c proceedings

Umzi: Unified Multi-Zone Indexing for Large-Scale HTAP

Chen Luo®

University of California, Irvine
cluo8@uci.edu

Ronald Barber
IBM Research - Almaden
rjbarber@us.ibm.com

ABSTRACT

The rising demands of real-time analytics have emphasized the
need for Hybrid Transactional and Analytical Processing (HTAP)
systems, which can handle both fast transactions and analyt-
ics concurrently. Wildfire is such a large-scale HTAP system
prototyped at IBM Research - Almaden, with many techniques
developed in this project incorporated into the IBM’s HTAP
product offering. To support both workloads efficiently, Wild-
fire organizes data differently across multiple zones, with more
recent data in a more transaction-friendly zone and older data
in a more analytics-friendly zone. Data evolve from one zone to
another, as they age. In fact, many other HTAP systems have also
employed the multi-zone design, including SAP HANA, Mem-
SQL, and SnappyData. Providing a unified index on the large
volumes of data across multiple zones is crucial to enable fast
point queries and range queries, for both transaction processing
and real-time analytics. However, due to the scale and evolving
nature of the data, this is a highly challenging task. In this pa-
per, we present Umzi, the multi-version and multi-zone LSM-like
indexing method in the Wildfire HTAP system. To the best of
our knowledge, Umozi is the first indexing method to support
evolving data across multiple zones in an HTAP system, provid-
ing a consistent and unified indexing view on the data, despite
the constantly on-going changes underneath. Umzi employs a
flexible index structure that combines hash and sort techniques
together to support both equality and range queries. Moreover, it
fully exploits the storage hierarchy in a distributed cluster envi-
ronment (memory, SSD, and distributed shared storage) for index
efficiency. Finally, all index maintenance operations in Umzi are
designed to be non-blocking and lock-free for queries to achieve
maximum concurrency, while only minimum locking overhead
is incurred for concurrent index modifications.

1 INTRODUCTION

The popularity of real-time analytics, e.g., risk analysis, online
recommendations, and fraud detection etc., demands data man-
agement systems to handle both fast concurrent transactions
(OLTP) and large-scale analytical queries (OLAP) over fresh data.
These applications ingest data at high-speed, persist them into
disks or shared storage, and run analytical queries simultaneously
over newly ingested data to derive insights promptly.

The necessity of real-time analytics prompts the emergence
of Hybrid Transactional and Analytical Processing (HTAP) sys-
tems, e.g., MemSQL [7], SnappyData [28], SAP HANA [21], and

#TWork done while at IBM Research - Almaden.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Pinar Téziin®
IT University of Copenhagen
pito@itu.dk

Vijayshankar Raman
IBM Research - Almaden IBM
ravijay@us.ibm.com

Yuanyuan Tian
IBM Research - Almaden
ytian@us.ibm.com

Richard Sidle

ricsidle@ca.ibm.com

among others. HTAP systems support both OLTP and OLAP
queries in a single system, thus allowing real-time analytics over
freshly ingested data. Wildfire [15] is a large-scale HTAP system,
prototyped at IBM research - Almaden. Many of the techniques
developed in this research project have been incorporated into
the IBM Db2 Event Store offering [4]. Wildfire leverages the Spark
ecosystem [10] to enable large-scale data processing with differ-
ent types of complex analytical requests (SQL, machine learning,
graph analysis, etc), and compensates Spark with an underlying
engine that supports fast transactions with snapshot isolation
and accelerated analytics queries. Furthermore, it stores data in
open format (Parquet [8]) on shared storage, so that other big
data systems can access consistent snapshots of data in Wildfire.
The back-end shared storage that Wildfire supports includes dis-
tributed file systems like Hadoop Distributed File System (HDFS)
and GlusterFS [2], as well as object-based storage on cloud like
Amazon S3 and IBM Cloud Object Storage.

To support efficient point lookups and range queries for high-
speed transactional processing and real-time analytics, fine-grained
indexing is mandatory in a large-scale HTAP system like Wildfire.
However, indexing large volumes of data in an HTAP system is
highly non-trivial due to the following challenges.

Challenges due to shared storage. First of all, for large-
scale HTAP, memory-only solutions are not enough. As a result,
most HTAP systems, including Wildfire, persist data in highly-
available fault-tolerant shared storage, like HDFS and Amazon S3,
etc. However, most of these shared storage options are not good
at random access and in-place update. For example, HDFS only
supports append-only operations and optimizes for block-level
transfers, and object storage on cloud allows neither random
access inside an object nor update to an object. To accommodate
the unique characteristics of shared storage, index operations,
e.g., insert, update and delete, have to leverage sequential I/Os
without in-place updates. Naturally, LSM-like index structures
are more appealing.

Furthermore, a typical shared storage prefer a small number of
large files to a large number of small files. This is not only because
of the overhead in metadata management, e.g., the maximum
number of files supported by an HDFS cluster is determined
by how much memory is available in the namenode, but more
importantly because of the reduced seek time overhead when
accessing larger files.

Finally, accessing remote shared storage through networks
for index lookups is costly. Thus, indexing methods on HTAP
must fully exploit the storage hierarchy in a distributed cluster
environment for efficiency. Particularly, nowadays, we can take
advantage of large memories and SSDs in modern hardware. Due
to the large scale of data in HTAP systems, however, only the most
frequently accessed portions of indexes can be cached locally,

10.5441/002/edbt.2019.02

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.02

while leaving cold entries in shared storage. Effective caching
mechanisms must be developed to facilitate index lookup.

Challenge due to evolving nature of data. Since HTAP
systems have to support both transactional and analytical work-
loads efficiently, many of them [7, 14, 21, 23, 28] store data in
different organizations, typically one organization good for trans-
actions on the more recent data and one organization good for
analytics on the older data. We call the different data organi-
zations zones. As data age in the system, they evolve from the
transaction-friendly zone to the analytics-friendly zone. In Wild-
fire, transactions first append writes into a transaction log, which
is then groomed into columnar data blocks. The groomed data is
further periodically post-groomed to a more analytics-friendly
organization that is optimal for queries by creating data versions,
data partitioning, and larger data blocks. SAP HANA organizes
data into a read-optimized main store and a write-optimized
delta store. Writes are first buffered into the row-major delta
store, which is further transformed into the columnar main store
to facilitate analytical queries. Some loosely-coupled HTAP so-
lutions employ NoSQL stores, like HBase [3] or Cassandra [1],
for operational workloads, and periodically copy data from the
NoSQL stores into files in columnar format like Parquet or ORC-
File on the shared storage, so that SQL-on-Hadoop engines, like
Hive [35] or SparkSQL [13], can efficiently query them. The data
evolution across different zones in these HTAP systems/solutions
is constantly on-going, posing a significant challenge to building
and maintaining indexes.

Existing indexing solutions on multi-zone HTAP systems ei-
ther support index on the transaction-friendly zone only, like
in SnappyData [28] and the loosely coupled HTAP solutions, or
support separate indexes on different zones, like in MemSQL [7].
First of all, being able to efficiently query historical data is very
important for real-time analytics, especially for analytical queries
that are part of a transaction in the true HTAP scenario. As a re-
sult, the index needs to cover both recent data and historical data.
Secondly, having separate indexes on different zones exposes
a divided view of data. This requires queries to perform extra
work to combine index query results that span multiple zones. In
particular, with the constant evolving nature of HTAP data, it is
non-trivial for queries to make sure that there is no duplicate or
missing data in the final results. Therefore, it is highly desirable
to have a consistent and unified index across the different zones
in an HTAP system.

Contributions. To tackle the challenges of indexing in a large-
scale HTAP system, we present Umzi, the multi-version and multi-
zone LSM-like index in the context of Wildfire. Umzi provides
a consistent and unified indexing view across the groomed and
post-groomed zones in Wildfire. To the best of our knowledge,
Umvzi is the first unified multi-zone indexing method for large-
scale HTAP systems.

