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Rings with unipotent units

By PETER VASSILEV DANCHEV (Plovdiv) and TSIT-YUEN LAM (Berkeley)

Abstract. We systematically study rings whose units are all unipotent. The first

main result is that a ring R has this property if and only if R has a 2-power character-

istic and the unit group of R is a (possibly infinite) 2-group. The second main result is

that R is an exchange ring with all units unipotent if and only if its Jacobson radical

rad (R) is nil and R/rad (R) is a Boolean ring. The rings in the second main result are

precisely Diesl’s strongly nil-clean rings, for which several new properties are obtained.

1. Introduction

Throughout this paper, U(R) denotes the group of units of a unital ring R,

and nil (R) denotes the set of nilpotent elements in R. It is well known that

1 + nil (R) ⊆ U(R). The elements in 1 + nil (R) are called the unipotents, or the

unipotent units in R. Unipotent subgroups of U(R) are known to be very impor-

tant in the study of algebraic groups when R is a matrix ring Mn(K) over a field

K, in which case U(R) is just the general linear group GLn(K). For instance,

every subgroup H ⊆ GLn(K) has a unique maximal normal unipotent subgroup,

called the unipotent radical of H; see, for instance, Humphreys’ book [Hu], or

the exposition in [La, Theorem 9.22].

For an arbitrary ring R, much less is known, and so far no general theory

of unipotent groups of units has emerged. Nevertheless, one can study the set

of unipotent units of R, and try to see to what extent this set would impact on

the structure of the ring R. The work of Diesl [Di] on nil-clean rings (rings in

which every element is the sum of an idempotent and a nilpotent element) has
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led Cǎlugǎreanu [Ca] to define the following interesting notion: a ring R is

called a UU ring if all units of R are unipotent. For instance, reduced UU rings

are precisely the rings with trivial unit groups. Obvious examples of these include

for instance all Boolean rings, and all commutative and noncommutative free

algebras over F2 (the field of two elements). Non-reduced examples, on the other

hand, include Z/2tZ and F2[x]/(xt) (where t ≥ 2). Also, Cǎlugǎreanu has

shown in [Ca, 2.2] that, if a commutative ring R is UU, then so is any polynomial

ring over R (in any number of commuting variables). Finally, Diesl has proved

in [Ca, 3.11] that R is a strongly nil-clean ring (in the sense that every element

of R is the sum of an idempotent and a nilpotent element which commute) if and

only if R is a UU ring that is strongly π-regular (defined by the property that

the chain aR ⊇ a2R ⊇ · · · stabilizes for every a ∈ R ).1 Various other examples

of UU rings will be given later in Section 2.

In this paper, we prove two principal results about UU rings. The first result

below shows that the UU condition on a ring R amounts to a characteristic

condition on R along with a group-theoretic condition on U(R), as follows.

Theorem A. A ring R is a UU ring if and only if char (R) = 2t for some

integer t and U(R) is a (possibly infinite) 2-group. Such a ring R has a finite

nilpotence index if and only if its unit group U(R) has a finite exponent.

In general, of course, we do not expect that the UU assumption on a ring R

would lead to a structural determination of R itself. (The case of a trivial unit

group is a case in point.) However, if we turn our attention to the class of ex-

change rings in the sense of Warfield [Wa] (and Nicholson [Ni2]), the situation

becomes much more amenable. In fact, the following second main result in this

paper “identifies” the exchange UU rings with Diesl’s strongly nil-clean rings

in [Di], and recovers for these rings a simple structural characterization proved

first by Hirano–Tominaga–Yaqub in [HTY], and later by Koşan–Wang–

Zhou in [KWZ].

Theorem B. A ring R is an exchange UU ring if and only if R is a strongly

nil-clean ring, if and only if rad (R) (the Jacobson radical of R ) is a nil ideal

and R/rad (R) is a Boolean ring.

In particular, R is a semiprimitive exchange UU ring (or a semiprimitive

strongly nil-clean ring) if and only if R is a Boolean ring. Indeed, our proof of

Theorem B rests squarely on proving it first in this special semiprimitive case.

1This result of Diesl will be re-proved independently in Section 4; see Theorem 4.3.
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The many interesting connections between Theorem B and various other results

in the literature will be explained in the proof of Theorem 4.3.

