(1) Update-based repairing: We introduce contradiction detec-
tion dependencies (CDDs) and we formalize update-based re-
pairing in the presence of both CDDs and TGDs. We prove that
repairability is guaranteed and can be checked in polynomial time.

(2) Update-based repairing with user interaction: We define an
interactive framework letting the user repair the knowledge base
and meet his requirements. We prove two interesting properties:
(i) soundness, i.e. we show that the framework is sound, which
means that for every dialogue with a user we can reach a consistent
state of the knowledge base; (ii) soundness w.r.t. an oracle, i.e. we
assume that the interaction is done with an oracle that has a specific
repair in mind and we prove that the output of the dialogue with an
oracle is exactly the repair of the oracle. We show that the dialogue
algorithm has a polynomial delay in generating questions.!

We present an extensive experimental study, devoted to confirm
the polynomiality of delay time and showing the feasibility of
our interactive approach in terms of number of questions and
average number of conflicts per question in the knowledge bases.
In our assessment, we contrast the two cases of only CDDs and

IThe delay between the asked questions is bounded by a polynomial.

134

CDDs alongside with TGDs and we study the impact of the chase
algorithm on the proposed interactive strategies in both cases.

Paper organization. The paper is organized as follows. In Section
2, we introduce the basic notions and definitions. In Section 3,
we introduce the update-based repairing framework and the re-
pairability of KBs. In Section 4, we formalize user intervention by
means of the notion of inquiry and we prove the soundness and
termination of an inquiry engaging the end-user. We also discuss
the case in which the user is an oracle and prove that the inquiry
has a polynomial delay time. In Section 5, we introduce different
interactive strategies with the user. In Section 6, we present our
experimental assessment. Finally, Section 7 concludes the paper.

1.1 Related Work

Rule-Based Repairing. Logical data cleaning has leveraged reason-
ing over more or less sophisticated classes of declarative depen-
dencies [9, 14] in order to detect and repair error-prone values and
tuples. A plethora of data quality constraints have been introduced
to this purpose, ranging from classical functional dependencies
and their approximate variants for relational tables [9, 27] to their
counterparts in graph databases [17]. Denial constraints [7] are
first-order formulas more expressive than functional dependencies
and conditional functional dependencies. Comprehensive classes
of graph constraints, including the expressive graph entity depen-
dencies (encompassing denial constraints) have been presented
in [16]. The detection problem [17] for these constraints consists
in checking whether a given database (or a graph) contains no
violations of the input set of constraints. While [16] focuses on the
detection problem along with satisfiability and implication among
constraints, our goal in this paper is to compute an update-based
repair for a knowledge base with an interactive exploration of
the search space of solutions. Our contradiction detecting depen-
dencies are a subset of denial constraints, limited to equality as
built-in predicate. While denial constraints have been already em-
ployed as data quality rules in the relational setting [13], their use
in the realm of knowledge bases characterized by the schema-less
nature of data and their combination with other KB constraints,
such as TGDs, is not explored. CLAMS [18] investigates the use
of DCs in data lakes, including RDF KBs, but it does not consider
the TGDs and their interactions with DCs. With that being said,
our approach goes with the same line of [13, 18] in reinforcing
and endorsing a holistic view of repairing for knowledge bases
by compiling the information coming from multiple violations in
a structure called the Conflicts Hypergraph [13, 24]. Repairing a
database [1, 7, 28] according to a set of constraints corresponds to
bringing the database to its legal state, in which all the constraints
are satisfied. Since many possible repairs for a given database
may exist, one would tend to prefer the (minimal) one, which
entails less modifications of the original database. Various notions

of repairs have been used and many approaches have used insert
and delete operations on the original database to make it reach
its consistent state with respect to a given class of constraints.
Such approaches may exhibit drawbacks in that the granularity
of the operations performing the repairs is too coarse. Indeed,
deletions and insertions are typically executed at the tuple level
for relations, thus leading to discard possibly error-free values.
Our work has been inspired by update-based repairing proposed
in [10, 28] to allow value replacement on positional attributes in
relational tuples. While [28] focused on consistent query answer-
ing for update repairs aiming at finding the answers of a query
in the intersection of all possible repairs, our intent is to exploit
user interactions in the update-based repairing process of an entire
knowledge base. Repairing by value modification with functional
dependencies and inclusion dependencies has been tackled in [10]
with the aim of building minimal-cost repairs. Their algorithms
are not directly applicable to KBs due the inherent difference of
expressiveness of the constraints and the consequent interaction
between tuple-generating dependencies and the CDDs. In addition,
user intervention has not been considered in [10].

User-guided data cleaning. A fruitful line of work has led to
the design of several data cleaning tools, such as Llunatic [19],
GDR [29], Katara [14], Dance [4] and Falcon [21].

GDR [29] considers user-guided relational data repairing. CFDs
are used to generate candidate updates for the tuples that are vi-
olating them. The user is presented with groups of updates and
her feedback is fed into an active learning process that decides
about the correctness of updates without user involvement. The
convergence of updates in our method is ensured by the chase
algorithm involving CDDs and TGDs on KBs.

Llunatic [19] is mapping and cleaning tool accepting user sug-
gestions during the chase procedure with EGDs on relational
instances. Llunatic also explores the interaction among several
classes of constraints such as FDs, CFDs, editing rules and TGDs.
To the best of our knowledge Llunatic cannot be directly applied
to knowledge bases with constraints such as CDDs and TGDs 2

Falcon [21] relies on a set of SQL update queries instead of a
set of input logical constraints to entail the repair of a relational
database. A set of SQLU queries is inferred starting from one
triggering input tuple-based update proposed by the non-expert
user. Our approach is based on rule-based repairing of knowledge
bases and on a tight interaction with the domain expert to perform
data curation, not considered in the above system.

Dance [4] introduces a user-driven cleaning approach for rela-
tional tuples, by considering constraints similar to classical EGDs
and TGDs. Dance proposes a set of suspicious tuples whose up-
date can contribute to constraint resolution. However, neither they
consider DCs or subset thereof employed in our framework nor
they leverage their interaction with TGDs as in our approach.

Katara [14] is orthogonal to our work in that it leverages knowl-
edge bases and guidance from crowdsourcing to fix the errors
in RDBMS. Because of that, input KBs are assumed to be well
curated, as opposed to the assumption undertaken in our paper.

2 PRELIMINARIES

In this section, we briefly recap the notions needed in our frame-
work, namely the definition of a knowledge base and the corre-
sponding constraints, along with the definition of conflicts.

2Benchmarks on LUBM in [6] have been performed on a relational representation of
the LUBM ontology with vertical partitioning.

135

Constraints and KBs. A tuple-generating dependency (abbreviated
TGD) is of the form R : VxVyB(x,y) — 3zH(y, z), where x and
y are sequences of variables, B and H are conjunctions of atoms,
with vars(B) = xUy, and vars(H) = yUz. B and H are respectively
called the body and the head of R. A contradiction-detecting
dependency (abbreviated CDD) is of the form N : VxB(x) — L
where B is a conjunction of atoms, with vars(B) = x. The body B
may have equalities but no inequalities [12]. Inequalities are not
used as they lead to undecidability even for TGDs [20]. Notice
that whereas CDDs are a subset of DCs (Denial Constraints), they
are different from Keys, FDs and EGDs (subsets of DCs).

A dependency with an empty body B and a non-empty head H
is called a fact. Therefore, a fact is a set of atoms with existential
variables (i.e. labeled nulls). A knowledge base K = (F,21,2¢)
consists of a finite sets of facts, TGDs and CDDs, respectively.
Reasoning with a knowledge base is done via the chase. A rule R :
B — H is applicable to a fact F if there exists a homomorphism 7
from B to F. The application of R to F w.r.t. & produces a finite set
of atoms (also called atomset) a(F, R,) = FUn(safe(H)), where
safe(H) is obtained from H by replacing existential variables
with fresh variables. The application of all TGDs to a set of facts
is called the chase. The result of the chase on ¥ is denoted as
Cls (F) which produces an expanded set of facts F*. In this
paper, we restrict ourselves to weakly-acyclic TGDs to avoid non-
terminating chase sequences [15]. Let us consider the example in
Figure 1 (b), on which we show the result of the chase.

Example 2.1. The result of the chase on the set of fact ¥~ is:
Cly (F') = F' U {prescribed(Nsaids, John)}.

