
Interactive Visualization of Large Similarity Graphs and Entity
Resolution Clusters

Demonstration Paper

M. Ali Rostami, Alieh Saeedi, Eric Peukert, and Erhard Rahm
Database group and ScaDS Dresden/Leipzig, University of Leipzig

{rostami,saeedi,peukert,rahm}@informatik.uni-leipzig.de

ABSTRACT
Entity Resolution (ER) identifies semantically equivalent enti-
ties, e.g. describing the same product or customer. It is a crucial
and challenging step when integrating heterogeneous (big) data
sources. ER approaches typically compute a similarity graph
where vertices represent entities and edges (links) connect sim-
ilar entities. Different clustering algorithms can be applied on
such similarity graphs to finally determine groups of matching
entities. In this demonstration paper, we introduce a new inter-
active tool to visualize and thus help to analyze large similarity
graphs and large sets of ER clusters. Users can intuitively investi-
gate the link and cluster structure to identify potential problems
such as overly large clusters, cluster overlaps or singletons that
might indicate the need for repair activities on the ER result. To
support large graphs, computation-intensive tasks like layout-
ing and sampling are executed on the server side as parallel or
serial processes. The demo walks through different matching
and clustering tasks and allows users to interactively explore the
results.

1 INTRODUCTION
In the era of big data, one of the challenging data integration
tasks is to identify semantically equivalent entities (e.g., describ-
ing the same product or customer) in large and heterogeneous
data sources. This task is referred to as Entity Resolution (ER)
or record linkage [6]. ER typically computes a similarity graph
where vertices represent entities and edges (links) connect similar
entities with a pair-wise similarity above a predefined threshold.
Matching entities can directly be derived from such a similar-
ity graph or from groups of matching entities determined with
subsequent clustering algorithms [9]. Our recently introduced
framework FAMER (Framework for Multi-source Entity Resolu-
tion) supports a parallel computation of such similarity graphs
and ER clusters for multiple (≥ 2) data sources [12].

During the continuous development of FAMER, it is difficult
to investigate the correctness and efficiency of the certain algo-
rithms and to understand the problems. Such an investigation
may lead to introduce better match and cluster algorithms or
even an extra postprocessing step of repair (for more details
see [13]). However, to identify (or debug) such issues with lim-
ited effort and time we see the need for a comprehensive and
powerful approach to visually analyze similarity graphs and ER
clusterings. Unfortunately, general purpose graph visualization
tools like Gephi1 or Graphviz2 have only limited capabilities to
1https://gephi.org
2http://www.graphviz.org

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: The software architecture

analyze ER clusterings and also have problems to visualize large
(big data) similarity graphs with vertex and edge properties.

In this demo paper we introduce SIMG-VIZ, a new visual-
ization system for entity resolution and clustering that allows
us to investigate different match and clustering techniques for
multi-source entity resolution. SIMG-VIZ offers the following
key features:

• SIMG-VIZ allows a user to analyze precomputed similarity
graphs and clusterings from existing ER tools and also
supports executing and analyzing ER match tasks directly
with FAMER.

• Different graph and ER cluster visualization techniques
and layouts can be applied to choose the best visualiza-
tions.

• To increase performance, some layouts can be precom-
puted on the server with either parallel or serial computa-
tion. This provides a significant optimization potential in
particular for force-directed layouts [3].

• To support visualization of large graphs, preprocessing
techniques such as sampling (also executed in parallel on
the server) can be selected to obtain a fast overview of
large similarity graphs and their clustering results.

• Clusters and their overlaps as well as edges annotated
with their type and similarity are visualized by using a
simple but useful cake-like visual metaphor. Users can
interact with clusters and select individual clusters for
investigation.

2 SIMG-VIZ OVERVIEW
The SIMG-VIZ system consists of three modules: (1) the FAMER
server, (2) a visualization server in JAVA and (3) a web-based
UI-client written in JavaScript (see Fig. 1).

The FAMER server is used to link several sources and executes
defined matching tasks. However, SIMG-VIZ also allows a user
to load similarity graphs and clustering results that were com-
puted by other frameworks and tools. The visualization server
offers several preprocessing (e.g. for sampling) and layouting
algorithms. The preprocessing algorithms are implemented in
distributed fashion based on Gradoop and Apache Flink whereas

Demonstration

 

 

Series ISSN: 2367-2005 690 10.5441/002/edbt.2018.86

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.86


graph layoutings are currently only implemented as non-distributed
algorithms. The web-based client, provides an interactive visual-
ization of similarity graphs and ER-clusterings. Node and edge
properties can be investigated and server-side components like
matching, clustering, preprocessing and layouting can be trig-
gered. Through the client a user selects options and triggers
server based REST-interfaces. The visualization server and the
FAMER server both respond with JSON results. In the following
paragraphs each of the components is described in detail.