Before proving the two theorems above, we devote Section 2 to developing a

number of basic facts on UU rings, some of which are improved forms of the results

of Cǎlugǎreanu in [Ca]. For the convenience of the reader, however, all results

in Section 2 are stated and proved in an entirely self-contained manner. In the

two remaining sections, Theorem A and Theorem B will be proved (respectively,

in (3.4) and (4.3)) along with an assortment of other results on the notions of

unipotent units, UU rings, and (strongly) nil-clean rings.

The notations and terminology introduced above will be used consistently in

the rest of this work. At a few places, to make connections to other papers in

the literature, we will also invoke the basic notions of clean rings, strongly clean

rings, and uniquely clean rings. These classes of rings were defined in [Ni2], [Ni3],

and [NZ] respectively. Other standard notations and terminology in ring theory

can be found in [La]. Henceforth, we will use the widely accepted shorthand “iff”

for “if and only if” in the text.

2. Basic properties of UU rings

In this section, we prove a number of useful properties of UU rings. To begin

with, we have the three facts below whose routine proofs will be left as exercises.

(2.1) A subdirect product of finitely many UU rings is a UU ring.

(2.2) A direct product R1 × · · · ×Rn is UU iff each Ri is UU.

(2.3) If R is a UU ring and S is a factor ring of R such that units of S lift to

units of R, then S is also a UU ring. [Thus, for instance, if R is a UU ring of

stable range one in the sense of Bass [Ba] (see also [Va]), so is every factor ring

of R.]

We come now to several results which require some verifications. The first

two parts of the following theorem were first proved by Diesl (in [Di, (3.15)–

(3.16)]) in the case where “UU” is replaced by “nil-clean”; here we have the

complete analogues for the “UU” case.

Theorem 2.4. (1) For any nil ideal I ⊆ R, R is UU iff R/I is UU.

(2) A ring R is UU iff J := rad (R) is nil and R/J is UU.

(3) A commutative ring R is UU iff J = rad (R) is nil and U(R/J) = {1}. In

this case, if R 6= 0, the units of R generate a local ring J ∪ (1 + J) in R, which

contains all local subrings of R.
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Proof. (1) The “only if” part follows from (2.3) since we have here I ⊆
rad (R), which implies that U(R) → U(R/I) is surjective. For the “if” part,

assume that R/I is UU. For any u ∈ U(R), (u − 1) + I ∈ R/I is nilpotent.

Since I is nil, 1− u ∈ R is also nilpotent. This shows that R is UU.

(2) The “if” part of (2) follows from the “if” part of (1). For the “only if” part

of (2), assume R is UU. Since units of R := R/J lift to units of R, (2.3) shows

again that R is UU. Next, from 1+J ⊆ U(R) = 1+nil (R), we have J ⊆ nil (R),

so J is a nil ideal.

(3) The “if” part is clear from (2), since U(R/J) = {1} certainly implies that

R/J is UU. Conversely, if R is commutative and UU, then J = rad (R) being

nil yields J = nil (R). Since U(R) = 1 + nil (R) = 1 + J , we have clearly

U(R/J) = {1}. In particular, char (R/J) = 2, so 2 ∈ J . This finally implies

that S := J ∪ (1 + J) is a local ring (if R 6= 0). Recalling that any local ring is

generated by its units,2 it follows that S is the subring generated by U(R), and

that any local subring of R is contained in S. �

Example 2.5. If R is a commutative UU ring, we have observed in (3) above

that rad (R) = nil (R). However, if R is a general UU ring, rad (R) ⊆ nil (R)

may be a strict inclusion. Such a UU ring R, constructed by G. Bergman, is

presented here with his kind permission. Let R be the F2-algebra generated

by x, y with the single relation x2 = 0. Using his result on coproducts from

[Be, Corollary 2.16], Bergman showed that U(R) = 1 + F2x + xRx. Since

(F2x + xRx)2 = 0, we have F2x + xRx ⊆ nil (R), so R is a UU ring. For any

nonzero r ∈ R, it is easy to see that 1 + yry /∈ 1 + F2x + xRx. Therefore,

rad (R) = {0}, which is properly contained in the set nil (R).

In (2.6) and (2.7) below, we revisit a few key properties of UU rings obtained

by Cǎlugǎreanu [Ca], with somewhat simplified proofs.

Theorem 2.6. For any UU ring R, the following hold.

(1) 2 ∈ rad (R), and char (R) = 2t for some integer t ≥ 0 .3

(2) For any idempotent e ∈ R, the corner ring eR e is a UU ring.

(3) Any (unital) subring of R is a UU ring.