Umzi employs an LSM-like structure with lists of sorted index
runs to avoid in-place updates. A novel index-run format that
combines hash and sort techniques is introduced to flexibly an-
swer equality/range queries as well as the combination of both
using the index. Runs are organized into multiple levels as in
today’s NoSQL systems, e.g., LevelDB [6] and RocksDB [9]. A
new run is added into the lowest level, i.e., level 0, and runs are
periodically merged into higher levels within a zone. However,
when data evolve from one zone to another, an index evolve op-
eration is introduced to build new index runs in the new zone
and garbage-collect obsolete index runs from the old zone in a
coordinated way, so that the entire index is always in a consistent

state. To fully exploit the storage hierarchy, lower index levels
can be made non-persistent to speed up frequent merges, and we
dynamically adjust cached index runs from memory and SSD to
speed-up index lookups and transactional processing. In Umzi,
all operations are carefully designed to be non-blocking such
that readers, i.e., index queries, are always lock-free while only
negligible locking overhead is incurred for index maintenance.

Paper organization. Section 2 provides the background on
Wildfire. Section 3 describes an overview of the Umzi index.
Section 4 presents the internal structure of Umzi components.
Section 5 describes index maintenance operations in Umzi. Sec-
tion 6 discusses some design decisions of Umzi to exploit the
storage hierarchy. Section 7 introduces methods for processing
index queries, i.e., range scans and point lookups. Section 8 re-
ports the experimental evaluation of Umzi. Section 9 surveys
related work. Finally, Section 10 concludes this paper.

2 BACKGROUND

2.1 Wildfire

Wildfire [15] is a distributed multi-master HTAP system consist-
ing of two major pieces: Spark and the Wildfire engine. Spark
serves as the main entry point for the applications that Wild-
fire targets, and provides a scalable and integrated ecosystem
for various types of analytics on big data, while the Wildfire
engine adds the support for high-speed transactions, accelerates
the processing of application requests, and enables analytics on
newly-ingested data. All inserts, updates, and deletes in Wildfire
are treated as upserts based on the user-defined primary key. Wild-
fire adopts last-writer-wins semantics for concurrent updates to
the same key, and snapshot isolation of quorum-readable content
for queries, without having to read the data from a quorum of
replicas to satisfy a query.

A table in Wildfire is defined with a primary key, a sharding
key, and optionally a partition key. Sharding key is a subset of
the primary key, and it is primarily used for load balancing of
transaction processing in Wildfire. Inserted records are routed by
the sharding key to different shards. A table shard is replicated
into multiple nodes, where one replica serves as the shard-leader
while the rest are slaves. Any replica of a shard can ingest data.
A table shard is the basic unit of a lot of processes in Wildfire,
including grooming, post-grooming, and indexing (details later).
In contrast, the partition key is for organizing data in a way that
benefits the analytics queries. Typically, the sharding key is very
different from the partition key. For example, an IoT application
handling large volumes of sensor readings could use the device
ID as the sharding key, but the date column as the partition key
to speed up time-based analytical queries.

Wildfire adds the following three hidden columns to every
table to keep track of the life of each record and support snap-
shot isolation as well as time travel. The column beginTS (begin
timestamp) indicates when the record is first ingested in Wildfire;
endTS (end timestamp) is the time when the record is replaced
by a new record with the same primary key; prevRID (previous
record ID) holds the RID (record ID) of the previous record with
the same key.

In order to support both OLTP and OLAP workloads effi-
ciently within the same system, Wildfire divides data into mul-
tiple zones where transactions first append their updates to the
OLTP-friendly zone, which are gradually migrated to the OLAP-
friendly zone. Figure 1 depicts the data lifecycle in Wildfire across
multiple zones.

Live

Zone transaction side-logs [l

(uncommitted)
log (committed
& replicated)
persistentiog ([N B]
groom —
Zone CiZT:d .[! I = I -\ % ﬁ1adcexees

(e
; T T o | %indexes

post-groom
Post-Groomed i i
Zone ! '
' 1 % indexes
i i

partition 1 - partition 2 partition 3

Figure 1: Data Lifecycle in Wildfire

Live Zone. A transaction in Wildfire first appends uncommit-
ted changes in a transaction local side-log. Upon commit, the
transaction tentatively sets beginTS for each record using the
local wall clock time (beginTS is reset later in the groomed zone),
and appends its side-log to the committed transaction log, which
is also replicated for high-availability. The committed log is kept
in memory for fast access, and also persisted on the local SSDs
using the Parquet columnar-format. Since this zone has the latest
ingested/updated data, it is called the live zone.

Groomed Zone. To bound the growth of the committed log
and resolve conflicts from different replicas, each shard in Wild-
fire has a designated groomer which periodically (e.g., every
second) invokes a groom operation to migrate data from the live
zone to the groomed zone.

The groom operation merges, in the time order, transaction
logs from shard replicas, resolves conflicts by setting the mono-
tonic increasing beginTS for each record, and creates a Parquet
columnar-format data file, called a groomed block, in the shared
storage as well as the local SSD cache. Each groomed block is
uniquely identified by a monotonic increasing ID called groomed
block ID. Note that the beginTS set by the groomer is composed
of two parts. The higher order part is based on the groomer’s
timestamp, while the lower order part is the transaction commit
time in the shard replica. Thus, the commit time of transactions in
Wildfire is effectively postponed to the groom time. The groomer
also builds indexes over the groomed data.

Post-Groomed Zone. The groomer only sets the beginTS for
each record. EndTS and prevRID still need to be set to support
snapshot isolation and time travel. In addition, up to the groomed
zone, data is still organized according to the sharding key, and
they need yet to be re-organized based on the more analytics-
friendly partition key. To achieve these tasks, another separate
process, called post-groomer, periodically (e.g., every 10 minutes)
performs post-groom operations to evolve the newly groomed
data to the post-groomed zone.

The post-groom operation first utilizes the post-groomed por-
tion of the indexes to collect the RIDs of the already post-groomed
records that will be replaced by the new records from the groomed
zone. Then, it scans the newly groomed blocks to set the prevRID
fields using the RIDs collected from the index, and re-organizes
the data into post-groomed blocks on the shared storage accord-
ing to the OLAP-friendly partition key. The post-groomer also
uses the same set of RIDs from the index to directly locate the
to-be-replaced records and sets their endTS fields. Since the post-
groomer is carried out less frequently than the groomer, it usually

Kiowaw

IWAN/aSS

abeJo)s paseys

generates much larger blocks, which results in better access per-
formance on shared storage. At the end, the post-groomer also
notifies the indexer process to build indexes on the newly post-
groomed blocks.

While both groomed and post-groomed blocks reside in the
shared storage, based on the access patterns of a node, they are
also cached in the local SSDs of that node, similarly to the indexes.

2.2 LSM-tree

Since Umzi employs an LSM-like structure, here we brief intro-
duce the background of LSM-trees. Interested readers can refer
to [27] for a survey of recent research on LSM-trees. The Log-
Structured Merge-tree (LSM-tree) is a write-optimized persistent
index structure. It first appends all writes into a memory table.
When the memory table is full, it is flushed into disk as a sorted
run using sequential I/Os. A query over an LSM-tree has to look
up all runs to perform reconciliation, i.e., to find the latest version
of each key.

As runs accumulate, query performance tends to degrade. To
address this, runs are periodically merged together to improve
query performance and reclaim disk spaced occupied by obsolete
entries. Two LSM merge policies are commonly used in practice,
i.e., leveling and tiering [27]. In both merge policies, runs are
organized into levels, where a run at level L + 1 is T times larger
than the run at level L. The leveling policy optimizes for queries
by limiting only one run per level. A run is merged with the one
at the higher level when its size reaches a threshold. In contrast,
the tiering policy optimizes for write amplification by allowing
multiple runs at each level. Multiple runs at level L are merged
together into a new run at level L + 1.

