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On monotonicity of some combinatorial sequences

By QING-HU HOU (Tianjin), ZHI-WEI SUN (Nanjing) and HAOMIN WEN (Philadelphia)

Abstract. We confirm Sun’s conjecture that ( "*/Fnr1/ ¥V F, )n>a is strictly de-
creasing to the limit 1, where (F,)n>0 is the Fibonacci sequence. We also prove that
the sequence ("*/Dn+1/ ¥ Dxn)n>s is strictly decreasing with limit 1, where D, is
the n-th derangement number. For m-th order harmonic numbers H™ = S 1/E™

(n=1,2,3,...), we show that ("} H,(LT)I / A\ am )n>3 is strictly increasing.

1. Introduction

A challenging conjecture of Firoozbakht states that

Ypn > "WYpny1 foreveryn=1,2,3,...,

where p,, denotes the n-th prime. Note that lim, ,., /p, = 1 by the Prime
Number Theorem. In [4] the second author conjectured further that for any
integer n > 4 we have the inequality

"/ Dni1 c1- loglogn
n/pn 2n2 ’

which has been verified for all n < 3.5 x 105. Motivated by this and [3], Sun [4,
Conjecture 2.12] conjectured that the sequence ( "*/Sn4+1/ /Sy )n>7 is strictly
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increasing, where S,, is the sum of the first n positive squarefree numbers. More-
over, he also posed many conjectures on monotonicity of sequences of the type
( "Yant1/ /@ Jn>N With (an),>1 a familiar combinatorial sequence of positive
integers.

Throughout this paper, we set N = {0,1,2,...} and Z*T = {1,2,3,...}.

Let A and B be integers with A = A2 — 4B # 0. The Lucas sequence
Un = un(A, B) (n € N) is defined as follows:

upg =0, uy =1, and wupy1 = Au, — Buy—g forn=1,2,3,....
It is well known that u,, = (o™ — ")/(« — B) for all n € N, where

_A-VA

_A+VA
“T 7 2

and S

are the two roots of the characteristic equation z? — Az + B = 0. The sequence
F, = u,(1,-1) (n € N) is the famous Fibonacci sequence, see [1, p. 46] for
combinatorial interpretations of Fibonacci numbers.

Our first result is as follows.

Theorem 1.1. Let A > 0 and B # 0 be integers with A = A% — 4B > 0,
and set u,, = u,(A, B) for n € N. Then there exists an integer N > 0 such that
the sequence ( "+Y/Un11/ {/Un Jn>N Is strictly decreasing with limit 1. In the case
A=1and B=—1 we may take N = 4.

Remark 1.1. Under the condition of Theorem 1.1, by [2, Lemma 4] we have
Uy < Upy1 unless A = n = 1. Note that the second assertion in Theorem 1.1
confirms a conjecture of the second author [4, Conjecture 3.1] on the Fibonacci
sequence.

For n € Z* the n-th derangement number D,, denotes the number of per-
mutations o of {1,...,n} with o(i) =i for no i = 1,...,n. It has the following
explicit expression (cf. [1, p. 67]):

k=0

K !
ﬁ.

Our second theorem is the following result conjectured by the second author
[4, Conjecture 3.3].

Theorem 1.2. The sequence ( "t/ Dpi1/ /Dy, )n>3 is strictly decreasing
with limit 1.
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Remark 1.2. Tt follows from Theorem 1.2 that the sequence (/D )n>2 is
strictly increasing.

For each m € Z+ those HY™ = Sh_i1/k™ (n € Z*) are called harmonic
numbers of order m. The usual harmonic numbers (of order 1) are those rational
numbers H,, = Hy(bl) (n=1,2,3,...).

Our following theorem confirms Conjecture 2.16 of Sun [4].

Theorem 1.3. For any m € Z", the sequence ( "y HT(LT)l/ v H™ ) sg 18
strictly increasing.

We will prove Theorems 1.1-1.3 in Sections 2—4 respectively. It seems that
there is no simple form for the generating function y - /a,z" with a, =
U, D, H,(Lm). Note also that the set of those sequences (ay)n>1 of positive num-
bers with ( " g1/ 3 n )n>1 decreasing (or increasing) is closed under multi-
plication.