Proof. (1) Since R is UU, −1 = 1 + a for some a ∈ nil (R). Thus,

2 ∈ nil (R), and so 1 + 2R ∈ 1 + nil (R) ⊆ U(R). This implies that 2 ∈ rad (R)

by [La: (4.1)], and now Theorem 2.4(2) shows that 2t = 0 ∈ R for some t ≥ 0.

2Indeed, any element in a local ring is either a unit, or the sum of 1 and a unit.
3Here, we use the convention that the zero ring has characteristic 1.



Rings with unipotent units 453

(2) Let u ∈ U(eR e) with inverse v. Then u + (1 − e) ∈ U(R) with inverse

v + (1 − e), so u + (1 − e) = 1 + a for some a ∈ nil (R). Thus a = u − e ∈
eR e∩nil (R) ⊆ nil (eR e). We have therefore u = e+a, which is a unipotent unit

in eR e.

(3) For any subring S ⊆ R and any u ∈ U(S), we have u ∈ U(R), so 1 − u ∈
nil (R) ∩ S ⊆ nil (S). Thus, u ∈ 1 + nil (S), which checks that S is also a

UU ring. �

Theorem 2.7. For any ring S 6= 0 and any integer n ≥ 2, Mn(S) is not

a UU ring.

Proof. Since M2(S) is isomorphic to a corner ring of Mn(S) (for n ≥ 2),

it suffices to show that M2(S) is not a UU ring by virtue of Theorem 2.6(2).

Consider the matrix U =

(
0 1
1 1

)
∈ GL2(S). Since I−U =

(
1 −1
−1 0

)
∈ GL2(S)

too, it cannot be nilpotent. This means that U is not unipotent, so M2(S) is

indeed not a UU ring. �

From Theorem 2.7 above, we see that if R is a ring having an idempotent e

such that eR e and (1−e)R (1−e) are both (commutative) UU, it does not follow

that R itself is UU. This is in sharp contrast with the cases of exchange rings

and clean rings where positive results were obtained, respectively, in [Ni2: (2.6)]

and [HN: p. 2590].

Our next result gives a complete description of all UU rings that are semisim-

ple, semilocal, or local. (The local case was first handled by Cǎlugǎreanu in

[Ca: (2.6)].)

Theorem 2.8. (1) A semisimple ring R is UU iff R ∼= F2 × · · · × F2.

(2) A semilocal ring R is UU iff rad (R) is a nil ideal and R/rad (R) ∼= F2 ×
· · · × F2. In this case, R is automatically a semiperfect ring.

(3) A local ring (R,m) is UU iff m is a nil ideal and R/m ∼= F2.

Proof. (1) This follows from the Wedderburn–Artin theorem [La: (3.5)],

upon applying (2.2), Theorem 2.7, and the easy fact that a division ring D is

a UU ring iff D ∼= F2.

(2) The “if’ part is clear from Theorem 2.4(1). The “only if” part follows from

Theorem 2.4(2) and part (1) above, since a semilocal ring R is defined (e.g. in

[La: (20.1)]) by the condition that R/rad (R) is semisimple. Finally, if R is

semilocal and UU, then rad (R) being a nil ideal implies that idempotents of
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R/rad (R) can be lifted to idempotents in R by [La: (21.28)], so R is a semiper-

fect ring.

(3) follows easily by specializing the first conclusion in (2) to the case of local

rings. �

We note in passing that Theorem B stated in the Introduction is essentially

the extension of part (2) above from the case of semilocal UU rings to the case of

exchange UU rings.4 As for part (3), we see that R1 = Z/2tZ is a commutative

local UU ring with char (R1) = 2t. However, the infinite direct product R2 =∏∞
t=1 Z/2tZ is not UU, since the unit u = (1,−1,−1, . . . ) ∈ R is not in 1 +

nil (R).

Turning our attention now to more general rings, the following result gives

some quick noncommutative examples of UU rings (starting from any UU ring).

Theorem 2.9. Let Tn be the ring of n× n upper triangular matrices over

a ring R, where n ≥ 1 is a fixed integer. Then R is a UU ring iff Tn is a

UU ring.

Proof. Let I = {(aij) ∈ Tn : all aii = 0}. This is a nil ideal in Tn,

with Tn/I ∼= Rn. Therefore, the desired result follows from (2.2) and Theorem

2.4(1). �

Again, the theorem above is a complete UU ring analogue of Diesl’s corre-

sponding result [Di: (4.1)] for nil-clean and strongly nil-clean rings.