2.1 FAMER Tool
FAMER offers parallel entity resolution for multiple data sources.
It supports different match and clustering schemes that are ex-
ecuted on top of a distributed data processing engine (Apache
Flink [4]) and the graph analytics framework Gradoop [10]. Its
execution has two main phases: (1) computation of a similar-
ity graph based on pairwise matching and (2) clustering. The
first phase consists of several steps, namely blocking, pairwise
comparisons, and match classification. Blocking reduces the num-
ber of necessary comparisons which otherwise would require to
compare each entity of a data source to all entities of any other
source. Different blocking techniques can be applied in FAMER
such as Standard Blocking (SB), Sorted Neighborhood as well as
single- and multi-pass blocking. In the matching step all entities
of the computed blocks are compared by computing and combin-
ing similarities between their attributes, e.g. based on similarity
measures such as Edit-Distance or Jaro Winkler. For matching,
match rules can specify the required minimal similarity for the
considered attribute-comparisons. The output of this step is the
set of matching entity pairs (links) together with a combined
similarity value per link. In the following match classification
step entity pairs are classified as match or no-match based on
the computed similarity values. This output is stored as a simi-
larity graph where entities are represented as vertices and match
links as edges. The clustering phase of FAMER aims at grouping
together all matching vertices of the similarity graph based on
the link structure and similarity values. Clustering algorithms
typically try to maximize the similarity between entities within
a cluster while the similarity between entities of different clus-
ters should be minimized. FAMER supports several clustering
algorithms for ER such as Connected Components, Correlation
Clustering (CCPivot) [2, 5], Center [9], Merge Center [1], and
Star [1].

With SIMG-VIZ, all components of FAMER can be configured
and parameterized which allows users to run and compare dif-
ferent ER match tasks.

2.2 Client (Web-based HTML/JS Frontend)
Fig. 2 shows an overview of the web-based client of SIMG-VIZ. At
the top part of the client, several options can be selected. The user
can choose between different clustering and match configura-
tions which are stored after executing FAMER. Before visualizing
the similarity graph some available preprocessing algorithms
such as sampling can be applied. Moreover, the user can select
layouting options, i.e. which layout to use and where the compu-
tation should take place. In particular for large graphs, computing
the layout on the server gives significant improvements. Finally,
SIMG-VIZ offers a list of actions (see Table 1) that support differ-
ent drawing tasks of the graph and some statistics computations
can be triggered. On the right side of the client a number of
parameters for visualization can be set. To improve interactivity,

styling tasks are performed on the client, for example changing
vertex or edge sizes.

Table 1: Actions in SIMG-VIZ

Action Description

Draw graph (Cytoscape) Draws a sim-graph in Cytoscape3.
Draw graph (WebGL) Draws a sim-graph in WebGL based on Vi-

vaGraph.
Compute only Executes preprocessing and sampling with-

out visualization.
Compute labels/keys Computes all labels and property-keys of

the vertices and edges for filtering in the
left part of the UI.

Save as image Exports an image of the drawn graph.
Remove selected node Removes a selected node.
Degree Distribution Computes the degree distribution of the

graph.
Graph Statistics Computes additional basic statistics of a

graph.

2.3 Visualization Server
The visualization server offers preprocessing and layouting ser-
vices. The preprocessing algorithms are implemented in a dis-
tributed fashion based on Gradoop and Apache Flink. Table 2 lists
currently implemented preprocessing components. All layouting

Table 2: Preprocessing algorithms in SIMG-VIZ

Preprocessing Description

Graph sampling Computes a statistical sampling of a
graph. Currently SIMG-VIZ implements
vertex, edge and page rank sampling.

Graph summary Computes a graph summary by grouping
dense subgraphs of a graph to generate a
compact overview of a large graph [11].
In SIMG-VIZ the Flink implementation is
used.

Cluster neighbor filtering In particular for ER-Clustering a filtering
to neighbors of clusters is needed. The
user specifies a cluster ID (at the right
part of UI) and that cluster together with
its neighbor clusters is visualized.