2. Proof of Theorem 1.1

PROOF OF THEOREM 1.1. Set

A+VA A—+VA

Then

n(] — A"

log u,, zloga ) =nloga+ log(l —~") —log VA

for any n € Z*. Note that

log n /U1 _ loguny1  logun _ log(1 — 4™*1) B log(1 —~™) n log VA

Wy, n+1 n n+1 n n(n+1)
Since
log(1 —~™ —y"
1 os( ") = lim =0 and lim =0,
n— o0 n n—oo n n—oo n(n + 1)

we deduce that

R g e

lim log ——— =0, i.e., lim

n—00 YUy, n—oco YUy,
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For any n € Z™, clearly

"t Up 1 S "t/ Un 2 log wpn41 _ log u., - log wp42 _ log wp41
YUy, " Up 11 n+1 n n+2 n+1

_ 2 10g Un4-1 IOg Unp, 10g Un -2

— A,: > 0.
n+1 n n+2
Observe that
2log(l —y™*t1) 21 A
A, =2loga+ og(1 =7 )— og VA
n+1 n+1
log(1l — ~™ log(1 — A" *2 1 A1 A
~(210ga 4 080" log(l =) og VA log VA
n n+2 n n+2
log A 2 log(1 — ™ log(1 — y™t2
_ og N log(1 — 4™+1) — og(l—9") log(l—~""")
nn+1)(n+2) n+1 n n+2

The function f(z) = log(1+x) on the interval (—1, +00) is concave since f”(z) =
—1/(z+1)? < 0. Note that |y| < 1. If —|y| <2 <0, then t = —z/]y| € [0,1] and
hence

f@) = Ft(=h) + 1 =1)0) = tf(=Ir]) + (1 = 1) f(0) = gz,
where ¢ = —log(1 — |v|)/|7v| > 0. Note also that log(1 + z) < z for z > 0. So we
have

log (1 ="t >1log (1 — |y["*1) = —gy["",
log (1 —+™) <log(1+[4|") < |v[",
log (1 —~"*%) <log (1 + [7"2) < [y|"*2.

log A 2yl 1, b
Ap>——282 4
n(n+ 1)(n+ 2) al (n—|—1+n+n+2

Therefore

and hence

nn+1)(n+2)A,
> log A — |y|™ (2q\7|n(n +2)+(n+1)(n+2)+|y[*n(n + 1)) . (D

Since lim,, o n?|y|™ = 0, when A > 1 we have A,, > 0 for large n.
Now it remains to consider the case A = 1. Clearly vy = (A—1)/(A+1) > 0.
Recall that log(l — ) < —z for x € (0,1). As

(1 —2zx)

T2 >0 forz € (0,0.5),

d , 1
%(log(lfz)wLer:r )77m+1+21'f
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we have log(1 — z) + x4+ 22 > log1 + 0+ 0% = 0 for z € (0,0.5). If n is large
enough, then v < 0.5 and hence

2 log(1 — 4™ log(1 — A™*2
An: 1Og(1_,yn+1)_ Og( Y )_ Og( i )

> Wn,
n+1 n n+2 Wn
where o
_ 2 n+1 2n+2 R
wn_n—i-l(’y i )+n+n+2
Note that
nw
lim —2 = -2y +14~%2=(1-7)?>0.
n—oo ™

So, for sufficiently large n we have A,, > w, > 0.
Now we show that n > 4 suffices in the case A =1 and B = —1. Note that
A =5 and v = —0.382. The sequence (|v|*(n + 1)(n +2)),>1 is decreasing since

(n+2)(n+3) 1 2
'”'<n+1><n+z><2<”n+1) <1

for n > 1. Tt follows that |y|"(n+1)(n+2) <% x 7x8 < 1/3 for n > 6. In view
of (1), if n > 6 then

n(n+1)(n+2)A, >logh— |y["(n+ 1)(n +2) (2q|fy| +1+ \’y|2)

1+1+42

> logh —
og 3

>logh—1>0.
It is easy to verify that Ay and Ag are positive. So ("R/Fpi1/ Y/ Fp)n>a is
strictly decreasing.