Query Answering. Given a set of facts #, an answer to Q in
K =(F,Z1,.2c) is a tuple of constants (A, ...,Ag) such that
there exists a homomorphism 7 from Q to CKZT(‘F), with (A, ...,
Ag) = (m(x1), ..., 7m(x)). We denote by Q(F,Xr) the set of all
answers of Q over ¥ in presence of X7.

Inconsistent knowledge bases and conflicts. A widely accepted
assumption in KBs is that the set of TGDs is compatible with the
set of CDDs, i.e. the union of the two sets is satisfiable [25]. A set
of facts ¥ is inconsistent with respect to a set of TGDs X7 and
CDDs 2 ¢ (or inconsistent for short) if and only if there exists a
dependency N € 3¢ such that CKZT(‘F) |= body(N). A knowledge
base K = (¥, 2T, 2¢) is inconsistent if and only if there exists
a set of facts ¥/ C F such that #” is inconsistent. We use the
alternative notation CfZT(T‘_) |= L hereafter.

Example 2.2 (Example 2.1 Ct’d). The knowledge base K =
(F’,21,%¢’) is inconsistent because the bodies of the two CDDs
are entailed from Ct’zT(?”).

Inconsistency can also be characterized by conflicts.

Definition 2.3 (Conflict). Let K = (F, 2T, 2¢) be an inconsis-
tent knowledge base. A conflict is defined as a tuple X=(N, h)
such that h is a homomorphism from body(N) to C[ZT(?_) such
that h(body(N)) C CKZT(?:).

Example 2.4. The knowledge base K = (¥, 27,2¢’) has two
conflicts X1 = (N1, h1) and Xy = (Na, h2) defined as follows:

o N; = prescribed(X,Y), hasAllergy(Y,X) — L.
h1(X) = Aspirin, h1(Y) = John

o N, = prescribed(X,Z), prescribed(Y, Z),
incompatible(X,Y) — L.

ho(X) = Aspirin, ha(Y) = Nsaids.

We denote by conflict(%,N) all the conflicts for a given
constraint N € Y. The set of all conflicts of a given knowledge
base is denoted as:

allconflicts(K) = U conflict(%, N)
Nele

A knowledge base K is consistent iff allconflicts(K)= 0.

In order for CDDs to be meaningful, we impose that CDDs
contain atoms with join variables. This assumption is made to
avoid for instance CDDs of the form prescribed(X,Y) — L in the
above example. Such CDD is a schema constraint imposing that
prescribed should be removed from the vocabulary of the KB.

3 UPDATE-BASED REPAIRING

In this section, we introduce the framework of update-based re-
pairing for KBs. As opposed to deletion-based repairing, the gran-
ularity of update-based repairing is no longer an atom but instead
a position that we need to update within a given atom. In what
follows, we introduce the concept of a position and a fix on a
position. Then, we proceed by giving the definition of a repair
in such context, i.e. based on a minimal set of fixes needed to be
applied in order to recover the consistency of a KB.

Given an atom A = p(t1, ...,), we denote by arity(A) = n
the arity of the predicate pred(A) = p. The tuple (A, i) such that
i € [1,arity(A)] is called a position and identifies the position
of the i-th argument of p. We denote by adom(4, i, ¥) the active
domain of the argument i of p in F.

A position is a building block in update-based repairing as it
gives access to the inner structure of an atom. For instance, (A, 1)
such that A = prescribed(Aspirin, John) is a position that refers
to the first argument of A.

Given 7, the set of all positions of ¥ is defined as:

pos(F) = {(Ai) |Ae Fandi € [1,arity(A)]}

The function valuei‘(?’) returns the value of the position (A4, i).
Since existential variables can be present in atoms, value%(?‘)
can be either an existentially quantified variable or a constant. The
set of all values of a set of facts ¥ is defined as:

vals(F) = {valuefq(f) | (A, i) € pos(F)}.
A position fix specifies an update on a given atom in a given
position.

Definition 3.1 (Position fix). A fix on a position (4, i) in ¥ is a
triple (A, i, t) such that t € adom(A, i,) \ valuefq(?') ort= XA
is an existential variable that is uniquely attributed to (A, i).

A fix on a position can specify a value that is within the active
domain of the predicate p and different from the actual value. A fix
can also specify an existential variable that refers to an unknown
individual. Please note that such a variable is unique to the position
in question and it is not used elsewhere in the knowledge base.

The application of a set of fixes P on F is defined as follows:

apply(F,P) = {p(t],....t)) | A=p(t1,...,tn) € F and Vi €

{1,...,n} either (A,i,t]) € P or (A,i,t]) ¢ P and t] = t;}

We consider only valid set of fixes which are set of fixes P
such that there exist no two fixes (A, i, t), (A,i,t’) € P and t # t’.
The application of a set of fixes # on a set of facts gives another
set of facts called the update of F by P. It is clear that |F’| = |F|
and pos(F”’) = pos(F).

Example 3.2. The following is a set of fixes P = {(4, 2, X1), (A’,
2, Aspirin)} such that:

o A = hasAllergy(John, Aspirin).
o A’ = hasAllergy(Mike, Penicillin).

136

The update of ¥ by P gives:
o 7 = {prescribed(Aspirin, John), hasAllergy(John, X1),
hasAllergy(Mike, Aspirin)}
The following set of fixes is not valid as it modifies the same
position with different values:

o P =P U{A,?2,Penicillin)}

An important notion that will be used later is the reconstruction
of a set of fixes P given a set of facts ¥ and its update . We
define the function diff(F, ") as follows:

diff(F, 7)) ={(A i t])) | A=p(t1,....tn) € F,A =
pt],....t;) € ' and match(A) = A’ and 3j €
{1,...,arity(A)} such that t]f #tj}

Notice that the function match(x) puts the atoms of ¥ and ¥’
in one-to-one correspondence. Such one-to-one correspondence
exists because we know that ¥ is an update of ¥, therefore |F| =
|F”|. match(x) should satisfy the condition that match(x) = y if
and only if x € ¥ and y € ¥’ and pred(x) = pred(y).

Example 3.3. Consider ¥ of Example 1.1 and its update ¥’ of
Example 3.2, one can construct £ by defining match(A;) = A7,
match(Az) = Al and match(A3) = Aj such that:

o A; =prescribed(Aspirin, John) and
A} = prescribed(Aspirin, John).

e Ay = hasAllergy(John, Aspirin) and
A}, = hasAllergy(John, X).

e A3 = hasAllergy(Mike, Penicillin) and
A} = hasAllergy(Mike, Aspirin).

Note that there may be finitely many one-to-one correspon-
dences between two sets of facts.

The set of fixes £ gives a consistent update #'. In fact, it
is minimal in the sense that only what is necessary to recover
consistency has been changed. In what follows, we introduce the
notion of consistent fixes, repair fixes and update repair.

Definition 3.4 (c-fix and r-fix). Let K be an inconsistent knowl-
edge base, P a set of fixes and ¥’ = apply(F,P) the update
of ¥ by . P is called consistent fixes (denoted c-fix) of K iff
K = (F',2T,2c) is consistent. P is called repair fixes (denoted
r-fix) of K iff P is a c-fix and it contains no c-fix P’ c P.

¥ is an update-repair if P is an r-fix. A c-fix is a set of fixes
that gives a consistent update, an r-fix is a set of fixes that gives a
consistent update that is minimal with respect to the changes.

Example 3.5. P isac-fixand P; = P\ {(A’, 2, Aspirin)} is an
r-fix. However, P2 = P \ {(A, 2, X1)} is not a c-fix.
The following is a u-repair produced by #;:

F1 = {prescribed(Aspirin, John), hasAllergy(John, X1),
hasAllergy(Mike, Penicillin)}.

It is not hard to see that there exist finitely many r-fixes for
a given set of facts ¥ because a position can take a finite set of
values assuming that the active domain is finite.

After having defined the basic notions for update-based repair-
ing, in what follows we introduce II-repairability, a key concept in
our framework. For a given knowledge base K, we are interested
in knowing whether there always exists a way to repair K. In Ex-
ample 1.1, the knowledge base is repairable because there exists
an r-fix for 7. In fact, for an arbitrary inconsistent knowledge base
K, repairability is guaranteed as one can change all positions to
fresh existential variables, and since such variables are unique to
the positions no constraint will be triggered. This gives us a c-fix,

consequently an r-fix for K. II-repairability is a generalization of
repairability where IT refers to those positions that are immutable
or not allowed to be changed. This generalization helps us to know
whether the KB is repairable when some positions are modified
by the user and not allowed to be changed.