Cluster sizes filtering Only the clusters with specific sizes are
visualized.

Cluster Aggregation It visualizes a graph in which the cluster
vertices are grouped together.

algorithms are available both for the client and the server as non-
distributed algorithms. We observed that executing layouting
algorithms that need iterations like the force directed layout [8]
should not be executed on the client within a browser. Executing
it on a server brings significant run-time improvements, even
without distributing the computation to multiple nodes. After a
layout computation finishes on the server, the positions of nodes
are send to the client together with the graph. As future work
we plan to implement parallel versions of layouting to be run on
top of Flink or Gradoop.

691



Figure 2: An overview of SIMG-VIZ

2.4 Cluster Visualization
In this section, we describe some specific features of SIMG-VIZ
which are designed particularly for the visualization of ER clus-
ters.

These features are explained along a real world ER-example of
integrating four duplicate-free data sources namely Freebase (Fb),
New York Times (nyt), DBpedia (db), and Geonames (geo). We
initially compute a similarity graph and apply different clustering
techniques with FAMER. A result cluster includes only vertices
from these four sources which are most probably the same real
world entities. An edge connects two vertices which have a high
value of computed similarity measure. In Fig. 3 we initially visu-
alize the complete clustering result. Clusters are given different
colors to indicates cluster membership. Users can identify clus-
ters that may warrant a closer inspection, e.g., clusters with more
than 4 vertices or singleton clusters. A user can zoom in and in-
spect the properties of each vertex. Since generic graph layouting
algorithms often have problems in visualizing large similarity
graphs (e.g., problem of edge cluttering) we applied a compound
layout for cluster visualization. Such compound layouts of graphs
like CoSE-Bilkent [7] visualize vertices in a cluster (referred to
as compound in the paper) close to each other while the whole
graph is visualized by using a modified force-directed algorithm.
Fig. 4(middle) shows a visualization of such a compound layout
which we also compute on the server side. Vertices of a cluster
share the same color and are closely grouped together to form a
compound.

To get a cleaner picture, a user can interactively select a specific
cluster or enter a cluster ID to only visualize a specific cluster
for closer inspection. Often we also need to visualize a cluster
together with its neighboring clusters (see Fig. 4 (top)). The vertex
labels here refer to the corresponding data source for that entity.
The scenario illustrates a problem case since there are more than
four cluster members with some data sources having two entities
in the same cluster which should not be possible for duplicate-
free sources. There is also a singleton cluster that might have

Figure 3: A visualization of all clusters.

to be merged with another cluster. Based on such observations
we are now able to re-assess the used cluster algorithms and
investigate new approaches for cluster repair.

We also provide support for visualizing clustering result of
specific clustering algorithms like Star[9]. The Star clustering
computes cluster representatives and all neighbors of those repre-
sentatives are assigned to the corresponding cluster. In SIMG-VIZ
those cluster representatives are highlighted with a black outline
(see Figure 4). It happens that a vertex is a neighbor of several
cluster representatives so that such vertex will belong to multiple
clusters. These multi-assignments are represented as pie-charts
on nodes. Each piece of a pie chart which has a specific color spec-
ifies a cluster assignment. For example, Fig. 4 (Middle) contains a

692



Figure 4: visualizations of (top) clusters with different col-
ors, (Middle) vertices can belong to more than one cluster
- drawn in compound layout, (Bottom) different styles for
edges indicating how strong connections between entites
are.

pie chart with three pieces which means that node (entitiy) is as-
signed to three clusters. Obviously some cluster post-processing
is needed to select the best cluster for each entity that have been
assigned to several clusters.

SIMG-VIZ provides special visualization support for evalu-
ating clusters when the perfect cluster result is available for
comparison. As shown in Fig. 4 (Bottom) there are different edge
colors: green for edges within correct clusters and red for (wrong)
edges between such clusters. Hence, clusters containing red edges
should be investigated more closely. Finally we implemented a
map-visualization of geo-referenced data so that entities can be
plotted onto a map. With the help of this map-visualization we
are able to identify false matches within a given data set.