We close this section with another quick observation on the behavior of unipo-

tent units under the formation of Jacobson pairs. Recall that two elements 1−ab
and 1− ba in a ring R (with a, b ∈ R) are said to be a Jacobson pair in R.

Proposition 2.10. If (u, v) = (1− ab, 1− ba) form a Jacobson pair in R,

then u is a unipotent unit of R iff so is v.

Proof. It suffices to prove the “only if” part, so assume that u = 1 − ab
is a unipotent unit. This implies that (ab)n = 0 for some integer n. But then

(ba)n+1 = b (ab)na = 0, so v = 1− ba is also a unipotent unit. �

4In fact, semiperfect rings are exactly the orthogonally finite exchange rings, according to a

well-known theorem of Camillo and Yu in [CY].
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3. Some characterizations of UU rings

In classical ring theory, there is a “circle operation” on any ring (R,+,×)

defined by a◦b := a+b−ab which makes R into a monoid with identity element 0.

Moreover, the “Jacobson map” ε : (R, ◦)→ (R,×) defined by ε(a) = 1− a is a

monoid isomorphism, sending 0 to 1, and mapping the set nil (R) bijectively onto

the set of unipotent units of R. (See, for instance, Jacobson’s book [Ja: p. 8].)

In the case where R is a commutative ring, it is easy to check that (nil (R), ◦)
is a group (with identity 0), and that ε maps this group isomorphically onto

the group of unipotent units of R. However, if R is an arbitrary ring, then in

most cases the set nil (R) is no longer closed under the circle operation, and

the unipotent units may not form a subgroup of U(R). For instance, for the

matrix units E12, E21 ∈ nil
(
M2(Z)

)
, we have E12 ◦E21 =

(
−1 1

1 0

)
which is not

nilpotent, and (I2 − E12) (I2 − E21) = I2 − E12 ◦ E21 =

(
2 −1
−1 1

)
which is not

unipotent.

The following proposition provides the first conceptual characterization of

a UU ring in terms of the circle operation.

Proposition 3.1. A ring R is a UU ring iff nil (R) is a subgroup of the

monoid (R, ◦) (with a common identity element 0) and the map ε : (nil (R), ◦)→
(U(R),×) is a group isomorphism.

Proof. To begin with, as long as the map ε : nil (R)→ U(R) is surjective,

R is (by definition) a UU ring. Conversely, let R be a UU ring, and let a, a′ ∈
nil (R). Then (1−a) (1−a′) ∈ U(R). Since R is UU, we have 1−(1−a) (1−a′) ∈
nil (R), which amounts to a ◦ a′ ∈ nil (R), with ε(a ◦ a′) = ε(a) ε(a′). Thus, the

bijective map ε : (nil (R), ◦)→ (U(R),×) is a monoid isomorphism, and hence a

group isomorphism. �

Next, we come to Theorem 3.2 below, the proof of which consists of an ex-

ploitation of the interplay between the three binary operations “+”, “×”, and “◦”
on the ring R. We thank D. Khurana for pointing out that, without the quan-

titative information, the special case of part (B) of this result for prime-power

characteristic was contained in a “Test-Exercise” T1.3 in the “Algebra” notes of

D. P. Patil [Pa].

Theorem 3.2. Let R be a ring with char (R) = m <∞.

(A) If a ∈ R is such that as+1 = 0 for some integer s ≥ 0, then (1− a)m
s

= 1.
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(B) If a unit u ∈ R is unipotent, then um
s

= 1 for some integer s. The converse

is true if m is a power of a prime, but is not true in general.

Proof. (A) Let G be the additive subgroup of R generated by

{a, a2, . . . , as}. Then (G,+) is a factor group of (Zm)s, so |G| divides ms.

Next, observe that G ⊆ nil (R), and that (G, ◦) is a submonoid of (R, ◦) with

identity 0. Since the map ε embeds (G, ◦) into the group (U(R),×), (G, ◦) is a

cancellation monoid. As |G| <∞, (G, ◦) is a group. In particular, a◦ · · · ◦a = 0

if the number of “factors” is |G|, or any multiple thereof. Applying the Jacobson

map ε, we conclude that (1− a)m
s

= 1.

(B) The first conclusion in (B) follows by applying (A) to a := 1−u. Conversely,

assume that m = pt for some prime p, and consider any u ∈ R with um
s

= 1

for some integer s. By Frobenius’ Law (applied to R/pR),

(u− 1) pts

≡ up
ts

− 1 ≡ ums

− 1 ≡ 0 (mod pR).