3 UMZI OVERVIEW

In Wildfire, depending on the freshness requirement, a query
may need to access data in the live zone, groomed zone, and/or
the post-groomed zone. We choose to build indexes over the
groomed zone and the post-groomed zone. Indexing does not
cover the live zone for a few reasons. First, since groomer runs
very frequently, data in the live zone is typically small, which
alleviates the need for indexing. Secondly, to support fast data
ingestion, we cannot afford maintaining the index on a record
basis.

In a nutshell, Umzi employs an LSM-like [31] structure with
multiple runs. Each groom operation produces a new index run,
and runs are merged over time to improve query performance.
Even though Umuzi is structurally similar to LSM, it has signifi-
cant differences from existing LSM-based indexes. First, existing
LSM-based indexes either store the records directly into the in-
dex itself, e.g., LevelDB [6] and RocksDB [9], or store the records
separately with the assumption that each record has a fixed RID,
e.g., WiscKey [25] !. However, both approaches do not work well
in Wildfire. Storing records into the LSM-tree incurs too much
write amplification during merges, significantly affecting inges-
tion performance. While for the second approach, as data evolve
from one zone to another, RIDs also change.z To accommodate
the multi-zone design and the evolving nature, Umzi divides
index runs into multiple zones accordingly. Runs in each zone
are chained and merged, as in LSM indexes. When data evolve
from one zone to another, Umzi performs the evolve operation

The same assumption is generally held by non-LSM-based indexes as well
2In Wildfire, an RID is identified by the combination of zone, block ID, and record
offset.

to migrate affected index entries to the target zone accordingly.
Since data evolution in Wildfire is accomplished by a number
of loosely-coupled distributed processes, it is critical for index
evolve operations to require minimum coordination among dis-
tributed processes and incur negligible overhead for queries.

Furthermore, Umzi targets at multi-tier storage hierarchies
in distributed environment, including memory, SSD and shared
storage. Index runs are persisted on shared storage for durability,
while Umzi aggressively exploits local memory and SSD as a
caching layer to speed up index queries. Umzi dynamically ad-
justs cached index runs based on the space utilization and the
age of the data, even without ongoing queries. To improve merge
performance and avoid frequent rewrites on shared storage, Umzi
allows certain lower levels to be non-persisted, i.e., their runs are
only stored in local memory and optionally SSD.

Even though we present Umzi with two zones, i.e., groomed
zone and post-groomed zone, this structure does not limits the
applicability of Umzi to other systems. It is straightforward to ex-
tend Umzi to support other HTAP systems with arbitrary number
of zones. To this end, one needs to structure Umzi with multiple
run lists, each of which corresponds to one zone of data. When
data evolves from one zone to another, the indexing process
should be notified to trigger an index evolve operation to migrate
index entries accordingly.

As mentioned in Section 2, a table shard is the basic unit of
groomer and post-groomer processes in Wildfire. This is also the
case for indexing. In the distributed setting of Wildfire, each Umzi
index structure instance serves a single table shard. There are a
number of indexer daemons running in the cluster. Each runs
independently, and is responsible for building and maintaining
index for one or more index structure instances. As a result, this
paper describes the Umzi index design from the perspective of
one table shard.

The following four sections describe the detailed design of
Umzi and its index maintenance operations. Without loss of
generality, we assume Umzi is used as a primary index throughout
the paper.

4 INDEX STRUCTURE

This section details the internal structure of Umzi. We first de-
scribe the index definition of Umzi, followed by the singe-run
storage format and multi-run structure respectively.

4.1 Index Definition

Umzi is designed for supporting both equality queries and range
queries, as well as facilitating index-only access plans if possible.
Index definitions in Umzi reflect these design goals. An index
is defined with key columns plus optionally included columns.
Index key columns can be a composition of equality columns
(for equality predicates) and sort columns (for range predicates).
Included columns are extra columns to enable efficient index-
only queries. If equality columns are specified, we also store the
hash value of equality column values to speed-up index queries,
which makes Umzi a combination of hash and range index. In
an example IoT application, the user can define the deviceID
as the equality column, while the message number as the sort
column. As a special case, the user could leave out the equality
column(s), which makes Umzi a complete range index. Similarly,
omitting the sort columns would turn Umzi into a hash index. The
flexibility of this index structure helps Umzi to answer equality

hash device | msg | beginTS | RID offset
0 | 00000101 | 1 1 100 000 0
1| 00100011 | 8 2 101 001 1
2 | 10010001 | 4 1 97 010 2
3 | 1001 0001 | 4 1 94 011 2
4 | 1001 0001 | 4 2 102 100 2
5 | 10010001 | 5 1 97 101 6
6 | 1110 0000 | 3 0 103 110 6
7 | 1110 0000 | 3 1 104 111 6

(a) Example Run Data (b) Offset Array

#data blocks: 2

merge level: 0

groomed block IDs: [0, 1]
synopsis: msg: [0, 2], device: [1, 8]
offset array: 0,1,2,2,2,6,6,6

header block

00001010 | 1 | 1 [100|| 10010001 | 5 | 1 [o7
.. | 00000011 [8 [2][...] 11000000 | 3 | 0
101] ... [10010001 | 4 |[103] ... [11100000 | 3
1 [o7]...] 10010001 | 1 [104] ...]

41 oa]...] 1001

0001 [4|2 [107 ...

data block 0 data block 1

(c) Physical Layout of An Index Run

Figure 2: Example Index Run: device is the equality col-
umn, msg is the sort column, and there is no included
columns. For simplicity, we assume the hash value takes
only one byte.

queries, range queries, and combinations of the two, with one
index.

4.2 Run Format

Each run in Umzi can be logically viewed as a sorted table con-
taining the hash column, index key columns, included columns,
beginTS and RID. As mentioned before, the hash column stores
the hash value of equality columns (if any) to speed up queries
with equality predicates. The beginTS column indicates the times-
tamp when the indexed record is inserted, which is generated
by groomers in Wildfire (Section 2). The RID column defines the
exact location of the indexed record. Index entries are ordered by
the hash column, equality columns, sort columns, and descend-
ing order of beginTS. We sort the beginTS column in descending
order to facilitate the access of more recent versions. All ordering
columns, i.e., the hash column, equality columns, sort columns
and beginTSs, are stored in lexicographically comparable formats,
similar to LevelDB [6], so that keys can be compared by sim-
ply using memory compare operations when processing index
queries. Figure 2 shows an example index run, where device is the
equality column and msg is the sort column. There is no included
columns in this example, and we assume the hash value takes
only one byte. Figure 2a shows the index rows in this run, where
the hash value is shown in the binary format.

An index run is physically stored as a header block plus one
or more fixed-size data blocks. The header block contains the
metadata information of the index run, such as the number of
data blocks, the merge level this run belongs to (Section 5), and
the range of groomed block IDs to which this run corresponds.

To prune irrelevant runs during index queries, we also store a
synopsis in the header block. The synopsis contains the range
(min/max values) of each key column stored in this run. A run
can be skipped by an index query if the input value of some key
column does not overlap with the range specified by the synopsis.
Figure 2c shows an example index run layout which contains
one header block and two data blocks.

When equality columns are specified in the index definition,
we store in the header block an offset array of 2" integers to
facilitate index queries. The offset array maps the value of the
most significant n bits of hash values to the offset in the index
run. When processing index queries, the offset array can be used
to provide a more compact start and end offset for binary search.
For example, Figure 2b shows the offset array with the most
significant 3 bits of hash values from Figure 2a.

4.3 Multi-Run Structure

An example multi-run structure of Umzi is shown in Figure 3.
Similar to LSM indexes, Umzi contains multiple runs. A groom op-
eration produces a new run to level 0, and runs from lower levels
are gradually merged into higher levels to improve query perfor-
mance. Each run is further labeled with the range of groomed
block IDs, where larger IDs correspond to newer groomed blocks.

In this meanwhile, to accommodate the multi-zone design
and data evolving nature of the HTAP systems, Umzi divides
index runs in multiple zones accordingly. For concurrency control
purpose, runs in each zone are chained together based on their
recency into a list, where the header points to the most recent
run. We will further discuss concurrency control of Umzi in
Section 5.1. Based on this multi-zone design, Umzi only merges
runs within the same zone. When data evolves from one zone to
another, an index evolve operation is triggered to migrate index
entries to the target zone accordingly.