Definition 3.6 (Il-repairability). Let K be an inconsistent knowl-
edge base and II C pos(F) be a set of positions. We say that K is
II-repairable if and only if there exists an r-fix # of K such that
there exists no (A, i,t) € P and (A, i) € II.

A knowledge base can be inconsistent but II-repairable. In such
case, II-repairability indicates in a sense the possibility of finding
a u-repair for K if certain positions are fixed prior to the repairing
process. If K is not II-repairable then % has no u-repair whose
corresponding r-fix $ changes the positions in pos(7) \ II.

As stated above, Il-repairability is a generalization of the con-
cept of repairability. When all positions are immutable then II-
repairability reduces down to a consistency check. Formally, if
IT = pos(¥) and K is II-repairable then K is consistent.

Algorithm 1 for checking IT-repairability proceeds by changing
all positions to fresh existential variables except those positions
that belong to II. Then, we check the consistency of this new
knowledge base using CHECKCONSISTENCY(K). In fact, the al-
gorithm checks if fixing some positions with their corresponding
values will result in fixing the violations of some CDDs. If this is
the case, the knowledge base can never be repaired.

Example 3.7. Consider the following knowledge base K with

an empty Xr:
o 7 = {pla.b),q(b,d)}
* 3¢ ={pX.Y),q(Y,Z) —> L}

If we take IT = 0 then K is II-repairable. This is because the c-
fix P = {(P(a, b)s 1, Xl)! (P(a, b)’ 2, Xz)s (q(bv d)’ 1, X3)s (CI(IL d)’ 1,
X4)} gives a consistent update. Consequently, P is a c-fix. Nec-
essarily, one can consider the r-fix P’ = {(p(a,b),2,X1)} C P
which gives a u-repair. However, if IT = {(p(a, b), 2), (q(b,d), 1)}
then K is not II-repairable because regardless of the values that
the other positions can take the dependency will always be vi-
olated. Note that the fact that X1 is empty does not change the
situation, given that the consistency check function is generic.

Checking II-repairability is easy from a computational perspec-
tive. Algorithm 1 does perform such check in a polynomial time.
The function CHECKCONSISTENCY(K) in Algorithm 1 evaluates
on the body of every CDD N € X¢ on CZZT((F) and checks
whether the query has an answer. If this is the case, K is incon-
sistent, otherwise it proceeds until no CDD is left to be evaluated,
where the knowledge base achieves consistency. Clearly, the func-
tion IT-REP(K) runs in linear time of the size of pos(¥) plus the
computational overload of the function CHECKCONSISTENCY ().
This gives a polynomial data complexity as evaluating boolean
conjunctive queries is polynomial in data complexity even in pres-
ence of weakly-acyclic TGDs [12, 22] .

We now need to prove that the algorithm is sound, i.e. if the
knowledge base is II-repairable then the algorithm produces true
as an output, otherwise false.

PROPOSITION 3.8. K is I-repairable iff Il-rep(K,I1) = true.

PROOF. (=): suppose that K is [T-repairable and II-REP(%, IT)
returns false. The former implies that there exists an r-fix £’ of
K such that ¥/ = apply(F,P’) is the u-repair of F By P’.
The latter implies that X’ = (F’,27,3¢) in line 5 is inconsis-
tent, thus there exists a conflict X = (N, k) in K’. Since there

137

exists a homomorphism from body(N) to ¥, we now show that
K" =(F",21,Zc) is necessarily inconsistent by constructing a
homomorphism g from ¥’ to " i.e. X would also be a conflict
in K/, thus K’ is inconsistent.

Recall that P’ is the set of fixes that assigns to every position
(A, i) € pos(F), (A, i) ¢ II a unique existential variable Xi‘. Let
P = diff(F',F"), we define the homomorphism g : A —>
B such that A = {Xi‘ | (A, i,Xi) e P}, B ={t]|(Ait) €
P’’}, and g(Xl’;‘) = t such that (4, i,t) € P’. Since there exists
a homomorphism from body(N) to ¥, and from F’ to "’ then
there exists necessarily a homomorphism from body(N) to F”.
Hence, K’ is inconsistent.

(<): it is trivial, if K” is consistent then P is a c-fix of K such
that A(A, i, t) € P, (4, i). By definition, 3P’ C P such that P is
an r-fix of K. -

Algorithm 1 IT-repairability
function IT-REP(K, IT)
II" « pos(F) \ II
Pe—{(Ait)|(Ai)ell'andt =X}
F « apply(F, P)
K — (F.21.2c)
return CHECKCONSISTENCY(K”)
6: end function

1:
2
3:
4
5

We have introduced so far the key concepts of our framework.
Nevertheless, as already mentioned in the introduction, update-
based repairing is unfeasible in practice because there are no
guidelines on (1) how to choose the positions among those possi-
ble, and (2) who provides the corresponding fixes. Our positioning
here is that update-based repairing should go hand in hand with
user intervention. In the next section, we introduce our interactive
framework serving this purpose.

4 USER INTERVENTION

The key idea behind user intervention is that the user may have
a repair in mind, which corresponds to how the knowledge base
should turn to be consistent. Obviously, it is impossible for a user
to manually repair the KB. In this section, we propose a framework
of inquiry dialogue that takes a place between the knowledge base
and the user. The basic idea is that the knowledge base asks
questions about some fixes and the user chooses which one is true
until he reaches a consistent knowledge base or, alternatively, a
u-repair under some conditions.

Definition 4.1 (Inquiry). Given an inconsistent knowledge base
K and a possibly empty set of positions II. A question has the
form ¢ = {fi1,..., fn} such that fi is a fix. An answer to ¢
is a fix fy € ¢. Given a conflict X = (N,h) in K, a ques-
tion ¢ = {fi,..., fn} is said to be sound if and only if for
every fix fr = (Ai,t) € ¢ where II” = T U {(4,i)}, K =
(apply(F,{f}), 21, 2c) is II'-repairable. An inquiry over K is
a finite sequence of pair of sound questions and answers Qg =

(91, f1), - - - » (@, fn)) such that f; € ¢;.

A question ¢ is a set of fixes, whereas an answer is a fix that
the user chooses from ¢. In the framework, questions are sound if,
once answered, will not render the knowledge base unrepairable.
These questions are crucial to guide the user.

Example 4.2. Consider the knowledge base of Example 1.1
and the following sound question:

3Hereafter, every question is meant to be sound.

° = {(A,1,X1), (A, 2,X3), (A, 1, Mike), (A’, 1,X3),
(A’, 2, Penicillin), (A’, 2, X4)} such that:
— A = prescribed(Aspirin, John) and,
— A’ = hasAllergy(John, Aspirin).

An inquiry is a sequence of tuples of question and answer. In
what follows we show how a sound question can be generated and
how an inquiry with a user takes place.

Algorithm 2 generates a sound question from a given conflict
X. The choice of a conflict being the starting point of a question is
evident. In fact, fixing those atoms that are parts of some conflicts
necessarily solves inconsistencies. The algorithm in line 4 gen-
erates all positions of the atoms of the conflict X, then for each
position (A, i) that does not belong to IT, we generate all possible
fixes in lines 6-7. The fixes change the value of the position (A4, i)
to other values in the active domain different than the actual value
and to an existential variable uniquely attributed to (A, i). Next in
line 10, we enter in a filtering step where each fix is omitted if it
renders the knowledge base not IT-repairable. Then it returns just
¢. The following lemma proves that Algorithm 2 always gives a
non-empty question which is necessarily sound.

LEMMA 4.3. Given an inconsistent knowledge base K and a
set of positions I1 such that ‘K is Il-repairable. Given a conflict
X = (N, h), then soundquestion(%, I, X) # 0 and soundquestion
(K, 11, X) outputs a sound question.

PROOF. First, if IT = pos(F) then K is consistent (II-repairability

reduces down to consistency in this case), therefore there will be
no conflict X in K. Assume that IT C pos(¥), then SOUNDQUES-
TION(K, I1, X) = 0 if and only if: (1) In Line 5, II” C I, or, (2) In
Line 8 , val = 0 for each position (A, i) € P, or, (3) In Line 16,
every fix is removed from ¢.