2.5 Web-based Visualization Libraries
Drawing large graphs within a browser is problematic. We inves-
tigated several different Javascript-based visualization libraries
and observed that there are significant performance differences.
Three groups of libraries can be found: (1) SVG-based libraries
compute SVG-nodes and tags. They are often feature rich but do
not scale well due to many generated SVG-Elements. (2) The sec-
ond group relies on HTML-Canvas. These libraries are typically

faster but interactivity is harder to realize. Still they mostly do
not scale well for larger graphs. (3) WebGL-based libraries offer
the best scalability but are still not as feature rich as existing
libraries in the other two categories. We finally decided to use
the Canvas-based Cytoscape4 library for small graphs up to 2000
vertices since it gives more flexibility regarding the style of edges
and vertices. For example, the feature of drawing a pie chart
on vertices is already available in Cytoscape. For large graphs,
we use VivaGraph5, which is a WebGL-based library with less
support for vertex and edge attributes, styling and coloring. How-
ever for larger graphs the user won’t be able to see those details
anyway.

3 DEMONSTRATION
In the demonstration, we walk through a complete workflow of
entity resolution using matching and clustering for small and
large ER match problems. A user could select select data sources
and the corresponding properties, similarity measures and match
classifiers that are used by FAMER. The resulting clusters from
FAMER are loaded into the visualization server. We then allow
a user to compare different preprocessing algorithms as well as
different layoutings. We consider small data sources as well as
large ones.

ACKNOWLEDGEMENT
This work was partly funded by the German Federal Ministry of
Education and Research within the projects Competence Center
for Scalable Data Services and Solutions (ScaDS) Dresden/Leipzig
(BMBF 01IS14014B) and BIGGR (BMBF 01IS16030B).

REFERENCES
[1] J.A. Aslam, E. Pelekhov, and D. Rus. 2006. The Star Clustering Algorithm for

Information Organization. Springer.
[2] Ni. Bansal, A. Blum, and S. Chawla. 2004. Correlation Clustering. Machine

Learning 56, 1 (2004), 89–113.
[3] G.D. Battista, P. Eades, R. Tamassia, and I.G. Tollis. 1998. Graph Drawing:

Algorithms for the Visualization of Graphs. Prentice Hall.
[4] P. Carbone, . Katsifodimos, S. Ewen, V. Markl, S.Haridi, and Ko. Tzoumas. 2015.

Apache Flink: Stream and Batch Processing in a Single Engine. IEEE Data
Engineering Bulletin Issues 38, 4 (2015).

[5] F. Chierichetti, N. Dalvi, and R. Kumar. 2014. Correlation Clustering in MapRe-
duce. In Proc. 20th ACM SIGKDD. 641–650.

[6] P. Christen. 2012. Data Matching: Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer.

[7] U. Dogrusoz, E. Giral, A. Cetintas, A. Civril, and E. Demir. 2009. A layout
algorithm for undirected compound graphs. Information Sciences 179, 7 (2009),
980–994.

[8] Thomas M. J. Fruchterman and Edward M. Reingold. 1991. Graph Drawing by
Force-directed Placement. Softw. Pract. Exper. 21, 11 (Nov. 1991), 1129–1164.
https://doi.org/10.1002/spe.4380211102

[9] O. Hassanzadeh, F. Chiang, R.J. Miller, and H.C. Lee. 2009. Framework for
Evaluating Clustering Algorithms in Duplicate Detection. PVLDB 2, 1 (2009),
1282–1293.

[10] M. Junghanns, A. Petermann, N. Teichmann, K. Gómez, and E. Rahm. 2016.
Analyzing Extended Property Graphs with Apache Flink. In Proc. SIGMOD
Workshop on Network Data Analytics.

[11] M. Junghanns, A. Petermann, N. Teichmann, and E. Rahm. 2017. The
Big Picture: Understanding large-scale graphs using Graph Grouping with
GRADOOP. In Proc. BTW.

[12] A. Saeedi, E. Peukert, and E. Rahm. 2017. Comparative Evaluation of Distributed
Clustering Schemes for Multi-source Entity Resolution. Springer LNCS, 278–293.

[13] A. Saeedi, E. Peukert, and E. Rahm. 2018. Using Link Features for Entity Clus-
tering in Knowledge Graphs. In Extended Semantic Web Conference. submitted
for publication.

4http://js.cytoscape.org
5https://github.com/anvaka/VivaGraphJS

693


	Interactive Visualization of Large Similarity Graphs and Entity Resolution ClustersM. Ali Rostami, Alieh Saeedi, Eric Peukert, Erhard Rahm