The assignment of levels to zones are configurable in Umzi. For
example in Figure 3, levels 0 to 5 are configured as the groomed
zone, while levels 6 to 9 are configured as the post-groomed zone.

5 INDEX MAINTENANCE

In this section we describe index maintenance operations in Umzi,
including index build, merge, and evolve. Before presenting the
details of index maintenance operations, we first discuss con-
currency control in Umzi since index maintenance is performed
concurrently with queries. Finally, we also briefly discuss how
recovery is performed in Umzi.

5.1 Concurrency Control

Umzi aims at providing non-blocking and lock-free access for
queries. To this end, Umzi relies on atomic pointers and chains
runs in each zone together into a linked list, where the header
points to the most recent run. All maintenance operations are

merge

Groomed Zone " 23-24 }+{(21-22 }+{ 16-20 }+{ 11-15]\

Level O Level 1 gyolve

Post-Groomed Zone *{___6-10 | 0-5) ‘/

Level 6

Figure 3: Multi-Run Structure in Umzi

Level 0 Level 1 Level 2
o B B ! - A]
Step Step 1
newrun

Figure 4: Index Merge Example

carefully designed so that each index modification, i.e., a pointer
modification, always results in a valid state of the index. As a
result, queries can always traverse run lists sequentially without
locking to get correct results. To minimize contentions caused by
concurrent index maintenance operations, each level is assigned
a dedicated index maintenance thread. A short duration lock
is acquired when modifying the run list to prevent concurrent
modifications. Note that the locking overhead is negligible since
locks are only used to prevent concurrent modifications to the
run list, which happens infrequently. Moreover, these locks never
block any index queries.

5.2 Index Build

After a groom operation is completed, Umzi builds an index run
over the newly groomed data block. This is done by simply scan-
ning the data block and sorting index entries in ascending order
of hash values, sort columns, equality columns and descending
order of beginTS. Along with writing sorted index entries back
to data blocks, the offset array can be computed on-the-fly. Fi-
nally, the new run becomes the new header of the run list for the
groomed zone. Note that the order of pointer modifications is
important to guarantee the correctness for concurrent queries,
where the new run must be set to point to the header before the
header pointer is modified.

5.3 Index Merge

In order to easily trade-off write amplification and query perfor-
mance, Umzi employs a hybrid merge policy similar to [20]. This
policy is controlled by two parameters K, the maximum number
of runs per level, and T, the size ratio between runs in adjacent
levels. Each level L maintains the first run as an active run, while
the remaining runs are inactive. Incoming runs from level L — 1
are always merged into the active run of level L. When the active
run in level L is full, i.e., its size is T times larger than an inactive
run in level L — 1, it is marked inactive and a new active run is
created. Finally, when level L contains K inactive runs, they are
merged together with the active run in level L + 1.

After a merge, the new run replaces old runs in the run list. As
shown in Figure 4, this is done by first setting the new run point
to the next run of the last merged run, and then set the previous
run before the first merged run point to the new run. A lock over
the run list is acquired during the replacement, since otherwise
pointers could be concurrently modified by other maintenance
threads. There is no need for a query to acquire any locks when
traversing the list; it sees correct results no matter whether the
old runs or the new run are accessed.

5.4 Index Evolve

In Wildfire, the post-groomer periodically moves groomed data
blocks to the post-groomed zone. After a post-groom opera-
tion, groomed data blocks are marked deprecated and eventually

deleted to reclaim storage space. As a result, index entries in Umzi
must be migrated as well so that deprecated groomed blocks are
no longer referenced. However, index evolving in distributed
HTAP systems is non-trivial due to the following problems.

First, HTAP systems like Wildfire are often composed of sev-
eral loosely-coupled distributed processes. The post-groomer in
Wildfire is a separate process running on a different node from
the indexer process. In a distributed environment, one require-
ment for index evolving is to minimize the coordination among
multiple processes. Second, an index evolve operation must apply
multiple modifications to the index. This requires index evolve
operations to be carefully designed to ensure the correctness for
concurrent queries without blocking them.

To tackle the first problem, an index evolve operation in Umzi
is performed asynchronously by the indexer process with mini-
mum coordination, as shown in Figure 5. Each post-groom oper-
ation is associated with a post-groom sequence number (PSN).
After a post-groom operation, the post-groomer publishes the
metadata for this operation and updates the maximum PSN. In the
meanwhile, the indexer keeps track of the indexed post-groom
sequence number, i.e., IndexedPSN, and keeps polling the max-
imum PSN. If IndexedPSN is smaller than the maximum PSN,
the indexer process performs an index evolve operation for In-
dexedPSN+1, which guarantees the index evolves in a correct
order, and increments IndexedPSN when the operation is finished.
Note that asynchronous index evolution has no impact on index
queries since a post-groom operation only copies data from one
zone to another without producing any new data. For a query, it
makes no difference to access a record from the groomed zone
or post-groomed zone.

For the concurrency control issue, we decompose the index
evolve operation into a sequence of atomic sub-operations. Each
sub-operation is guaranteed to result in a valid state of the index,
ensuring that concurrent queries always see correct results when
traversing the run lists. Specifically, an index evolve operation
for a given PSN is performed as follows. First, the indexer builds
an index run for post-groomed data blocks associated with this
PSN, and adds it atomically to the post-groomed run list. Note
that this run still contains the range of groomed block IDs it
corresponds to. Second, the indexer atomically updates the max-
imum groomed blocked ID covered by the post-groomed run
list, based on the newly built run. All runs in the groomed run
list with end groomed block ID no larger than this value would
be automatically ignored by queries since entries in these runs
are already covered by the post-groomed run list. Finally, these
obsolete runs are garbage collected from the groomed run list.
Note that during each step, a lock over the run list is acquired
when modifying a run list to prevent concurrent modifications
by other maintenance threads.

groomed blocks post-groomed block

Post-groomer I:H:I |:| |:| - I:I

post-groom PSN — MaxPSN

groomed run list

P Jpdexedesn

Indexer '

poll
T
'
'
'
|

post-groomed run list 1

Figure 5: Interaction between Post-groomer and Indexer

evolve if IndexedPSN < MaxPSN

We further illustrate the index evolve operation with an ex-
ample depicted in Figure 6. Suppose the groomed blocks 11 to 18
have been post-groomed, and the indexer now performs an index
evolve operation for this post-groom operation accordingly. First,
the indexer builds a new run labeled 11-18 for the newly post-
groomed data, and atomically adds it to the post-groomed run
list. The indexer then atomically updates the maximum groomed
blocked ID of the post-groomed run list from 10 to 18. At this mo-
ment, run 11-15 will be ignored by subsequent queries since it is
fully covered by run 11-18. Finally, this obsolete run is garbage col-
lected from the groomed list, which concludes this index evolve
operation.

It is straightforward that each step of an evolve operation only
makes one modification to the index, and is thus atomic. Between
any two of the above three steps, the index could contain dupli-
cates, i.e., a record with the same version could appear in both a
groomed run and a post-groomed run. Moreover, even after the
last step of the index evolve operation, the index may still contain
duplicates since groomed blocks consumed by a post-groom op-
eration may not align perfectly with the boundaries of index runs.
However, duplicates are not harmful to index queries. Since a
query only returns the most recent version of each key, duplicates
are removed on-the-fly during query processing (Section 7).

5.5 Recovery

We assume runs in Umzi are persisted in shared storage. After
each index evolve operation, the maximum groomed blocked ID
for the post-groomed run list and IndexedPSN are also persisted.
However, an indexer process could crash, losing all data struc-
tures in the local node. To recover an index, we mainly need to
reconstruct run lists based on runs stored in shared storage, and
cleanup merged and incomplete runs if any.

