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On monotonicity of some combinatorial sequences

By QING-HU HOU (Tianjin), ZHI-WEI SUN (Nanjing) and HAOMIN WEN (Philadelphia)

Abstract. We confirm Sun’s conjecture that ( n+1
√
Fn+1/

n
√
Fn )n>4 is strictly de-

creasing to the limit 1, where (Fn)n>0 is the Fibonacci sequence. We also prove that

the sequence ( n+1
√
Dn+1/

n
√
Dn )n>3 is strictly decreasing with limit 1, where Dn is

the n-th derangement number. For m-th order harmonic numbers H
(m)
n =

∑n
k=1 1/k

m

(n = 1, 2, 3, . . .), we show that
(

n+1

√
H

(m)
n+1 /

n

√
H

(m)
n

)
n>3

is strictly increasing.

1. Introduction

A challenging conjecture of Firoozbakht states that

n
√
pn > n+1

√
pn+1 for every n = 1, 2, 3, . . . ,

where pn denotes the n-th prime. Note that limn→∞ n
√
pn = 1 by the Prime

Number Theorem. In [4] the second author conjectured further that for any

integer n > 4 we have the inequality

n+1
√
pn+1

n
√
pn

< 1− log log n

2n2
,

which has been verified for all n 6 3.5 × 106. Motivated by this and [3], Sun [4,

Conjecture 2.12] conjectured that the sequence ( n+1
√
Sn+1/

n
√
Sn )n>7 is strictly
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increasing, where Sn is the sum of the first n positive squarefree numbers. More-

over, he also posed many conjectures on monotonicity of sequences of the type

( n+1
√
an+1/ n

√
an )n>N with (an)n>1 a familiar combinatorial sequence of positive

integers.

Throughout this paper, we set N = {0, 1, 2, . . .} and Z+ = {1, 2, 3, . . .}.
Let A and B be integers with ∆ = A2 − 4B ̸= 0. The Lucas sequence

un = un(A,B) (n ∈ N) is defined as follows:

u0 = 0, u1 = 1, and un+1 = Aun −Bun−1 for n = 1, 2, 3, . . . .

It is well known that un = (αn − βn)/(α− β) for all n ∈ N, where

α =
A+

√
∆

2
and β =

A−
√
∆

2

are the two roots of the characteristic equation x2 − Ax+ B = 0. The sequence

Fn = un(1,−1) (n ∈ N) is the famous Fibonacci sequence, see [1, p. 46] for

combinatorial interpretations of Fibonacci numbers.

Our first result is as follows.

Theorem 1.1. Let A > 0 and B ̸= 0 be integers with ∆ = A2 − 4B > 0,

and set un = un(A,B) for n ∈ N. Then there exists an integer N > 0 such that

the sequence ( n+1
√
un+1/ n

√
un )n>N is strictly decreasing with limit 1. In the case

A = 1 and B = −1 we may take N = 4.

Remark 1.1. Under the condition of Theorem 1.1, by [2, Lemma 4] we have

un < un+1 unless A = n = 1. Note that the second assertion in Theorem 1.1

confirms a conjecture of the second author [4, Conjecture 3.1] on the Fibonacci

sequence.

For n ∈ Z+ the n-th derangement number Dn denotes the number of per-

mutations σ of {1, . . . , n} with σ(i) = i for no i = 1, . . . , n. It has the following

explicit expression (cf. [1, p. 67]):

Dn =
n∑

k=0

(−1)k
n!

k!
.

Our second theorem is the following result conjectured by the second author

[4, Conjecture 3.3].

Theorem 1.2. The sequence
(

n+1
√

Dn+1/
n
√
Dn

)
n>3

is strictly decreasing

with limit 1.



On monotonicity of some combinatorial sequences 287

Remark 1.2. It follows from Theorem 1.2 that the sequence ( n
√
Dn )n>2 is

strictly increasing.

For each m ∈ Z+ those H
(m)
n =

∑n
k=1 1/k

m (n ∈ Z+) are called harmonic

numbers of order m. The usual harmonic numbers (of order 1) are those rational

numbers Hn = H
(1)
n (n = 1, 2, 3, . . .).