For (1), suppose it is the case. We know that K is II-repairable,
therefore there exists an r-fix # of K such that there exists no
(A,i,t) € P and (A,i) € II. Let ¥ = apply(F,P) be the up-
date repair of ¥ by . We know that h(body(N)) € ¥, and
VA € h(body(N)) and for every j € [1,arity(A)], (A,i) ¢ P
for some ¢ because (A,i) € II’. Therefore, h(body(N)) C F~,
which means that X = (N, h) is a conflict in K = (F/,2T1,2¢),
consequently K’ is inconsistent and ¥ is not a u-repair, thus
is not r-fix, which contradicts the fact that K is II-repairable.
For (2), it cannot be the case because val can always hold {X 2}.
For (3), it is clear at each iteration the fix fr = (A, i,qu) is
in ¢ and will not be removed because if K’ is II-repairable
then K’ = (apply(F, fr). 21, 2¢) is also II’-repairable where
I =TTU {(A, i)}.

The fact that SOUNDQUESTION(K, I1, X) returns a sound ques-
tion is quite straightforward since if SOUNDQUESTION(%, IT, X) #
0, the Algorithm in line 14 drops any answer that does not lead to
a IT-repairable knowledge base. O

This lemma tells us that if % is II-repairable, we can always
find a sound question. This relies on the intuition that K is II-
repairable, i.e. there necessarily exists some fixes that can be
applied to render the knowledge base consistent.

Engaging the user in an inquiry needs to guarantee that the
knowledge base is eventually repaired the way the user want it to
be. However, such goal may never be accomplished if the inquiry
cannot ensure that the resulting knowledge base is consistent. Al-
gorithm 3 is the principled procedure that undertakes an inquiry
dialogue with the user. The key idea is that we keep asking ques-
tions until there is no conflict left in the knowledge base. When

138

the user chooses a fix (A, i, t) from ¢, the position (A, i) becomes
immutable to prevent modifying the value again. The algorithm
terminates and produces a consistent knowledge base.

Algorithm 2 Generate sound question

1: function SOUNDQUESTION(, II, X)

2 X =(N, h)

3 ¢—0

4 II' — {(A i) | A € h(body(N))and i € [1, arity(A)]}
5: for each (A4, j) € IT" \ 11 do

6: val « adom(A, i, F) \ {valuefa(?)}

7 val<—valU{Xf’;}

8 ¢ —pU{(A i t)|t eval}

0 %0

end for
10: for each f;. = (A, i, t) € ¢ do
11 Oymp < U {(A D)}
12: K" (apply(F, f), 21, 2¢)
13: if [I-REP(K, H’tmp) = false then
14: p—d\(A L 1)
15: end if
16: end for

return ¢

17: end function

Algorithm 3 Inquiry with a user

1: function INQUIRY (%, II)

2: K «— K

3 I 11

4 while allconflicts(X”) # 0 do

5: Pick a conflict X € allconflicts(K”)
6: ¢ < SOUNDQUESTION(, IT’, X)
7 f < ASKUSER(¢)

8 K — (apply(F,), =1, Z¢)

o VIV U{(A i) | f = (A i, 1)}
10: Recompute allconflicts(K’)
11: end while

return K’

12: end function

PROPOSITION 4.4 (SOUNDNESS AND TERMINATION). Given
an inconsistent knowledge base K and a set of positions I1. Then,
inquiry(%, I) returns a consistent KB K in a finite time.

PROOF. Let K}, IT}, ¢;, fi be the knowledge base K, the set
of positions I, the sound question ¢ and the chosen fix f at the
beginning of the while loop at round i.

Round 1: K] = ¥ is inconsistent and IT{-repairable such that
I = IL

Round i: K] is either consistent, therefore allconflicts(K’) = 0
and Algorithm 3 terminates, or inconsistent. However, we know
that it is IT;-repairable because ¥, = apply(¥;” ;. {fi}) such that
fi € ¢i and ¢; is a sound question. Let this round be the one in
which |pos(%;)|~|IT;| = 1. This means that at line 6 SOUNDQUES-
TION(%, II, X) # @ and when the user chooses a fix in line 7, it is
clear that at line 11 K is IT;-repairable with IT} = pos(#;). It is
obvious that K is consistent hence allconflicts(K’) = 0. ©

In what follows, we investigate the complexity of Algorithm 2.

PROPOSITION 4.5. In the worst-case, Algorithm 2 runs in
O(d x (Ipos(F)| + Cri—rep)) with d being the size of the largest
active domain in K and Cr—yep being the worst-case complexity
of Il-repairability algorithm.

PROOEF. The worst-case corresponds to IT =) and h(body(N))
=¥, i.e. the whole set of facts is a conflict. In this case, the loop at
line 5 will iterate over all positions, i.e. pos(¥). The loop at line 8
depends on d. The additional loop at line 10 performs d iterations.

We assume that the instruction at line 12 runs in constant time.
Then, the function II-REP(K”, 11}, p) is called d times. O

The ultimate and most desirable goal of the inquiry is to ar-
rive at the user’s repair. A well-founded framework is the one
that meets such requirement. However, this depends on how the
user answers the questions, his background knowledge and so on.
Therefore, some assumptions have to be made. In the next section,
we consider a special case, i.e. when the user is an oracle.

4.1 The Oracle

In this section, we discuss the case in which interaction takes place
with an oracle O. The oracle corresponds to a u-repair Fp with an
associated answering mechanism. The oracle draws its answers
from Fp as follows: given a question ¢, f; is an oracle answer if
and only if f; € diff(F, Fp). In case of multiple answers from
the oracle, O non-deterministically chooses one of them. Note
that not all the sets of fixes in diff(F,) are necessarily r-fixes.
There may exist finitely many set of fixes, even though we assume
that if a given r-fix P is chosen by O, we name it an oracle r-fix.
Note that such r-fix always exists as shown hereafter.

PROPOSITION 4.6. Let ¥/ be a u-repair of . Then, there ex-
ists a one-to-one correspondence match(x) such that diff(F,F")
is an r-fix.

The proof is straightforward as there may exist exponentially
many match(x) that make all possible one-to-one correspondences.
One of them must necessarily correspond to the real match because
|F| =|F"'| and ¥’ is homomorphic to F.

It turns out that when interacting with the oracle, the oracle is
capable of answering every question asked by Algorithm 3.

LEMMA 4.7. Given a consistent knowledge base K, a possibly
empty set of positions 11, an oracle O and its chosen r-fix Po.
Every question ¢; generated in inquiry(K, IT) contains at least a
fix fi such that f; is in Po.

PROOE. If there exists a sound question ¢; generated by IN-
QUIRY(K, II) at an iteration i such that ¢; N P = 0 then there
exists f € Pp such that K = (apply(F,{f}),ZT1,Zc) is not
IT}-repairable. Therefore, K has no u-repair. This contradicts the
fact that ¥ is a u-repair.

O

This lemma gives us the most important result, by stating that
when the inquiry ends, the resulting knowledge base is in fact the
oracle’s u-repair Fp.

PROPOSITION 4.8 (SOUNDNESS W.R.T Q). Let K’ = (F', 2T,
3¢) be the knowledge base returned by inquiry(%, IT) with an or-
acle O as the user. Then, F' is the oracle’s repair Fo.

PROOF. Since every question ¢; contains at least a fix f € Pp
then O will definitely choose a fix f € Pp. After answering by
f, every next question ¢;+1 will not contain f because once a fix
is applied it will never be proposed again. However, by Lemma
4.7, $i+1 will definitely contain a fix f” such that f/ € Pp \ {f}.
Hence, O will choose it until choosing all fixes in Py. We can
see that in fact we are applying Pp on ¥ one fix at a time. We
know that P is an r-fix, thus in other words we are constructing
a u-repair identical to Fp. Therefore, ' = Fp.

m]

Let us give an example of an inquiry with an oracle.

139

Example 4.9 (Inquiry with oracle). Consider the knowledge
base of Figure 1 (b) and the oracle repair Fp:
prescribed(Aspirin, John) hasAllergy(Mike, Aspirin)
hasAllergy(Mike, Penicillin) hasPain(Mike, Migraine)
isPainKiller For(Nsaids, Migraine)
incompatible(Aspirin, Nsaids)

The inquiry is as follows:

Fo =

(1) KB: which fix is true from the following set?
{(prescribed(Aspirin, John), 1, t) | t € {Xi, Nsaids}}U
{(prescribed(Aspirin, John), 2, t) | t € {X3, Mike}}U
{(hasAllergy(John, Aspirin), 1, t) | t € {X3, Mike}}U
{(hasAllergy(John, Aspirin), 2, t) | t € {Xy, Penicillin}}

(2) O:thefix (hasAllergy(John, Aspirin), 1, Mike) is true.