A run list can be recovered by examining all runs in shared
storage. Runs are first sorted in descending order of end groomed
blocked IDs, and are added to the run list one by one. If multiple
runs have overlapping groomed block IDs, the one with largest
range is selected, while the rest are simply deleted since they
have already been merged.

6 UMZI ON MULTI-TIER STORAGE
HIERARCHY

Recall that Umzi is designed for large-scale distributed HTAP
systems running on multi-tier storage hierarchy, i.e., memory,
SSD, and distributed shared storage. Even though shared storage
provides several key advantages for distributed HTAP systems
such as fault tolerance and high availability, it brings signifi-
cant challenges when designing and implementing an indexing
component. Shared storage generally does not support in-place

post-groomed block
post-groom

...... |18 =)

groomed run list step 3: GC old run
1

))
' '
Indexer «,[11-18]-»[6-10]-»[05]-E—»

1
step1:buildnewrun post-groomed runlist (10 — 18)

step 2: update max groomed block ID

groomed blocks

11-18

Post-groomer | 1

Figure 6: Index Evolve Example

updates and random I/Os, and prefers a small number of large
files to reduce metadata overhead. Furthermore, accessing shared
storage through networks is often costly, incurring high latency
for index queries.

So far, we only discussed how Umzi eliminates random I/Os
and in-place updates by adopting an LSM-like structure. In this
section, we present solutions adopted by Umzi to improve storage
efficiency in a multi-tier storage hierarchy.

6.1 Non-Persisted Levels

In a traditional LSM design, on-disk runs of all levels are per-
sisted on disk equivalently. Even though this design garbage
collects olds runs after a merge, it introduces a large overhead
on shared storage because of writing a large number of (poten-
tially small) files. To avoid frequently rewriting a large number of
small files on shared storage, Umzi supports non-persisted levels,
i.e., certain low levels of the groomed zone can be configured as
non-persisted.

Runs in persisted levels are always stored in shared storage
for fault tolerance and can be cached in local memory and SSD to
speedup queries. However, runs in non-persisted levels are only
cached in local memory and optionally spilled to SSD if memory
is full, but they are not stored in shared storage for efficiency.

Introducing non-persisted levels complicates the recovery pro-
cess of Umzi, since after a failure all runs in non-persisted levels
could be lost. To address this, Umzi requires level 0 must be per-
sisted to ensure that we do not need to rebuild any index runs
from groomed data blocks during recovery. Moreover, if level L
to K are configured as non-persisted, runs in level L-1 cannot be
deleted immediately after they are merged into level L. Other-
wise, if the node crashes, we would again lose index runs since
the new run is not persisted in shared storage. To handle this,
when merging into non-persisted levels, old runs from level L-1
are not deleted but rather recorded in the new run. When the
new run is finally merged into a persisted level again, i.e., level
K+1, its ancestor runs from level L-1 can be safely deleted.

6.2 Cache Management

As mentioned before, accessing shared storage through networks
is often costly and incurs high latencies for index queries. To
address this, Umzi aggressively caches index runs using local
memory and SSD, even without ongoing queries. We assume
most frequently accessed index runs fit into the local SSD cache
so that shared storage is mainly used for backup. However, when
the local SSD cache is full, Umzi has to remove some index runs to
free up the cache space. For this purpose, we assume recent data is
accessed more frequently. As the index grows, Umzi dynamically
purges old runs, i.e., runs in high levels, from the SSD cache
to free up the cache space. In contrast, when the local SSD is
spacious, Umzi aggressively loads old runs from shared storage
to speedup future queries.

To dynamically purge and load index runs, Umzi keeps track
of the current cached level that separates cached and purged
runs, as shown in Figure 7. When the SSD is nearly full, the index
maintenance thread purges some index runs and decrements the
current cached level if all runs in this level have been purged.
When purging an index run, Umzi drops all data blocks from
the SSD while only keeps the header block for queries to locate
data blocks. On the contrary, when the SSD has free space, Umzi
loads recent runs (in the reverse direction of purging) into SSD,
and increments the current cached level when all runs in the

current cache level

purge , _load
1
Groomed Zone \-[Lev]—e:[o }‘i"[LE;[l ,]
Post-Groomed Zone\-[]_’[]
Level 6 (] cached runs

D purged runs

Figure 7: Cache Management in Umzi

current cached level have been cached. Umzi further adopts a
write-through cache policy when creating new index runs during
merge or evolve. That is, a new run is directly written to the SSD
cache if it is below (lower than) the current cache level.

7 INDEX QUERY

In this section, we discuss how to process index queries on Umzi.
Since Umzi is a multi-version index, a query has to specify a
query timestamp (queryTS), and only the most recent version
for each matching key is returned, i.e., the version with largest
beginTS such that beginTS < queryTS. In general, two types
of index queries are supported. The range scan query specifies
values for all equality columns (if any) and bounds for the sort
columns, and returns the most recent version of each matching
key. The point lookup query specifies the entire index key (i.e.,
the primary key), and at most one matching record is returned.

A query first collects candidate runs by iterating the run lists
and checking run synopses. A run is considered as a candidate
only if all column values as specified in the query satisfy the
column ranges in the synopsis. Also note that all runs are read
from the SSD cache. In case that a query must access purged
runs, we first transfer runs from shared storage to the SSD cache
on a block-basis, i.e., the entire run data block is transferred at
a time, to facilitate future accesses. After the query is finished,
the cached data blocks are released, which are further dropped
in case of cache replacement. Depending on the query type, the
details of query processing are as follows.

7.1 Range Scan Query

For a range scan query, we first discuss how to search a single
run to get matching keys. Results returned from multiple runs are
further reconciled, since results from newer runs could override
those from older runs, to guarantee only the most recent version
is returned for each matching key.

7.1.1 Search Single Run. Searching a single run returns the
most recent version for each matching key in that run. Since
a run is a table of sorted rows, the query first locates the first
matching key using binary search with the concatenated lower
bound, i.e., the hash value, equality column values, and the lower
bound of sort column values. If the offset array is available, the
initial search range can be narrowed down by computing the
most significant n bits of the hash value (denoted as i) and taking
the i-th value in the offset array.

After the first matching key is determined, index entries are
then iterated until the concatenated upper bound is reached, i.e.,
the concatenation of the hash value, equality column values, and
the upper bound of sort column values. During the iteration, we
further filter out entries failing timestamp predicate beginTS <
queryTS. For the remaining entries, we simply return for each

key the entry with the largest beginTS, which is straightforward
since entries are sorted on the index key and descending order
of beginTS.

Consider again the example run in Figure 2. Recall that device
is the equality column, while msg is the sort column. Consider a
range scan query with device = 4,1 < msg < 3, and queryTS = 100.
We first take the most significant 3 bits of hash(4) = 1001 0001,
i.e,, 100, to obtain the initial search range from the offset array,
i.e,, 2 to 6. The first matching key is still entry 2 after binary
search with the input lower bound (1001 0001, 4, 1). We then
iterate index entries starting from entry 2. Entry 2 is returned
since it is the most recent version for key (4, 1), while entry 3 is
filtered out since it is an older version of entry 2. However, entry
4 is filtered out because its beginTS 102 is beyond the queryTS
100. We stop the iteration at entry 5, which is beyond the input
upper bound (1001 0001, 4, 3).

7.1.2 Reconcile Multiple Runs. After searching each run in-
dependently, we have to reconcile results returned from multiple
runs to ensure only the most recent version is returned for each
matching key. In general, two approaches can be used for recon-
ciliation: the set approach and the priority queue approach.

Set Approach. In the set approach, the query searches from
the newest to the oldest runs sequentially, and maintains a set of
keys which have already been returned to the query. If a key has
not been returned before, i.e., not in the set, it is added to the set
and the corresponding entry is returned to the query; otherwise,
the entry is simply ignored since we have already returned a more
recent version from the newer runs. The set approach mainly
works well for small range queries since it requires intermediate
results to be kept in memory during query processing.