Our following theorem confirms Conjecture 2.16 of Sun [4].

Theorem 1.3. For any m ∈ Z+, the sequence
(

n+1

√
H

(m)
n+1 /

n

√
H

(m)
n

)
n>3

is

strictly increasing.

We will prove Theorems 1.1–1.3 in Sections 2–4 respectively. It seems that

there is no simple form for the generating function
∑∞

n=0
n
√
an x

n with an =

un, Dn,H
(m)
n . Note also that the set of those sequences (an)n>1 of positive num-

bers with
(

n+1
√
an+1/ n

√
an
)
n>1

decreasing (or increasing) is closed under multi-

plication.

2. Proof of Theorem 1.1

Proof of Theorem 1.1. Set

α =
A+

√
∆

2
, β =

A−
√
∆

2
, and γ =

β

α
=

A−
√
∆

A+
√
∆
.

Then

log un = log
αn(1− γn)

α− β
= n logα+ log(1− γn)− log

√
∆

for any n ∈ Z+. Note that

log
n+1
√
un+1

n
√
un

=
log un+1

n+ 1
− log un

n
=

log(1− γn+1)

n+ 1
− log(1− γn)

n
+

log
√
∆

n(n+ 1)
.

Since

lim
n→∞

log(1− γn)

n
= lim

n→∞

−γn

n
= 0 and lim

n→∞

1

n(n+ 1)
= 0,

we deduce that

lim
n→∞

log
n+1
√
un+1

n
√
un

= 0, i.e., lim
n→∞

n+1
√
un+1

n
√
un

= 1.
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For any n ∈ Z+, clearly

n+1
√
un+1

n
√
un

>
n+2
√
un+2

n+1
√
un+1

⇐⇒ log un+1

n+ 1
− log un

n
>

log un+2

n+ 2
− log un+1

n+ 1

⇐⇒ ∆n :=
2 log un+1

n+ 1
− log un

n
− log un+2

n+ 2
> 0.

Observe that

∆n = 2 logα+
2 log(1− γn+1)

n+ 1
− 2 log

√
∆

n+ 1

−

(
2 logα+

log(1− γn)

n
+

log(1− γn+2)

n+ 2
− log

√
∆

n
− log

√
∆

n+ 2

)

=
log∆

n(n+ 1)(n+ 2)
+

2

n+ 1
log(1− γn+1)− log(1− γn)

n
− log(1− γn+2)

n+ 2
.

The function f(x) = log(1+x) on the interval (−1,+∞) is concave since f ′′(x) =

−1/(x+1)2 < 0. Note that |γ| < 1. If −|γ| 6 x 6 0, then t = −x/|γ| ∈ [0, 1] and

hence

f(x) = f(t(−|γ|) + (1− t)0) > tf(−|γ|) + (1− t)f(0) = qx,

where q = − log(1− |γ|)/|γ| > 0. Note also that log(1 + x) < x for x > 0. So we

have

log
(
1− γn+1

)
> log

(
1− |γ|n+1

)
> −q|γ|n+1,

log (1− γn) 6 log (1 + |γ|n) < |γ|n,

log
(
1− γn+2

)
6 log

(
1 + |γ|n+2

)
< |γ|n+2.

Therefore

∆n >
log∆

n(n+ 1)(n+ 2)
− |γ|n

(
2q|γ|
n+ 1

+
1

n
+

|γ|2

n+ 2

)
and hence

n(n+ 1)(n+ 2)∆n

> log∆− |γ|n
(
2q|γ|n(n+ 2) + (n+ 1)(n+ 2) + |γ|2n(n+ 1)

)
. (1)

Since limn→∞ n2|γ|n = 0, when ∆ > 1 we have ∆n > 0 for large n.

Now it remains to consider the case ∆ = 1. Clearly γ = (A−1)/(A+1) > 0.