Since pR is a nil ideal, we have u − 1 ∈ nil (R), so u is unipotent. To see that

this converse part may fail if m is not a prime power, let R = M2

(
Z6

)
, with

char (R) = 6. We check easily that the unit u =

(
1 1
−1 0

)
satisfies u6 = 1 (over

any ground ring). However, u − 1 =

(
0 1
−1 −1

)
∈ U(R) is not nilpotent, so the

unit u is not unipotent. �

To make the quantitative information in the above theorem more explicit

and more precise, we state the following.

Corollary 3.3. Let R be a ring with char (R) = m <∞.

(1) If R has nilpotence index s+1 <∞ (that is, as+1 = 0 for every a ∈ nil (R) ),

then any unipotent unit of R has multiplicative order dividing ms.

(2) If the multiplicative orders of all unipotent units in R divide a fixed integer

n, then R has nilpotence index ≤ mn.

Proof. (1) is clear from Theorem 3.2(A) (by fixing s and varying a ∈
nil (R)). To prove (2), assume that the integer n exists. For any a ∈ nil (R), we

have then (1 − a)n = 1. Since char (R) = m < ∞, S := Z · 1 ⊆ R is a subring

of m elements. Therefore, the fact that an ∈ S + Sa+ · · ·+ San−1 implies that

the unital ring T := S [a] has at most mn elements. As a is nilpotent in T , it

follows easily (by considering the descending chain T ⊇ aT ⊇ a2T ⊇ · · · ) that

am
n

= 0, soR has nilpotence index ≤ mn. �
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In the rest of this paper, the term “2-group” means a possibly infinite 2-

group. Using this notion, we can now prove our second characterization theorem

for UU rings in part (1) below, with a supplement in part (2). The proof is short

since most of the needed work was already done in the verification of Theorem 3.2

and Corollary 3.3.

Theorem 3.4. (1) A ring R is a UU ring iff char (R) = 2t (for some

integer t ≥ 0 ) and U(R) is a 2-group.

(2) Let R be a UU ring, with char (R) = 2t. If R has nilpotence index s+1 <∞,

then U(R) has exponent dividing 2ts. Conversely, if U(R) has finite exponent n,

then R has nilpotence index ≤ 2tn.

Proof. To prove (1), first assume that char (R) = 2t and U(R) is a 2-

group. For any u ∈ U(R), we have u2
ts

= 1 for some s. The “converse” part of

(B) in Theorem 3.2 shows that u is unipotent, so R is a UU ring. Next, assume

that R is a UU ring. Then char (R) = 2t (for some t) by Theorem 2.6(1). For

any u ∈ U(R), Theorem 3.2(B) shows that u2
ts

= 1 for some integer s. Thus,

U(R) is a 2-group. Finally, (2) follows from Corollary 3.3 (applied to the case of

2-power characteristic). �

Remark 3.5. (A) For part (2) above, better bounds can be gotten by ad hoc

methods in some special cases. For instance, if U(R) has exponent ≤ 2, then R

has nilpotence index ≤ 3 (even without assuming R to be UU). Indeed, for any

a ∈ nil (R), we have by assumption (1 − a)2 = 1; hence a2 = 2a. Replacing a

by −a gives a2 = −2a, so 4a = 0. It follows that a3 = 2a2 = 4a = 0. On

the other hand, if a UU ring R has nilpotence index ≤ 3, then 8 = 0 ∈ R,

so for any a ∈ nil (R), we have 0 = (2 + a)3 = 4a + 6a2. This implies that

(1 + a)4 = 1 + 4a+ 6a2 = 1, so U(R) has exponent dividing 4.

(B) In general, a UU ring may not have a finite nilpotence index. For instance,

the commutative local ring generated over F2 by x2, x3, . . . , with the relations

xii = 0 for all i ≥ 2 is such an example.

(C) In Theorem 3.4(1), the condition that U(R) is a 2-group alone need not imply

that R is UU. The ring Z and the fields F5 and F9 are obvious examples. We

note also that, for the “only if” part of Theorem 3.4(1) to hold, it is essential

that the ring R itself is assumed to be UU. In general, if H ⊆ U(R) is just a

multiplicative group of unipotent units, it need not follow that H is a 2-group.

For instance, if R = M2(Z) and H is the unipotent group

(
1 Z
0 1

)
⊆ GL2(Z),

then every non-identity element of H has infinite order.