(3) KB: which fix is true from the following set?
{(incompatible(Aspirin, Nsaids)), 1, Xs)}U
{(incompatible(Aspirin, Nsaids)), 2, X¢) }U
{(prescribed(Aspirin, John), 1, t) | t € {X7, Nsaids}}U
{(prescribed(Aspirin, John), 2, X3)}U
{(hasPain(John, Migraine), 1, Xo) }U
{(hasPain(John, Migraine), 2, Xy9) }U
{(isPainKillerFor(Nsaids, Migraine), 1, Xy1)}U
{(isPainKiller For(Nsaids, Migraine), 2, X12)}

(4) O:the fix (hasPain(John, Migraine), 1, Mike) is true.

The knowledge base asks a question on a possible set of fixes.
Then, the oracle chooses among them a fix that belongs to its
r-fix. As one can notice after applying the fixes provided by the
oracle in 2 and 4, the resulting knowledge base is indeed consis-
tent and its set of facts equals Fp. Notice that for instance the
fix f = (incompatible(Aspirin, Nsaids)), 1, X5) has no proposed
value other than the existential variable because the active domain
is empty. An additional comment is in order. The size of the ques-
tions grows polynomially (and not exponentially) in the size of the
conflicts and in the size of the active domain. As a consequence,
presenting these questions to the user is an implementation con-
cern that can benefit from advanced HCI techniques [8] and is
beyond the scope of this paper.

When interacting with an oracle, Algorithm 1 performs as
many iterations as the number of conflicts in the knowledge base.
However, the number of iterations corresponds to the size of
the oracle’s r-fix, denoted as r’v'™. This is the case because the
oracle at each step answers with a fix f € P until all fixes
in P are used. Given a set of empty positions II and a II-
repairable inconsistent knowledge base K = (¥,27,2¢), then
r?)“"' < |pos(¥)|. Therefore, the number of iterations is linear
in the size of ¥. However, the algorithm is dominated by the
complexity of SOUNDQUESTION(%, I1”, X) at line 6 and the com-
putation of all conflicts. In fact, a conflict is the result of evaluating
the body of a CDD, thus leading to a polynomial data complexity
of boolean conjunctive query (for weakly-acyclic TGDs).

PROPOSITION 4.10. Let Cqyery be the data complexity of
evaluating a conjunctive query on a set of facts F, in presence of
a set of weakly-acyclic TGDs X1, Csoundq be the complexity of
soundquestion (Proposition 4.5) then the complexity of Algorithm
Lis O([pos(F)| X (|12¢| X Cquery + Csoundq))'

The above result gives us a polynomial delay algorithm.

COROLLARY 4.11. Algorithm 3 takes a polynomial delay be-
tween questions.

A polynomial delay algorithm is an algorithm in which the time
between the output of the solutions is bounded by a polynomial
function of the input size in the worst case [23]. In between ques-
tions, we perform query evaluation which costs |Zc| X Cquery
and the computation of a sound question which costs Csoynag-
Therefore, the user will not have to wait from one question to the
next more than an amount of time that is polynomially bounded.

5 QUESTIONING STRATEGIES

The goal of a strategy is to minimize the number of questions to
be asked to the user in order to arrive at a consistent knowledge
base. In this section, we present four strategies improving one
on another. We introduce: the baseline strategy called random;
another strategy, called opti-join, that improves over random by
considering the so-called join positions; another variant of opti-
join called opti-prop that uses propagation, and finally a fourth
strategy, called opti-mcd that improves over opti-join.

First, let us define the lower and upper bounds of the number
of questions for each strategy. It is obvious that the maximum
number of questions is equal to |pos(¥)|. This case corresponds
to a knowledge base in which every position needs to be changed
to recover consistency. The minimum number of questions is
clearly zero if the knowledge base is consistent.

The functions II-REP(K;, IT) of II-repairability and CHECKCON-
SISTENCY(K”) in Algorithm 1 and recompute allconflicts(K”’)
in Algorithm 3 shown in Section 4 are used in all the strategies.
In the following, we detail Algorithm 4 where we propose an
optimized version of these functions.

CHECKCONSISTENCY-OPT(K”): the most naive approach for
consistency check is to compute the chase on ¥ to get Ct’ZT(T)
then to check whether there exists a CDD whose body evaluates to
true in szT(G‘-'), as implemented in CHECKCONSISTENCY (K”).
The optimized version CHECKCONSISTENCY-OPT(K”) considers
CDDs and TGDs such that L is seen as unary predicate (i.e. a
constant). If, during the chase, the constant L is produced then the
knowledge base is inconsistent. This is quite fruitful as it helps to
stop consistency check as early as possible.

II-REPOPT(%, II): we can easily observe that if a knowledge base
K is II-repairable and some positions have been fixed using a set
of values V then in the case in which a new fix f arrives with
value v (constant or fresh existential variable), the knowledge
base stays I1I-repairable if v ¢ V. This is quite intuitive because if
the fixed positions do not trigger any CDDs, the new value will
not trigger any CDDs since all atoms have different values. If the
value is already used, we proceed to the optimized consistency
check CHECKCONSISTENCY-OPT(K”). This is the optimized II-
repairability check of II-REP(%, IT).

Let us now turn to the optimization of allconflicts(K”). Let
allconflictspaive(K”) be defined as the set of all naive conflicts.
A naive conflict X = (N, h) is defined as a conflict in the sense of
Definition 2.3 except that & is a homomorphism from body(N) to
¥ such that h(body(N)) C F and szT(?') |= L. These conflicts
are computed on ¥ without applying the chase. It is clear that if
allconflictspaive(K’) = 0, K is not necessarily consistent as
there is the possibility of having conflicts that will appear after
applying the chase like the conflict X2 in Example 2.4. However,
we observed that resolving naive conflicts at first can eliminate
other conflicts that are discovered after applying the chase. For
instance in Example 2.4, if we resolve the conflict X, by updating
the atom prescribed(Aspirin, John) on the first position, this will
resolve the conflict that can be detected using the second CDD
after applying the TGD. Therefore, our strategies are two-phases
strategies. In the first phase, naive conflicts are resolved, while
in the second phase, if the KB is still inconsistent, new conflicts
are discovered and resolved during the chase. In what follows, we
provide an optimization of conflicts computation.

UPDATECONFLICTS(K”): we compute the initial set of naive
conflicts over K and keep them in a set Cpgive, then Cpgjve iS

140

updated as follows. If the user provides a fix f = (A, i, t) which
results in a new set of facts F’, then we remove all conflicts that
are related to A from Cj,4ipe. Next, we define a subset Z‘é Cc3c
that is related to A as follows: a CDD N € Z‘é iff 3A” € body(N)
and a homomorphism A such that h(A”) = A. Finally, Cpgive is
updated by evaluating the body of each CDD N € Zé over the
new set of facts . In this optimization, instead of recomputing
all conflicts, we are limiting the computation to the modified atom
which is more efficient than evaluating all CDDs on F”.

Once we have defined the above optimizations, we turn our at-
tention to our proposed strategies, namely random, opti-join, opti-
prop and opti-mcd. Algorithms 4 & 5 are parametrized, thus we
can easily plug in the above optimizations. The main code of each
strategy is Algorithm 4 which calls the functions GENERATEQUES-
TION(K, IT’, X) and GENERATEQUESTION-CHASE(K, IT”, X).
These functions are implemented differently for each strategy. In
addition, these functions make use of SOUNDQUESTION(%, IT’, X)
for which the function RETRIEVE-POSITIONS(X,K) changes
from a strategy to another. For space reasons, in the following we
report a concise description of each strategy. Their implementation
and effectiveness are discussed in the next section.