Recall that log(1− x) < −x for x ∈ (0, 1). As

d

dx
(log(1− x) + x+ x2) = − 1

1− x
+ 1 + 2x =

x(1− 2x)

1− x
> 0 for x ∈ (0, 0.5),
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we have log(1 − x) + x + x2 > log 1 + 0 + 02 = 0 for x ∈ (0, 0.5). If n is large

enough, then γn < 0.5 and hence

∆n =
2

n+ 1
log(1− γn+1)− log(1− γn)

n
− log(1− γn+2)

n+ 2
> wn,

where

wn :=
2

n+ 1
(−γn+1 − γ2n+2) +

γn

n
+

γn+2

n+ 2
.

Note that

lim
n→∞

nwn

γn
= −2γ + 1 + γ2 = (1− γ)2 > 0.

So, for sufficiently large n we have ∆n > wn > 0.

Now we show that n > 4 suffices in the case A = 1 and B = −1. Note that

∆ = 5 and γ ≈ −0.382. The sequence (|γ|n(n+ 1)(n+ 2))n>1 is decreasing since

|γ| (n+ 2)(n+ 3)

(n+ 1)(n+ 2)
<

1

2

(
1 +

2

n+ 1

)
6 1

for n > 1. It follows that |γ|n(n+1)(n+2) 6 γ6× 7× 8 < 1/3 for n > 6. In view

of (1), if n > 6 then

n(n+ 1)(n+ 2)∆n > log 5− |γ|n(n+ 1)(n+ 2)
(
2q|γ|+ 1 + |γ|2

)
> log 5− 1 + 1 + γ2

3
> log 5− 1 > 0.

It is easy to verify that ∆4 and ∆5 are positive. So ( n+1
√
Fn+1/

n
√
Fn )n>4 is

strictly decreasing.

In view of the above, we have completed the proof of Theorem 1.1. �

3. Proof of Theorem 1.2

Proof of Theorem 1.2. Let n > 3. It is well known that |Dn − n!/e| 6
1/2 (cf. [1, p. 67]). Applying the Intermediate Value Theorem in calculus, we

obtain ∣∣∣∣logDn − log

(
n!

e

)∣∣∣∣ 6 ∣∣∣∣Dn − n!

e

∣∣∣∣ 6 0.5.

Set R0(n) = logDn − logn!. Then |R0(n)| 6 1.5.
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Since limn→∞ R0(n)/n = 0, we have

lim
n→∞

(
logDn+1

n+ 1
− logDn

n

)
= lim

n→∞

(
log((n+ 1)!)

n+ 1
− log(n!)

n

)
= lim

n→∞

n log(n+ 1) + n log(n!)− (n+ 1) log(n!)

n(n+ 1)

= lim
n→∞

n log n+ n log(1 + 1/n)− log(n!)

n(n+ 1)

= lim
n→∞

log(nn/n!)

n(n+ 1)
.

As n! ∼
√
2πn(n/e)n (i.e., limn→∞ n!/(

√
2πn(n/e)n) = 1) by Stirling’s formula,

we have log(nn/n!) ∼ n and hence

lim
n→∞

(
logDn+1

n+ 1
− logDn

n

)
= 0.

Thus limn→∞
n+1
√
Dn+1/

n
√
Dn = 1.

From the known identity Dn/n! =
∑n

k=0(−1)k/k!, we have the recurrence

Dn = nDn−1 + (−1)n for n > 1. Thus, if n > 3 then

R0(n)−R0(n− 1) = log
Dn

n!
− log

Dn−1

(n− 1)!
= log

Dn

nDn−1
= log

(
1 +

(−1)n

nDn−1

)
.

Fix n > 4. If n is even, then

0 < R0(n)−R0(n− 1) = log

(
1 +

1

nDn−1

)
<

1

nDn−1
=

1

Dn − 1
6 3

Dn + 0.5
.