In view of the above, we have completed the proof of Theorem 1.1. (I

3. Proof of Theorem 1.2

PROOF OF THEOREM 1.2. Let n > 3. It is well known that |D,, — nl/e| <
1/2 (cf. [1, p. 67]). Applying the Intermediate Value Theorem in calculus, we
obtain

n!

|
log D,, — log <n>’ < ’Dn — — | <0.5.
e e

Set Ry(n) =log D,, —logn!. Then |Ry(n)| < 1.5.
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Since lim,,—, o Ro(n)/n = 0, we have

(log Dpy1 log Dn) _ lim <log((n +1) log(n!))
n+1 n n+1 n
lim nlog(n + 1) + nlog(n!) — (n + 1) log(n!)
n—00 nn+1)
~ lim nlogn + nlog(l + 1/n) — log(n!)
n—00 nn+1)
log(n™/n!

lim

n—oo n— oo

As n! ~ v2mn(n/e)" (ie., lim,_, o nl/(vV2mn(n/e)™) = 1) by Stirling’s formula,
we have log(n™/n!) ~ n and hence

(log D1 log Dn) Y

lim
n+1 n

n—o0

Thus lim,, 00 "/ Dpt1/ /Dy = 1.
From the known identity D,/n! = Y}_,(—1)*/k!, we have the recurrence
D, =nDy_1 + (=1)" for n > 1. Thus, if n > 3 then

D,, Dy D, =
Ro(n) = Ro(n — 1) = log —+ —log o1 %%, T8 ( + nDn_l)

Fix n > 4. If n is even, then

1 1 1 3
0 < Ro(n) — Ro(n—1) =log 1 = S :
< Ro(n) — Ro(n —1) 0g< + nDn1> SwD.. D.-1°D.+05

If n is odd, then

1 2 2 3
0> Ro(n) — Ro(n —1) =1log (1 - >
> Ro(n) = Ro(n —1) = log < nDn1> 2 wDpy Dntl1” Dn+05

since log(1 — ) 4+ 2z > 0 for z € (0,0.5). So

3 3e
_ _1 7 <=
[Ro(n) = Roln = D)l < 5= < )
and hence
Ro(n—1) — Ry(n) - 3e 3e

n—1 n!(n—l)gn(nfl)(n+1)'
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Similarly, we also have

Ro(n+1) — Ry(n) - 3e o 3e
n+1 nln+1)  nrn—-1n+1)
Therefore,
Ro(n + 1) _ 2R0(’I’L) n R()(n — 1) B 2R0(7’L)
n+1 n n—1 nn—1)(n+1)
_ | Ro(n+1) — Ro(n) N Ro(n—1) — Ro(n) Ge
N n+1 n—1 Snn—-1)(n+1)
and hence

Ro(’n + 1) 2R0(n) Ro(n - 1) 2|R0(n)| + Ge 6e + 3
‘ n+l1  n + n—1 ‘gn(n—l)(n—}—l)gn(n—l)(n—kl)'

Thus |R;(n)| < 6e + 3, where

Ri(n) == n(n—1)(n +1) (Ro(n+ 1) 2Ro(n) N Ro(n — 1)) .

n+1 n n—1
Since
k+1 n—1 k41
log((n — 1)! Z/ (log k)dx < Z/ log zdzx
k
k+1
/ logzdr =nlogn—n+1< Z/ (log(k + 1))dz = log(n!),
1
we have

nlogn —n < log(n!) =log((n — 1)!) + logn < nlogn —n +logn + 1

and so log(n!) = nlogn — n + Ry(n) with |Ra(n)| < logn + 1.
Observe that

logDpy1 2 log D),
n+1 _ﬁIOgDn+ n—1
_ log((n+1)!1)  2log(n!) n log((n — 1)!) Ri(n)
n+1 n n—1 (n—=1)n(n+1)
21log(n!) _ logn N log(n + 1) n Ri(n)

:(n—l)n(n—i—l) n—1 n+1 (n—1)n(n+1)
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2n log(n+1) —logn  2Rs(n) + Ri(n)
(n—1Dn(n+1) n+1 (n—Dn(n+1)
2n N n—1 2Rs(n) + Ri(n)
(n—=Lnn+1) (n—-nn+1) (n-1)nn+1)
_ ntl- 2R5(n) — R1(n)
(n—1Dn(n+1) '