Random. This strategy selects randomly a conflict from Cpgive
before asking a question about all positions. More precisely,
GENERATEQUESTION(%, II”, X) randomly picks a conflict from
Chaive and calls SOUNDQUESTION(K, IT’, X). Then, RETRIEVE-
POSITIONS(X, K) for each atom in h(body(N)), generates all posi-
tions (A, i) and proceed normally in SOUNDQUESTION(K, IT’, X).
While applying the chase if a violation of a CDD is detected,
GENERATEQUESTION-CHASE(K, IT’, X) gets all facts in F that
contribute to its violation, then generates all positions from this set
and returns it as a question using SOUNDQUESTION(%, IT”, X).
Opti-join. This strategy improves over random on RETRIEVE-
POSITIONS(X, K) where only join positions are generated. Given
a conflict X = (N, h), a position (4, i) is a join position if and
only if the variable at the position i in A’ is a join variable in the
CDD N such that h(A”) = A. For instance, consider the example
of Figure 1(b) the position (prescribed(Aspirin, John), 1) is a join
position because the variable X in A’ = prescribed(X,Y) is a
join variable in the second CDD. Clearly, this strategy generates
smaller questions and most notably avoid asking unnecessary
questions. Consider the knowledge base K without TGDs:

F = {isUrgent(Mike, a, 145), isDe ferredTo(Mike, 12/10/2015)}.
Sc = {isUrgent(X,Y,Z),isDeferredTo(X,W) — L}.

Here the position (isDeferredTo(Mike, “12/10/2015”),2) is
not a join position. However, the position (isUrgent(Mike, a, 145),
1) is a join position. Join positions are pivotal in order to resolve
conflicts, since changing non-join positions does not affect the
homomorphisms and does not resolve conflicts.

Opti-prop. This strategy behaves the same as opti-join except
that a propagation technique is used. By definition if the user
chooses a fix f = (isUrgent(Mike, a, 145), 1, X;) from a question
¢ produced from a conflict X, then every position generated from
X (except the chosen one in f) is added to IT if and only if it is not
involved in any other conflict X’. This is quite intuitive because
when the user chooses a fix f from a question ¢, he is implicitly
indicating that they are non-erroneous. However, if some of these
positions participate in other conflicts then it is possible that they
are erroneous, thus they will not be added to II.

Opti-med. This strategy is an improvement over opti-join, it is
based on the so-called Conflict Hypergraph (CH) [13, 24] where
GENERATEQUESTION(%, IT’, X) and GENERATEQUESTION-CHA

SE(%K, I/, X) compute the Maximally ContainD position in all
computed conflicts. Each position p is attributed a rank that in-
dicates the number of conflicts containing p. The question is
generated on the position that has the maximum rank. If more than
one position are attributed the same maximum rank, one is picked
randomly. Using CH, the maximally contained position p corre-
sponds to the vertex of maximum degree. Obviously, this strategy
can avoid asking unnecessary questions by looking ahead and
choosing the position that resolves as many conflicts as possible.

Algorithm 4 Inquiry strategy

1: function INQUIRY (K, II)
2: K — K

3 I 11

4 Chaive = allconflictspaive(K”)

5: /[Start phase one * [

6 while C,4i0ve # 0 do

7 ¢ < GENERATEQUESTION(K, IT, X)
8 f < ASKUSER(¢)

9: K« (apply(F.). =1, 2C)

10:

' =W U{4i)|f=(Ai1}
11: UPDATECONFLICTS(K”)
12: end while
13: /* Start phase two * [
14: while CHECKCONSISTENCY-OPT(K”) = false do
15: ¢ < GENERATEQUESTION-CHASE(, IT', X)
16: f < ASKUSER(¢)
17: K« (apply(F.). =1, 2C)
18: I —WU{AiD)|f=(A14Lt)}
19: end while

return K’

20: end function

Algorithm 5 Sound questions for a strategy

1: function SOUNDQUESTION(K, II, X)
2 X =(N, h)

3 ¢—0

4: II" « RETRIEVE-POSITIONS(X, K)

5: for each (4, j) € I" \ I do

6: val « adom(A, i, F) \ {valuefq((F)}
7 val<—valU{X{’;‘}

8 ¢ —oU{(A i t)|t eval}

9: end for

10:

for each f;. = (A, i, t) € ¢ do

11: ymp «— MU {(A i)}
12: K« (apply(F.). =1, 2C)
13: if [T-REPOPT(K”, IT},,, ,) = false then
14: ¢ — P\ (AL t)
15: end if
16: end for

return ¢

17: end function

6 EXPERIMENTAL STUDY

Our experimental assessment is devoted to study two major fea-
tures of our user-guided repairing framework: (i) effectiveness:
investigates to what extent the framework is efficient in helping
the user repair the knowledge base with minimal effort, in terms
of average number of asked questions per strategy and average
number of conflicts per question, and (ii) delay time: the efficiency
of our framework when it comes to maintaining a reasonable delay
time between each asked question. By a reasonable delay time we
intend a delay less than 1 to 2 seconds as discussed in [26].

Experimental setup. We have implemented our framework using
Java 1.8 on a 2.40GHz 4-core, 16Gb laptop running Windows 7.

141

We have used GRAAL? as a chase engine. Each experiment has
been repeated a number of times, as indicated in the individual
plots (after discarding the cold start). As there are no existing
datasets or benchmarks equipped with the rich set of constraints
we consider in this paper, we rely on synthetically generated
knowledges bases and corresponding constraints. We also employ
a real-world knowledge base on Durum Wheat from [2]. This
knowledge base has been constructed manually from documents
and reports, which led to have notable inconsistencies. Moreover,
the attached constraints (including TGDs and CDDs) have been
validated by experts. Such a KB turned to be suitable for our
experiments as it fits the assumption that the set of facts is dirty
and the set of constraints is reliable. >

Synthetic KBs. The synthetic knowledges bases were generated
by tuning some input parameters. We first generate a vocabulary of
the knowledge base, i.e. predicate, variable, and constant spaces by
allowing also n-ary relations. Each predicate is assigned a random
arity from 2 to 10 following a uniform probability distribution. A
given number of CDDs are generated over the vocabulary by pa-
rameterizing the number of atoms s involved in the CDDs and the
percentage vy, of atoms positions corresponding to join variables
such that s € [5,10] and vg, € [10%, 100%]. TGDs are generated
following the same procedure as CDDs. To make the knowledge
base meaningful, links between TGDs and CDDs are made so that
some TGDs may introduce facts that will violate the CDDs. A
depth dg for a given knowledge base K is defined as how many
TGDs applications are needed to violate a CDD. A conflict depth
dgc = 2 means for each CDD we need the application of two
distinct TGDs so that the CDD is violated. Inconsistent KBs are
generated as follows, for a given facts size ng and an inconsis-
tency ratio rine ©, we keep generating sets of atoms that violate
the CDDs until we reach rj,.. Then, we pad the set of facts F
with atoms that are not involved in any conflicts. We add two
indicators of the structure of conflicts in the KB, namely “Avg
atoms per overlap” and “Avg scope". The first embodies the
average number of atoms in each overlap, an overlap being the
intersection between at least two conflicts. The avg scope indicates
for each conflict how many conflicts are overlapping with it, this
number being averaged over the total number of conflicts.

The Durum Wheat KBs. The real-world Durum Wheat knowl-
edge base in our experiments has been augmented with new
domain-specific TGDs and CDDs. The table in Figure 2 presents
the different characteristic of the knowledge bases and an example
of facts, a TGD and a CDD. Please note that ChaseSize (#atoms)
refers to the size of the facts after applying the chase. We made
two versions of the knowledge base of increasing size of CDDs, i.e.
Durum Wheat v1 and Durum Wheat v2. Notice that the number of
conflicts increases from v1 to v2 while inconsistency ratio stays
the same. This is due to the fact that the conflicts newly discovered
by the added constraints in v2 involve the same number of atoms.

We have simulated the end-user via an algorithm that randomly
chooses a valid fix from the proposed fixes following a uniform
probability distribution. Considering other kinds of distributions
and, in particular, choosing the most appropriate probability dis-
tribution that can simulate all the user’s choices is not trivial and
falls under user modeling, which is beyond the scope of our paper.

“http://graphik-team. github.io/graal/.

SNotice that we could not use popular knowledge bases such as YAGO, DBPedia
and LUBM because of their limited expressiveness on the vocabulary (only binary
relations) and lack of TGDs and CDDs.

“Number of atoms involved in at least one conflict divided by ne.