If n is odd, then

0 > R0(n)−R0(n− 1) = log

(
1− 1

nDn−1

)
>

−2

nDn−1
=

−2

Dn + 1
> −3

Dn + 0.5

since log(1− x) + 2x > 0 for x ∈ (0, 0.5). So

|R0(n)−R0(n− 1)| < 3

Dn + 0.5
6 3e

n!
and hence ∣∣∣∣R0(n− 1)−R0(n)

n− 1

∣∣∣∣ < 3e

n!(n− 1)
6 3e

n(n− 1)(n+ 1)
.
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Similarly, we also have∣∣∣∣R0(n+ 1)−R0(n)

n+ 1

∣∣∣∣ < 3e

n!(n+ 1)
6 3e

n(n− 1)(n+ 1)
.

Therefore, ∣∣∣∣R0(n+ 1)

n+ 1
− 2R0(n)

n
+

R0(n− 1)

n− 1
− 2R0(n)

n(n− 1)(n+ 1)

∣∣∣∣
=

∣∣∣∣R0(n+ 1)−R0(n)

n+ 1
+

R0(n− 1)−R0(n)

n− 1

∣∣∣∣ 6 6e

n(n− 1)(n+ 1)

and hence∣∣∣∣R0(n+ 1)

n+ 1
− 2R0(n)

n
+

R0(n− 1)

n− 1

∣∣∣∣ 6 2|R0(n)|+ 6e

n(n− 1)(n+ 1)
6 6e+ 3

n(n− 1)(n+ 1)
.

Thus |R1(n)| 6 6e+ 3, where

R1(n) := n(n− 1)(n+ 1)

(
R0(n+ 1)

n+ 1
− 2R0(n)

n
+

R0(n− 1)

n− 1

)
.

Since

log((n− 1)!) =
n−1∑
k=1

∫ k+1

k

(log k)dx <
n−1∑
k=1

∫ k+1

k

log xdx

=

∫ n

1

log xdx=n log n−n+1 <
n−1∑
k=1

∫ k+1

k

(log(k + 1))dx = log(n!),

we have

n logn− n < log(n!) = log((n− 1)!) + log n < n log n− n+ log n+ 1

and so log(n!) = n log n− n+R2(n) with |R2(n)| < log n+ 1.

Observe that

logDn+1

n+ 1
− 2

n
logDn +

logDn−1

n− 1

=
log((n+ 1)!)

n+ 1
− 2 log(n!)

n
+

log((n− 1)!)

n− 1
+

R1(n)

(n− 1)n(n+ 1)

=
2 log(n!)

(n− 1)n(n+ 1)
− log n

n− 1
+

log(n+ 1)

n+ 1
+

R1(n)

(n− 1)n(n+ 1)
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= − 2n

(n− 1)n(n+ 1)
+

log(n+ 1)− log n

n+ 1
+

2R2(n) +R1(n)

(n− 1)n(n+ 1)

6 − 2n

(n− 1)n(n+ 1)
+

n− 1

(n− 1)n(n+ 1)
+

2R2(n) +R1(n)

(n− 1)n(n+ 1)

= −n+ 1− 2R2(n)−R1(n)

(n− 1)n(n+ 1)
.

If n > 27, then n+ 1− 2R2(n)−R1(n) > n− 2 log n− 1− 6e− 3 > 0, and hence

we get

log
n
√
Dn

n−1
√
Dn−1

> log
n+1
√

Dn+1

n
√
Dn

.

By a direct check via computer, the last inequality also holds for n = 4, . . . , 26.

Therefore, the sequence ( n+1
√
Dn+1/

n
√
Dn)n>3 is strictly decreasing. This ends

the proof. �

4. Proof of Theorem 1.3

Lemma 4.1. For x > 0 we have

log(1 + x) > x− x2

2
. (2)

Proof. As
d

dx

(
log(1 + x)− x+

x2

2

)
=

x2

1 + x
,

we see that log(1 + x)− x+ x2/2 > log 1− 0 + 02/2 = 0 for any x > 0. �

Lemma 4.2. Let m,n ∈ Z+ with n > 3. If m > 11 or n > 30, then

H(m)
n logH(m)

n > 4

(
2

n+ 2

)m−1

. (3)

Proof. Recall that Hn refers to H
(1)
n . If n > 30, then

Hn logHn > H30 logH30 > 4,

and hence (3) holds for m = 1.