If n > 27, then n+ 1 —2R2(n) — R1(n) > n—2logn —1 —6e —3 > 0, and hence

we get
VD, "R/ D
log ——= >log ——.
"/ D /D,

By a direct check via computer, the last inequality also holds for n = 4, ..., 26.
Therefore, the sequence ( "*\/Dy11/ /Dy )n>3 is strictly decreasing. This ends
the proof. O

4. Proof of Theorem 1.3

Lemma 4.1. For x > 0 we have

22
log(1+x) >z — = (2)
PROOF. As p ) )
x x
— [ log(1 - — | =
dm<0g( ta)-at 2) 1+’
we see that log(1 + z) — x + 2%/2 > log1 — 0+ 02/2 = 0 for any x > 0. O

Lemma 4.2. Let m,n € ZT withn > 3. If m > 11 or n > 30, then

9 m—1

PRrROOF. Recall that H,, refers to Hfll). If n > 30, then
Hylog Hy, > H3glog H3g > 4,

and hence (3) holds for m = 1.
Below we assume that m > 2. As n > 3, we have

H{™ log H(™ > H{™ log Hy™.
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So it suffices to show that

2 m—1 ”
(”; ) H™ log H™ > 4 (4)

whenever m > 11 or n > 30. By Lemma 4.1,

m 9—m 3—m 2
log H{™ = log(1 +27™ +37m) > gm 4 g~ — Z " E3) z )

T i S T

If m > 3, then (4/3)™ > (4/3)3 > 2 and hence log Hg()m) > 1/2™. Note also that
H§2) log H3(2) > 1/4. So we always have

m m 1
H{™ log H™ > -

If m > 11, then 1.25™ > 1.25'1 > 10 and hence

1 1 4
2m ~ 2.5m=1 7 ((n+2)/2)m-1’

therefore (4) holds. When n > 30, we have

Lo 142\
2m = 24m=6 — 1gm-1 = "\ pn 42

and hence (4) also holds. O

PROOF OF THEOREM 1.3. Let m > 1 and n > 3. Set

A o nd n+1 nt2f n+2 210g Hr(LTI - logHT(Lm) - log HT(L“J:%
n/H('yn n+1/ 1 n+1 n n-+ 2
n+

It suffices to show that An(m) < 0. This can be easily verified by computer if
m e {l,...,10} and n € {3,...,29}.

Below we assume that m > 11 or n > 30. Recall (2) and the known fact that
log(1+ z) < x for x > 0. We clearly have

(m)
1
log — . —log [ 1+ <
H™ (n+1)mH™ ) (n+1)mHY™




294 Qing-Hu Hou, Zhi-Wei Sun and Haomin Wen

and
(m)
2 2 2
log 7;:3 >log |1+ o | > oy OIS
Hy (n+2)mHy (n +2)mHy (n +2)2m(H,™)2
It follows that
2 1 1 2 a7 1 ")
Ap(m) = - == log H(™ + log —2EL log —2+
n+l n n+2 n+1 Hr(Lm) n—+2 H7(lm)
—2log H{™ . 2
n(n+ 1)(n + 2)

(n+ 1)y H™
2

2
my T COIC
(2 HE (g 2 ()
: m _ m+1 m+1
Since (n + 2)m™+H =0 (MY

)(n +1)* by the binomial theorem, we obtain

. (m) 9y m m+1 1)k

Anm) < 2008 23 ()t 1)
nn+1)(n+ 2)

2
(n+1)m+(n + 2)m+1H7(Lm) (n+ 2)m+2H7(Lm)
~2log HW - 2An+ )™, () 2
nn+1)(n+2)  (n4 1)ymtin+2)m+ 1 HI™ (04 1)(n + 2)m 1 H™
—2log H{™ 2(2m+ — 1) 42

= + Ok

n(n+1)(n+2)  (n+1)(n+2)m+1HS
Thus
H™
n(n+1)(n + 2)A,(m)

(m) (my . 2"
< —H™ Jog Hm

m—1
2
<4 — H(™ log H(™.

Applying (3) we find that A, (m) < 0. This completes the proof.

O
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