Analysis of Durum Wheat KBs. We measure the average num-
ber of asked questions for each strategy in order to gauge the
effectiveness of our approach on our real-world dataset. Figure 2
(a) and (b) show the results for all the considered strategies. We
can observe that opti-mcd is outperforming the other strategies
on Durum Wheat v1 with an average of 14.18 questions asked.
This difference is also observed on Durum Wheat v2 in Figure (a)
where opti-mcd outperforms other strategies with an average of
29.36 questions asked. The reason why opti-mcd is the winning
strategy is due to the fact that this strategy is actually capable of
exploiting the overlapping among conflicts which is given by the
indicator avg scope. In this case, the value of such indicator is 8
meaning that in the best case, roughly speaking, each question can
solve 8.1 (or 7.1 for V2) conflicts. This is under the assumption
that the conflicts are overlapping on the same atoms. Regarding
the difference with the other strategies, the results show that the
strategies (other than opti-mcd) tend to behave the same as they
do not exploit such a property. In addition, notice that opti-join
and opti-prop are very close to random strategy. This is due to the
fact that the percentage of join positions in conflicts is close to
90%. This makes the probability of choosing a join position with
random strategy very high. Moreover, the increase in the average
number of asked questions in all strategies in v2 is explained by
the fact that v2 has slightly more conflicts than v1.

Another perspective that gives a better illustration of the ef-
fectiveness of our interactive strategies is the average number of
resolved conflicts per question in Figures (c) and (d). The former
is computed as total nr. of conflicts/total nr. of questions (per strat-
egy). Again, we can observe that the opti-mcd strategy handles
more conflicts per question on average and proves to be the most
effective strategy compared to the others.

Analysis of Synthetic KBs. We now analyze the effectiveness
where the average number of asked questions is measured for each
strategy on synthetically generated KBs. For the first experiment
described in Figure 3, we generated a knowledge base with only
CDDs and no TGDs. Then, we increased the inconsistency ratio
by increments of 5% while keeping the size of the knowledge base
is fixed (see the table in Figure 3 for characteristics). The results
show a good performance of opti-mcd, while opti-join and opti-
prop behave similarly. The random strategy performs the worst
among them. This result in fact confirms the observation already
made on the Durum Wheat knowledge base about overlapping
conflicts. In this experiment, we notice a larger gap between opti-
join and opti-prop strategies on one side and random strategy on
the other side. Since the percentage of join positions in conflicts
is very low in the generated atoms (under to 30%), it is less likely
that the random strategy would randomly choose a join position.
The average number of resolved conflicts per question is shown in
Figure 3 (b) where one can see the performance of each strategy.

We should highlight that the baseline strategy (random) in
the two experiments is performing quite well as it still asks less
questions than the number of conflicts. This is quite natural as
the conflicts are in fact overlapping (as confirmed by the two
indicators, avg # atoms per overlap and avg scope) hence many
conflicts are resolved via the resolution of other conflicts. However,
there is a huge gap between the performance of the baseline
strategy and those of the more optimized strategies.

The second experiment aims at studying the convergence of
each strategy. Figure 4 (a) is done on an inconsistent knowledge
base with CDDs and no TGDs. We can observe that as the strate-
gies proceed with questioning, they exhibit different speeds in
getting toward a full resolution of the conflicts. While opti-mcd

142

is faster than all the other strategies, opti-join and opti-prop are
quite similar with a small difference on the number of asked ques-
tions. Figure 4 (b) is done on a fixed inconsistent knowledge base
with both CDDs and TGDs. We can observe that each strategy
hits the lowest number of conflicts at a point (close to 0) then it
starts slightly fluctuating until convergence. The rapid descending
phase corresponds to the process of handling only CDDs that
are directly violated by the initial set of facts without taking into
account the TGDs. Once the TGDs are triggered and the chase
starts, it interleaves TGDs with CDDs, leading to up and down
fluctuations corresponding to new conflicts introduced by TGDs
and resolution of conflicts with CDDs, respectively. Continuous
lines between fluctuations correspond to stagnation, in which nei-
ther the questions are resolving conflicts nor triggering TGDs and
CDDs brings new conflicts. The strategies opti-mcd, opti-join and
opti-prop behave quite similarly with a notable difference in the
convergence speed, bringing opti-mcd to be the fastest.

The next experiment is devoted to measure the delay time
between questions for synthetic KBs. Note that the delay time
for all previous experiments was very reasonable (less than 0.2
seconds) for both synthetic and Durum Wheat knowledge bases.

Figure 5 shows three different measures of the delay time using
opti-mcd in all experiments. The delay time for the other strategies
had a similar trend and is omitted for space reasons.

The goal of the experiment whose results are reported in Figure
5 (a) is to investigate whether increasing inconsistency (from 20%
to 80%) would affect the delay time. We can observe that the
inconsistency ratio is rather independent from the delay time. This
is quite interesting as regardless of the inconsistency degree of the
knowledge base, interactivity is guaranteed with the user in a very
reasonable time (average is less than 0.25 sec). Some outliers are
highlighted in the boxplot, however they stay within the limits of
reasonable delay time (less than 0.8 sec).

In the next experiment (Figure 5 (b)), we employed a KB of
increasing size (up to 20%, 40% and 60%), respectively while
keeping the inconsistency ratio fixed to 30%. The delay time
grows as the size of the knowledge base grows. Moreover, the
boxplot shows that the variance of delay time increases as the size
of the KB increases. This result shows that our method needs a
piecemeal application of interactive repairing and can always be
applied to small portions of the KB.

In the next experiment, we have chosen a worst-case scenario
in which we have a fully inconsistent KB, corresponding to incon-
sistency ratio of 100%, and we vary the depth (from d; to ds) of
the dependencies involved (both TGDs and CDDs). For all depth
d; we have #CDD(d;) = 150, and #TGDs(d1) = 50, #TGDs(d2) =
100, #TGDs(d3) = 150, #TGDs(ds) = 200. We have already shown
in the experiment of Figure 5 (a) that increasing the inconsistency
ratio does not affect the delay time. We observe that the delay time
increases with depth, in fact the larger the depth the more time
the chase takes while repairing. Notice that the chase is involved
in computing II-repairability and consistency check. Overall, the
delay time is kept low for all depths and less than 2 seconds.

7 CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel user-guided repairing
technique for knowledge bases, leveraging updates and interplay
of dependencies (TGDs and CDDs). Several extensions can be
thought of, such as formalization of user modeling to represent
several classes of users (from domain experts to non-experts), and
learning from provided user choices in the questioning strategies.

27.18

26.73

45

45.91
25 2464 4091 42

o
2 2
S sw
g Strategy S 5 29.36 Strategy
g Moo | 5 I oo
o1 14.18 epien S opion
8 I opti-med 8 I opti-med
S B opti-prop é 20 [opti-prop
o 10 [random ® 15 [random
<3 <)
g o
T T
2 2

opti-join opti-med opti-prop random

0 0

optijoin opti-mcd opti-prop random

Average number of conflics per question

13.05

Strategy Strategy
. opti-join . opti-join
I opti-med I opti-med
. opti-prop . opti-prop.
[random 0 random

Average number of conflics per question

7.22
s 5.18 505
I I :
0 I

optijoin opti-med opti-prop random

751
6.81 6.92 I
| I I
o

opti~join opti-med opti-prop random

Strategy Strategy Strategy Strategy
(a) (b) © (d)
KB Size (#atoms) ChaseSize (#atoms) Conflicts Avg # atoms per overlap ~ Avgscope #Repetitions
DURUM WHEAT V1 567 1075 185 1.42 8.1 10
DURUM WHEAT V2 567 1075 212 1.41 7.8 10
KB #TGDs #CDDs Inconsistency ratio Avg # atoms per conflict
DURUM WHEAT V1 269 27 14% (79 atoms) 3
DURUM WHEAT V2 269 100 14% (79 atoms) 2
Durum Wheat KB Content
F hasPrecedent(soilZ, vacoparis), sorghum(vacoparis), soil(soil2).
s0il2 has a precedent vacoparis of type sorghum.
Sy isCultivatec{On(Xl, X2), dl'trum'_wheat(Xl)', soil(X2) — hasPrec?dE{lt'(XZ, X3), soybean(X3)
if a durum wheat is cultivated on a soil then the precedent on this soil is soybean.
Se isAtGrowingStage(X, Z), isPerformedOn(X1, X), tillering_begins(Z), durum_wheat(X), fertilization(X1) - L

it is forbidden (or impossible) to apply a fertilization on a durum wheat if it is in the beginning of the tillering growth stage.

Figure 2: Average number of questions per strategy on the Durum Wheat knowledge bases.

strategy [opti-join [l opti-med [}l opti-prop [random

245.2
184.8
765 73
65.8 56.3 6
41.2 42. 3
26.7
15.4 16 o5 P 2.
10%

05%

357.3

300.8

Number of questions

70.
0
5%

16% 20%
Inconsistency

2

Average number of conflics per question

(a) Fixed size KB (1005 atoms) with increasing

inconsistency ratio. CDDs and no TGDs.