Priority Queue Approach. In the priority queue approach,
the query searches multiple runs together and feeds the results
returned from each run into a priority queue to retain a global
ordering of keys, which is similar to the merge step of merge sort.
Once keys are ordered, we can then simply select the most recent
version for each key and discard the rest without remembering
the intermediate results.

7.2 Point Lookup Query

The point lookup query can be viewed as a special case of the
range scan query, where the entire primary key is specified such
that at most one entry is returned. As an optimization, one can
search from newest runs to oldest runs sequentially and stop the
search once a match is found. Here we can use exactly the same
approach from above to search the single run, where the lower
bound and upper bound of sort column values are the same.

For a batch of point lookups, we first sort the input keys by
the hash value, equality column values, and sort column values,
to improve search efficiency. The sorted input keys are searched
against each run sequentially from newest to oldest, one run at
a time, until all keys are found or all runs to be searched are
exhausted. This guarantees that each run is accessed sequentially
and only once.

8 EXPERIMENTAL EVALUATION

In this section, we report the experimental evaluation of Umzi.
We first evaluate the index build performance, index query per-
formance, and further study the end-to-end query performance
with concurrent data ingestion. We first outline the general ex-
periment setup, then report and discuss the experimental results.

As mentioned in Section 3, there are a distributed cluster of
indexer daemons running in Wildfire, each independently re-
sponsible for building and maintaining index for one or more
Umzi index structure instances (one per table shard). As a result,
Umazi scales up and down nicely with more or less indexer dae-
mons. Since the goal of our experiments is to demonstrate the
performance of Umzi index structure, we focus on a single shard
setting for our experiments.

Note that since all experiments were conducted inside Wild-
fire, which is closely tied to an IBM product, we cannot report
absolute performance numbers. As a result, we report normalized
performance numbers, with the normalization process explained
for each experiment.

8.1 Experiment Setup

All experiments are performed against a single table shard on
a single node using a dual-socket Intel Xeon E5-2680 server
(2.40GHZ) with 14 cores in a socket (28 with hyper-threading)
and 1.5TB of RAM. The operating system is Ubuntu 16.04.2 with
Linux kernel 4.4.0-62. The node uses an Intel 750 Series SSD as
the SSD cache. For end-to-end experiments, we use GlusterFS [2]
as the shared storage layer.

We use a synthetic data generator to generate keys with in-
clude columns used in all experiments, where keys can be se-
quential or random. Note that our index only stores key and
include columns instead of entire records, thus a key generator
is sufficient for our experiments. Throughout the experiments,
we consider three different index definitions as below:

e I1: one equality column, one sort column, and one include
column

o 12: two equality columns and one include column

e 13: one equality column and one include column

Each column is a long type with 8 bytes. Unless otherwise noted,
we use index definition I1 as the default case. Each of the follow-
ing experiments was reported for three times, and the average
number is reported.

Moreover, for the scope of this paper, we only focus on the time
of index lookups, while omitting the time of retrieving records
based on the fetched RIDs, since the latter depends on the record
storage format and is orthogonal to the indexing method.

8.2 Index Building Performance

In the first set of experiments, we evaluate the performance of
building index runs, which is the primitive operation for Umzi’s
index maintenance after a groom or post-groom cycle. Figure 8
shows the results for the time it takes to build an index run
using the three different index definitions mentioned above as
we increase the number of entries in a run. The running time is
normalized against the time of building a run with 1000 tuples
using I1. As the graph shows, index building almost scales linearly
with the number of rows. Furthermore, the index building time
for index I3 is always faster than I1 and I2, since I3 has one fewer
key column. The impact of the number of indexed columns on
the index building time, however, is negligible, compared to the
overhead of sorting entries during index building.

8.3 Index Query Performance

Next set of experiments evaluate the performance of querying
Umzi under various settings. By default, an index contains 20
runs, where each index run has 100000 entries. We execute index

8000
w1
mi2
6000
G.)
£ 13
£
f:
& 4000
©
£
o
< 2000
0
S S R I R CRRS
VY TS S S S &S

tuples in an index run

Figure 8: Index Building Performance

queries in a batch, where the default batch size is 1000. All index
runs used in this set of experiments are cached in the local SSD.

We consider two kinds of entry characteristics for the follow-
ing experiments, i.e., ingested with sequential keys or random
keys. Sequential keys are sequentially generated by our synthetic
key generator to simulate the time correlated keys, while random
keys are randomly sampled from a uniform distribution with-
out any temporal correlation. We further consider two kinds of
key distribution in index queries: sequential and random. As the
name suggests, sequential and random queries use sequentially
and randomly generated keys in a batch, respectively.

8.3.1 Single Run. We first evaluate the index query perfor-
mance against a single run. For brevity, we only report experi-
ment results with sequentially ingested keys in this experiment.
Since entries in a run are sorted on hash values, there is no dif-
ference to use sequentially or randomly ingested data. Figure 9
shows the normalized lookup time with varying run sizes and
index definitions.

The time is normalized against the index lookup time of the
sequential query over the run with 1000 tuples under the index
definition I1. In general, the query time increases with larger in-
dex runs, since search keys spread across the run and potentially
more I/Os are required to process the query batch when the run
size increases. However, the impact of run size is limited because
we use the hash offset array to locate the initial search range, and
further use binary search to locate the exact location. Moreover,
index lookup performance of index definition of I1 is comparable
to that of I3, but index lookup performance of index definition
12 is generally slower since I2 contains two equality columns,
making the hash offset array less effective in terms of locating
the initial search range.

8.3.2 Multiple Runs with Sequential Keys. In this section we
evaluate the index query performance against multiple index
runs with sequentially ingested keys. We vary the query batch
size and the number of index runs for the lookup queries, and
the scan range for the range queries. The experiment results are
shown in Figure 10.

Figure 10a shows the impact of the batch size on the index
lookup performance. The index lookup time per key is normalized
against the lookup time of the sequential query with batch size
one. In general, sequential queries perform much better than
random ones since the run synopsis enables pruning most of
the irrelevant runs and leaving only a small fraction of the runs
need to be searched (except for the case of batch size 1, where
the sequential queries take longer because of some variances in

25

mil
g 2 mi2
§' 13
X 15
o
o
a1
©
£
6 0.5
f=
0
1K 10K 100K 1M 10M 20M 40M 60M 80M 100M
tuplesin an index run
(a) Sequential queries
2.5
mlil
g€ 2| mi2
a 13
=3
£ 1.5
o
ael
&1
©
£
S 0.5
c
0

1K 10K 100K 1M 10M 20M 40M 60M 80M 100M
tuples in an index run

(b) Random queries

Figure 9: Single Run Query Performance

the experiments). Furthermore, batching greatly improves index
lookup performance, since once an index block is fetched into
memory for a the lookup of a particular key, no additional I/O is
required to fetch that block again for looking up other keys in
the batch.

Figure 10b shows the index lookup performance with varying
number of index runs. The query time is normalized against the
time it takes to complete the sequential query against one run. As
the result shows, the number of runs has limited impact over the
sequential queries, since most irrelevant runs are simply pruned
because of the run synopsis. However, the time of the random
queries grows almost linearly with more runs, since more runs
need to be searched to complete the batch of lookups.

Finally, the performance of the range scan queries using the
priority queue method is in Figure 10c. The time is normalized
against the query time of the sequential query with range one.
In general, the query time of the range scan query grows lin-
early with the query range, since larger ranges require more
time to read index entries and output matching keys. Moreover,
sequential or random ranges have little impact over the query
performance, since the time of locating start position is negligible
compared to scanning the index entries.

8.3.3 Multiple Runs with Random Keys. After investigating
the index query time using sequentially ingested keys, this sec-
tion evaluates the query performance against multiple index runs
with randomly ingested keys. The results are shown in Figure 11.
The numbers on the y-axes are normalized the same way as the
corresponding numbers in Figure 10. In general, random keys
render the run synopsis less useful, which decreases the perfor-
mance of sequential queries since more runs need to be searched.
However, the impact on the random queries is almost negligible,

since the pruning capability of the run synopses is anyway lim-
ited when we have random keys in the query batch. As a result,
the performance of sequential queries becomes similar to that of
random queries.