Below we assume that m > 2. As n > 3, we have

H(m)
n logH(m)

n > H
(m)
3 logH

(m)
3 .
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So it suffices to show that(
n+ 2

2

)m−1

H
(m)
3 logH

(m)
3 > 4 (4)

whenever m > 11 or n > 30. By Lemma 4.1,

logH
(m)
3 = log(1 + 2−m + 3−m) > 2−m + 3−m − (2−m + 3−m)2

2

> 2−m + 3−m − (21−m)2

2
=

1

2m
+

1

3m
− 2

4m
.

If m > 3, then (4/3)m > (4/3)3 > 2 and hence logH
(m)
3 > 1/2m. Note also that

H
(2)
3 logH

(2)
3 > 1/4. So we always have

H
(m)
3 logH

(m)
3 >

1

2m
.

If m > 11, then 1.25m > 1.2511 > 10 and hence

1

2m
>

4

2.5m−1
> 4

((n+ 2)/2)m−1
,

therefore (4) holds. When n > 30, we have

1

2m
> 1

24m−6
=

4

16m−1
> 4

(
2

n+ 2

)m−1

and hence (4) also holds. �

Proof of Theorem 1.3. Let m > 1 and n > 3. Set

∆n(m) := log

n+1

√
H

(m)
n+1

n

√
H

(m)
n

− log

n+2

√
H

(m)
n+2

n+1

√
H

(m)
n+1

=
2 logH

(m)
n+1

n+ 1
− logH

(m)
n

n
−

logH
(m)
n+2

n+ 2
.

It suffices to show that ∆n(m) < 0. This can be easily verified by computer if

m ∈ {1, . . . , 10} and n ∈ {3, . . . , 29}.
Below we assume that m > 11 or n > 30. Recall (2) and the known fact that

log(1 + x) < x for x > 0. We clearly have

log
H

(m)
n+1

H
(m)
n

= log

(
1 +

1

(n+ 1)mH
(m)
n

)
<

1

(n+ 1)mH
(m)
n
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and

log
H

(m)
n+2

H
(m)
n

> log

(
1 +

2

(n+ 2)mH
(m)
n

)
>

2

(n+ 2)mH
(m)
n

− 2

(n+ 2)2m(H
(m)
n )2

.

It follows that

∆n(m) =

(
2

n+ 1
− 1

n
− 1

n+ 2

)
logH(m)

n +
2

n+ 1
log

H
(m)
n+1

H
(m)
n

− 1

n+ 2
log

H
(m)
n+2

H
(m)
n

<
−2 logH

(m)
n

n(n+ 1)(n+ 2)
+

2

(n+ 1)m+1H
(m)
n

− 2

(n+ 2)m+1H
(m)
n

+
2

(n+ 2)2m+1(H
(m)
n )2

.

Since (n+ 2)m+1 =
∑m+1

k=0

(
m+1
k

)
(n+ 1)k by the binomial theorem, we obtain

∆n(m) 6 −2 logH
(m)
n

n(n+ 1)(n+ 2)
+

2
∑m

k=0

(
m+1
k

)
(n+ 1)k

(n+ 1)m+1(n+ 2)m+1H
(m)
n

+
2

(n+ 2)m+2H
(m)
n

<
−2 logH

(m)
n

n(n+ 1)(n+ 2)
+

2(n+ 1)m
∑m

k=0

(
m+1
k

)
(n+ 1)m+1(n+ 2)m+1H

(m)
n

+
2

(n+ 1)(n+ 2)m+1H
(m)
n

=
−2 logH

(m)
n

n(n+ 1)(n+ 2)
+

2(2m+1 − 1) + 2

(n+ 1)(n+ 2)m+1H
(m)
n

.

Thus

n(n+ 1)(n+ 2)∆n(m)
H

(m)
n

2
< −H(m)

n logH(m)
n +

2m+1n

(n+ 2)m

< 4

(
2

n+ 2

)m−1

−H(m)
n logH(m)

n .

Applying (3) we find that ∆n(m) < 0. This completes the proof. �
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