‘ Strategy [ovt-join [l oo [co-orop [rencom

05% 10% 16% 20%

Inconsistency

25%

(b) Average conflicts per question of (a).

KB Size (#atoms) ChaseSize (#atoms) Conflicts Avg # atoms per overlap ~ Avgscope #Repetitions
“05%” 1005 1005 56 1.45 9.8 6
“10%” 1005 1005 135 1.57 12.8 6
“16%” 1005 1005 304 1.68 33.9 6
“20%” 1005 1005 356 1.65 30.5 6
“25%” 1005 1005 304 1.67 34.5 6
“30%” 1005 1005 496 1.66 31.6 6

Figure 3: Average number of questions per strategy on synthetic knowledge bases. The percentage on the axes represent incon-

sistency ratio.

We also believe that more challenges may arise in extending this
work to full-fledged denial constraints and arbitrary (non weakly
acyclic) TGDs.

REFERENCES

[1] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent query
answers in inconsistent databases. In Proc of SIGMOD. ACM, 68-79.

143

[2] Abdallah Arioua, Patrice Buche, and Madalina Croitoru. 2016. A Datalog
+ Domain-Specific Durum Wheat Knowledge Base. In Proc. of MTSR 2016.
Springer, 132-143.

Sebastian Arming, Reinhard Pichler, and Emanuel Sallinger. 2016. Complex-
ity of Repair Checking and Consistent Query Answering. In LIPIcs-Leibniz
International Proceedings in Informatics, Vol. 48. 21:1-21:18.

Ahmad Assadi, Tova Milo, and Slava Novgorodov. 2017. DANCE: Data
Cleaning with Constraints and Experts. In Proc. of ICDE. 1409-1410.

3

[4]

Strategy opti-join ~e- opti-mcd ~e- opti-prop random

500

8
8

8
8

e

Number of conflicts

8
8

0 20 40 60 80 100 120 140 160 180 200 220 240
Questions

(a) Fixed size KB (3004 atoms) with constant incon-
sistency ratio 25%. With only CDDs and no TGDs.

Number of conflicts

0 40

Strategy opti=join — opti-mcd —— opti-prop random

80 120 160

Questions

200

(b) Fixed size KB (800 atoms) with constant incon-
sistency ratio of 25%, 50 CDDs and 25 TGDs. Total
number of conflicts after applying the chase is 136.

Figure 4: The convergence of strategies over a question/answer session.

+ 2.50
225
2.00
175
1.50
1.25
1.00
0.75
0.50
0.25
0.00

il

¥ &

Mean delay time (sec)
Mean delay time (sec)

B

.

0.00 %j@-
¢ S

§ $ $

S\Q
o3

Y
Increasing ratio (% Inconsistency)

Y
S

S\“
&

&

(a) Fixed size KB (3000 atoms) with in-
creasing inconsistency ratio.
ratio 30%.

8\“
~

e

.
8\"
¥

Increasing ratio (% size)

(b) Increasing size KB starting at 0%
with 3000 atoms, constant inconsistency

3.0

'l 25

2.0
L]

i Ed

’ i
-

g & & g

Conflicts depth

15

Mean delay time (sec)

.
]
é\°
S

(c) Fixed size KB (400 atoms) with con-
stant inconsistency ratio of 100%, vari-
ated depth (1 to 4).

Figure 5: Average delay time with 5 repetitions for each percentage. (c) is the delay time when TGDs and CDDs are considered,
#CDD(d;) = 150, and #TGDs(d1) = 50,#TGDs(d2) = 100,#TGDs(ds) = 150, #TGDs(d4) = 200. Opti-mcd strategy is used. Asterix
represents the mean.

[5]

[6

[7

[8

[9

[10]

(1]

[12]

[13]

[14]

[15]

[16]

Jean-Frangois Baget, Michel Leclere, Marie-Laure Mugnier, and Eric Sal-
vat. 2011. On rules with existential variables: Walking the decidability line.
Artificial Intelligence 175, 9-10 (2011), 1620 — 1654.

Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik,
Paolo Papotti, Donatello Santoro, and Efthymia Tsamoura. 2017. Benchmark-
ing the Chase. In Proc. of PODS. 37-52.

Leopoldo Bertossi. 2011. Database repairing and consistent query answering.
Synthesis Lectures on Data Management 3, 5 (2011), 1-121.

Sourav S. Bhowmick, Byron Choi, and Chengkai Li. 2017. Graph Querying
Meets HCI: State of the Art and Future Directions. In Proceedings of the
2017 ACM International Conference on Management of Data (SIGMOD ’17).
1731-1736.

Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Ke-
mentsietsidis. 2007. Conditional Functional Dependencies for Data Cleaning.
In Proc. of ICDE. 746-755.

Philip Bohannon, Michael Flaster, Wenfei Fan, and Rajeev Rastogi. 2005. A
Cost-Based Model and Effective Heuristic for Repairing Constraints by Value
Modification. In Proc. of SIGMOD. 143-154.

Andrea Cali, Georg Gottlob, and Thomas Lukasiewicz. 2012. A general
Datalog-based framework for tractable query answering over ontologies. Jour-
nal of Web Semantics 14 (2012), 57-83.

Andrea Cali, Georg Gottlob, and Andreas Pieris. 2012. Towards more expres-
sive ontology languages: The query answering problem. Artificial Intelligence
193 (2012), 87-128.

Xu Chu, Thab F Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting
violations into context. In Proc. of ICDE. IEEE, 458-469.

Xu Chu, John Morcos, Thab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,
and Yin Ye. 2015. KATARA: A Data Cleaning System Powered by Knowledge
Bases and Crowdsourcing. In Proc. of SIGMOD. 1247-1261.

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005.
Data exchange: semantics and query answering. Theor. Comput. Sci. 336, 1
(2005), 89-124.

Wenfei Fan and Ping Lu. 2017. Dependencies for Graphs. In Proc. of PODS.
403-416.

144

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

‘Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional Dependencies for
Graphs. In Proc. of SIGMOD. 1843-1857.

Mina H. Farid, Alexandra Roatis, Ihab F. Ilyas, Hella-Franziska Hoffmann, and
Xu Chu. 2016. CLAMS: Bringing Quality to Data Lakes. In Proc. of SIGMOD.
2089-2092.

Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2013.
The LLUNATIC Data-Cleaning Framework. PVLDB 6, 9 (2013), 625-636.
Victor Gutiérrez-Basulto, Yazmin Ibdiiez Garcia, Roman Kontchakov, and
Egor V. Kostylev. 2015. Queries with Negation and Inequalities over Light-
weight Ontologies. Web Semant. 35, P4 (Dec. 2015), 184-202.

Jian He, Enzo Veltri, Donatello Santoro, Guoliang Li, Giansalvatore Mecca,
Paolo Papotti, and Nan Tang. 2016. Interactive and Deterministic Data Cleaning.
In Proc. of SIGMOD. 893-907.

Neil Immerman. 1989. Expressibility and parallel complexity. SIAM J. Comput.
18, 3 (1989), 625-638.

David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriou. 1988.
On generating all maximal independent sets. Inform. Process. Lett. 27, 3 (1988),
119 -123.

Solmaz Kolahi and Laks VS Lakshmanan. 2009. On approximating opti-
mum repairs for functional dependency violations. In Proceedings of the 12th
International Conference on Database Theory. ACM, 53-62.

Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and
Domenico Fabio Savo. 2010. Inconsistency-tolerant Semantics for Description
Logics. In Proceedings of the International Conference on Web Reasoning and
Rule Systems (RR’10). Springer-Verlag, 103—117.

Robert B. Miller. 1968. Response Time in Man-computer Conversational
Transactions. In Proc. of FJCC 1968. ACM, 267-277.

Nataliya Prokoshyna, Jaroslaw Szlichta, Fei Chiang, Renée J. Miller, and
Divesh Srivastava. 2015. Combining Quantitative and Logical Data Cleaning.
PVLDB 9, 4 (2015), 300-311.

Jef Wijsen. 2005. Database repairing using updates. ACM TODS 30, 3 (2005),
722-768.

Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, Mourad Ouzzani,
and Thab F. Ilyas. 2011. Guided data repair. PVLDB 4, 5 (2011), 279-289.

	User-guided Repairing of Inconsistent Knowledge BasesAbdallah Arioua, Angela Bonifati