1 40 1000000
08 M sequential query " sequential query 100000 |® sequential query
’ 30
® random query é = random query 10000 ® random query
06 hil
K20 £ 1000
0.4 g B
s = 100
<10 é
0.2 S 1o
0 0 1

normalized time to lookup a key

A A0 ®) Q 1 10 20 40 60 80 100 V0 QLo o QO
W WA \Q“QQ\QQ“Q
lookup batch size # index runs scan range size
(a) Varying batch size (b) Varying number of runs (c) Varying scan ranges

Figure 10: Query performance of multiple runs with sequentially ingested keys

normalized time to lookup a key

1.8 50 100000
m sequential query ° ® sequential query ® sequential query
L5 EA0 | o que 10000 |
12 m random query - query random query
. = Q
§ 30 £1000
0.9 - o]
E 20 S 100
0.6 Té: E
03 glo g 10
0 0 1
1 10 20 40 60 80 100
A A0 W Lo VO ® o O o
» A0 AQ Ao° AR RN o \QQQQ
lookup batch size # index runs scan range size
(a) Varying batch size (b) Varying number of runs (c) Varying scan ranges

Figure 11: Query performance of multiple runs with randomly ingested keys

o

wv

IS

v’\/\/ W

~—4 readers

normalized time for lookup
w

8.4 End-to-end Experiments 2 ——16 readers

The last set of experiments evaluates the end-to-end performance 1 _‘213 ::gzz

of Umzi in Wildfire as we perform data ingest and index lookups 0 ——52 readers
concurrently while Umzi’s index maintenance operations are also 0 6 1 18 24
handled in the background. By default, for each experiment, we time (sec)

ingest roughly 100000 random records per second. The groomer

runs every second, and the post-groomer runs every 20 seconds. Figure 12: Performance with concurrent readers
We also submit batches of 1000 random index lookup queries

continuously. Each experiment lasts for 100 seconds.

For this set of experiments, we generate data with update rates continuously. For brevity, we show results for only 4, 16, 28,
that mimic a realistic IoT application, where the recent data are 40, and 52 readers, and the experiment results are normalized
updated more frequently. The update rates are calculated based against the lookup time with 1 reader from the beginning of the
on the groom cycles: the ingested data for the latest groom cycle experiment. In addition, Figure 12 zooms into a 30 second period
updates p% of data from the last groom cycle, and 0.1 X p% of from the middle of the overall experiment to focus on the impact
data from the last 50 cycles, and 0.01 X p% of data in the last 100 of concurrency as opposed to the index behavior over time as
cycles. By default, we set p% = 10%. the index grows. As one can see, more concurrent readers have

With this experimental setup, we investigate the impact of small impact on the query performance, which demonstrates
concurrent readers, percentage of updates, purged runs, and the advantages of Umzi’s lock-free design for the readers. The
index evolve operations on index lookup time. The results are varying performance of the index lookup operation in this graph
summarized and discussed below. (and the rest of the graphs in this section) is due to the random

input keys we generate for the index lookup requests. Based on

84.1 Concurrent Readers. Figure 12 shows how varying the the distribution of these random keys, the search for a key can
number of concurrent readers impact the average index lookup lead to reading fewer or more index runs, which impacts the
time. Each reader thread submits batches of 1000 lookup queries performance of a point lookup as seen previously.

10

20%

40%

normalized time for lookup
o - N w = (%) ()} ~ [o:]

80% 100%

0 12 24 36 48 60 72 84
time (sec)

Figure 13: Varying percentage of update workloads

800
—all

half
none

u N
o O O
o o o

N W
o O
o o

normalized time for lookup
B
o
<]

=
o
o

ﬂ_,A—J\’\,/vj_MJNMr

0 12 24 36 48 60 72 84
time (sec)

o

Figure 14: Performance with various purge levels

8.4.2 Updates. Figure 13 analyzes the impact of varying level
of updates in a workload on the query performance. We change
the update rate p% from 0% (read-only workload) to 100% (all
ingested records are updates after the first groom cycle). As the
graph demonstrates, updates have limited impact on the average
query performance. The slightly increasing lookup time over
time, which can be observed in all the experiments in this section,
is due to the growing of the index run chain of Umzi.

8.4.3 Purged Runs. The impact of purged runs on the query
performance is shown in Figure 14, where we manually set the
purge level to control the percentage of purged runs. The run-
ning time is normalized against the performance of the no-purge
case in the beginning of this experiment. As expected, Figure 14
emphasizes the significance of the SSD cache on the query per-
formance. The latency of the lookup queries is much lower when
all the index runs are cached (none) compared to the cases where
the half or all of the runs are purged. Moreover, when some runs
are purged, we observe unpredictable latency spikes. The reason
is that when purged runs are first accessed after being merged or
evolved, they have to be fetched from the shared storage into the
local SSD cache on a block by block basis as the queries require
them.

8.4.4 Index Evolve Operations. Finally, we evaluate the impact
of the index evolve operations on the query performance by
enabling/disabling the post-groomer. The results are shown in
Figure 15. The running time is normalized against the lookup
time in the beginning of the experiment where the post-groomer
(including index evolution), is enabled. As the graph illustrates,
the index evolve operation has certain overhead over the query
performance, since often the query may experience several cache
misses after runs have been evolved. However, the overhead again
is limited, since in the meanwhile the index evolve operation

11

——post-groom

no post-groom

iy

normalized time for lookup
()]

0 12 24 36 48 60 72 84
time (sec)

Figure 15: Impact of index evolve operations

reduces the total of number of runs, which in turn improves the
query performance.

9 RELATED WORK

In this section, we survey related work in indexing methods for
HTAP systems, as well as LSM-like indexes.

Indexing in HTAP Systems. To satisfy the demand of fast
transactions and analytical queries concurrently, many HTAP
systems and solutions have been proposed recently. A recent
survey of HTAP systems can be found in [32]. In-memory HTAP
engines, e.g., SAP HANA [21], HyPer [22], Pelaton [14], Oracle
TimesTen [23] and DBIM [29] take unique advantage of large
main memories, e.g., random writes and in-place updates, while
large-scale HTAP systems that go beyond the memory limit have
to face inherently different challenges in the presence of disks and
shared storage. MemSQL [7] supports skip-list or hash indexes
over the in-memory row store, and LSM-like indexes over the
on-disk column store. However, column store indexes cannot be
combined with row indexes to provide a unified view for queries.
SnappyData [28] only supports indexes over row tables, while
providing no indexing support for column tables.

Another category of HTAP solutions typically glue multiple
systems together to handle OLTP and OLAP queries. For example,
one typical solution is to use a key-value store, such as HBase 3]
or Cassandra [1], as the updatable storage layer, while resorting
to SQL-on-Hadoop systems such as Spark-SQL [13] to process
analytical queries with the help of data connectors. Other sys-
tems directly build upon updatable storage engines to handle
both transactional and analytical queries, such as Hive [35] on
HBase [3] and Impala [16] on Kudu [5]. In these solutions, in-
dexes, if any, are exclusively managed by the storage engine to
support efficient point lookups. However, none of these solutions
support both fast ingestion and data scans, which is different
from our system where ingested data evolves constantly to be
more analytics-friendly.

LSM-like Index. The LSM-tree [31] is a persistent index struc-
ture optimized for write-heavy workloads. Instead of updating
entries in place, which potentially requires a random I/O, the
LSM-tree batches inserts into memory and flushes the data to
disk using sequential I/O when the memory is full. It was sub-
sequently adopted by many NoSQL systems, such as HBase [3],
Cassandra [1], LevelDB [6] and RocksDB [9], for its superior
write performance. Many variations of the original LSM-tree
have been proposed as well. LHAM [30] is a multi-version data
access method based on LSM for temporal data. FD-tree [24] is
designed for SSDs by limiting random I/Os and uses fractional
cascading [18] to improve search performance. bLSM [34] uses

bloom filters to improve point lookup performance, and proposes
a dedicated merge scheduler to bound write latencies. Aster-
ixDB [12] proposes a general framework for using LSM-tree as
secondary indexes. Ahmad and Kemme [11] present an approach
to improve the merge process by offloading merge to dedicated
nodes and a cache warm-up algorithm to alleviate cache misses
after merge. LSM-Trie [36] organizes runs using a prefix tree-like
structure to improve point lookup performance by sacrificing the
ability to do range queries. WiscKey [25] reduces write amplifi-
cation by only storing keys in the LSM tree while leaving values
in a separate log. The work [26] presented efficient maintenance
strategies for LSM-based auxiliary structures, i.e., secondary in-
dexes and filters, to facilitate query processing. Monkey [19]
is an analytical approach for automatic performance tuning of
LSM trees. Dostoevsky [20] presents a lazy leveling merge pol-
icy for better trade-offs among query cost, write cost and space
amplification. Accordion [17] optimizes LSM on large memo-
ries by in-memory flushes and merges. SlimDB [33] optimizes
LSM-based key-value stores for managing semi-sorted data.

Different from existing work on LSM indexes, which focuses
on a key-value store setting, Umzi is an end-to-end indexing
solution in distributed HTAP systems. It supports the multi-zone
design commonly adopted by large-scale HTAP systems, and
evolves itself as data migrates without blocking queries. We fur-
ther discuss how Umyzi is designed to accommodate the multi-tier
storage hierarchy, i.e., memory, SSD, and shared storage, to im-
prove storage efficiency.

10 CONCLUSION

This paper describes Umzi, the first unified multi-version and
multi-zone indexing method for large-scale HTAP systems in the
context of Wildfire. Umzi adopts the LSM-like design to avoid
random I/Os in shared storage, and supports timestamped queries
for multi-version concurrency control schemes. Unlike existing
LSM indexes, Umzi addresses the challenges posed by the multi-
zone design of modern HTAP systems, and supports migrating
index contents as data evolves from one zone to another. It also
utilizes an interesting combination of hash and sort techniques to
enable both equality and range queries using one index structure.
Furthermore, it fully exploits the multi-level storage hierarchy
of HTAP systems for index persistence and caching.

In the future, we plan to extend Umzi to build and maintain
secondary indexes in HTAP systems. Then, we would like to
perform more experimental evaluation on Umzi to study its per-
formance under various workloads. Finally, we would also like
to study other SSD cache management strategies, and evaluate
their impact on query performance.

REFERENCES

] 2018. Cassandra. http://cassandra.apache.org/.

] 2018. GlusterFS. https://www.gluster.org/.

] 2018. Hbase. https://hbase.apache.org/.

] 2018. IBM DB2 Event Store. //https://www.ibm.com/us-en/marketplace/
db2-event-store/.

[5] 2018. Kudu. https://kudu.apache.org/.

[6] 2018. LevelDB. http://leveldb.org/.

[7] 2018. MemSQL. http://www.memsql.com.

[8] 2018. Parquet. https://parquet.apache.org/.

[9] 2018. RocksDB. http://rocksdb.org/.

10] 2018. Spark. http://spark.apache.org/.

11] Muhammad Yousuf Ahmad and Bettina Kemme. 2015. Compaction Manage-

ment in Distributed Key-value Datastores. Proc. VLDB Endow. 8, 8 (April 2015),

850-861. https://doi.org/10.14778/2757807.2757810

Sattam Alsubaiee et al. 2014. Storage Management in AsterixDB. PVLDB 7, 10

(2014), 841-852.

12

[13] Michael Armbrust et al. 2015. Spark SQL: Relational data processing in Spark.
In SIGMOD. ACM, 1383-1394.

[14] Joy Arulraj et al. 2016. Bridging the Archipelago Between Row-Stores and

Column-Stores for Hybrid Workloads. In SIGMOD. ACM, New York, NY, USA,

583-598.

Ronald Barber et al. 2017. Evolving Databases for New-Gen Big Data Applica-

tions.. In CIDR.

MKABYV Bittorf et al. 2015. Impala: A modern, open-source SQL engine for

Hadoop. In CIDR.

Edward Bortnikov et al. 2018. Accordion: Better Memory Organization for

LSM Key-value Stores. PVLDB 11, 12 (2018), 1863-1875.

Bernard Chazelle and Leonidas J Guibas. 1986. Fractional cascading: I. A data

structuring technique. Algorithmica 1, 1 (1986), 133-162.

Niv Dayan et al. 2017. Monkey: Optimal Navigable Key-Value Store. In Pro-

ceedings of the 2017 ACM International Conference on Management of Data

(SIGMOD 17). ACM, New York, NY, USA, 79-94.

Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Offs

for LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous

Merging. In SIGMOD. 505-520.

Franz Farber et al. 2012. The SAP HANA Database-An Architecture Overview.

IEEE Data Eng. Bull. 35, 1 (2012), 28-33.

Alfons Kemper and Thomas Neumann. 2011. HyPer: A Hybrid OLTP&OLAP

Main Memory Database System Based on Virtual Memory Snapshots. In ICDE.

IEEE Computer Society, Washington, DC, USA, 195-206.

Tirthankar Lahiri et al. 2013. Oracle TimesTen: An In-Memory Database for

Enterprise Applications. IEEE Data Eng. Bull. 36, 2 (2013), 6-13.

Yinan Li et al. 2010. Tree Indexing on Solid State Drives. Proc. VLDB Endow. 3,

1-2 (Sept. 2010), 1195-1206.

Lanyue Lu et al. 2017. WiscKey: Separating keys from values in SSD-conscious

storage. ACM Transactions on Storage (TOS) 13, 1 (2017), 5.

Chen Luo and Michael J. Carey. 2018. Efficient Data Ingestion and Query

Processing for LSM-based Storage Systems. CoRR abs/1808.08896 (2018).

arXiv:1808.08896

Chen Luo and Michael J. Carey. 2018. LSM-based Storage Techniques: A Survey.

CoRR abs/1812.07527 (2018). arXiv:1812.07527 http://arxiv.org/abs/1812.07527

Barzan Mozafari et al. 2017. SnappyData: A Unified Cluster for Streaming,

Transactions and Interactive Analytics.. In CIDR.

Niloy Mukherjee et al. 2015. Distributed Architecture of Oracle Database

In-memory. PVLDB 8, 12 (2015), 1630-1641.

Peter Muth et al. 2000. The LHAM Log-structured History Data Access Method.

The VLDB Journal 8, 3-4 (Feb. 2000), 199-221.

Patrick O’Neil et al. 1996. The Log-structured Merge-tree (LSM-tree). Acta

Inf. 33, 4 (June 1996), 351-385.

Fatma Ozcan et al. 2017. Hybrid Transactional/Analytical Processing: A Survey.

In SIGMOD. ACM, 1771-1775.

Kai Ren et al. 2017. SlimDB: A Space-efficient Key-value Storage Engine for

Semi-sorted Data. PVLDB 10, 13 (2017), 2037-2048.

Russell Sears and Raghu Ramakrishnan. 2012. bLSM: A General Purpose Log

Structured Merge Tree. In Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data (SIGMOD ’12). ACM, New York, NY, USA,

217-228. https://doi.org/10.1145/2213836.2213862

Ashish Thusoo et al. 2010. Hive-a petabyte scale data warehouse using hadoop.

In ICDE. IEEE, 996-1005.

Xingbo Wu et al. 2015. LSM-trie: an LSM-tree-based ultra-large key-value

store for small data. In Proceedings of the 2015 USENIX Conference on Usenix

Annual Technical Conference. USENIX Association, 71-82.

[15]
[16]
[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24

[25]

[26]

[27]
[28]

[29

[30]

(31

[32]
[33]

[34]

[35

[36]

	Research Papers
	Umzi: Unified Multi-Zone Indexing for Large-Scale HTAPChen Luo, Pinar Tozun, Yuanyuan Tian, Ronald Barber, Vijayshankar Raman, Richard Sidle