458 Peter Vassilev Danchev and Tsit-Yuen Lam

The following easy consequence of Theorem 3.4(1) will prove to be useful

later toward the end of Section 4. (See the proof of Corollary 4.8.)

Corollary 3.6. A nil-clean ring R is a UU ring iff U(R) is a 2-group.

Proof. By [Di: (3.14)], char (R) = 2t for some t, so Theorem 3.4(1) applies.

�

The last two results in this section are motivated by the fact that, although

nil-clean rings are clean by [Di: (1.4)], a nil-clean element in a ring need not

be clean according to [AC]. In [Ca: (2.4)], however, Cǎlugǎreanu pointed out

that a UU ring is clean iff it is nil-clean. Theorem 3.7 below, due to A. Diesl,

extends Cǎlugǎreanu’s ring-theoretic statement to two element-wise statements.

We thank A. Diesl and P. P. Nielsen for showing us the proof of the following

result (as well as its consequence (3.11)).

Theorem 3.7. For any UU ring R, the following hold.

(1) An element a ∈ R is clean iff it is nil-clean.

(2) An element a ∈ R is strongly clean iff it is strongly nil-clean. In this case,

a is, in fact, uniquely strongly clean in the sense of Chen, Wang and Zhou

[CWZ].

Proof. (1) First assume a ∈ R is clean, say a = e + u where e = e2 and

u ∈ U(R). Writing u = 1 + b where b ∈ nil (R), we have

a = e+ 1 + b = (1− e) + (2e+ b). (3.8)

In R := R/2R, 2e+ b = b is a nilpotent. Since 2 ∈ nil (R) too (by Theo-

rem 2.6(1)), this shows that 2e + b ∈ nil (R), and so (3.8) above implies that a

is nil-clean. Conversely, if a ∈ R is nil-clean, say a = f + b where f = f2 and

b ∈ nil (R), then

a = (1− f) + (b− 1 + 2f). (3.9)

In R = R/2R again, b− 1 + 2f = b− 1 is a unit. As 2R ⊆ rad (R) (by Theo-

rem 2.6(1)), we have in fact b− 1 + 2f ∈ U(R), so (3.9) implies that a is clean.

(2) The analogue of (1) in the “strong” case can be drawn from the same ar-

guments as above, upon adding a commuting condition eu = ue, or fb = bf .

Finally, if a = e + u = f + v are two strongly clean decompositions for an

element a ∈ R, the fact that R is UU implies that

a− 1 = e+ (u− 1) = f + (v − 1) (3.10)
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are two strongly nil-clean decompositions for a − 1. By the uniqueness of a

strongly nil-clean decomposition for any ring element (see [HTY: Theorem 3], or

[Di: Corollary 3.8]), we have e = f , and hence u = v. This shows that a ∈ R is

(automatically) uniquely strongly clean. �

The theorem above leads to a third characterization of UU rings (part (1)

below) that is less direct but easier to prove than Theorem 3.4(1).

Corollary 3.11. (1) A ring R is a UU ring iff strongly clean elements

in R are strongly nil-clean.

(2) Any strongly nil-clean ring is UU and uniquely strongly clean in the sense

of [CWZ].

Proof. (1) The “only if” part follows from Theorem 3.7(2). For the “if”

part, assume that strongly clean elements in R are strongly nil-clean. In partic-

ular, all units are strongly nil-clean. According to [Di: (3.10)], this is tantamount

to saying that all units are unipotent. Thus, R is a UU ring.

(2) Let R be any strongly nil-clean ring. By part (1) above, R is a UU ring.

Thus, the last statement in Theorem 3.7(2) shows that R is uniquely strongly

clean. �

4. Exchange UU rings and strongly nil-clean rings

In this section, we come to our second main result, which proves the equiva-

lence of exchange UU rings and Diesl’s strongly nil-clean rings, and recovers for

them a sharp structural characterization obtained in [HTY] and [KWZ]. We will

do this first in the semiprimitive case, for which the following result shows that

“exchange UU” boils down to “Boolean”, and therefore also to “uniquely clean”

as per the earlier results of Nicholson and Zhou in [NZ]. This result will then

be used later (in Theorem 4.3) to derive the equivalence of exchange UU rings

and strongly nil-clean rings in general.

Theorem 4.1. For any ring R, the following statements are equivalent :

(1) R is uniquely clean and semiprimitive.

(2) R is clean, char (R) = 2, and U(R) = {1}.
(3) R is a Boolean ring.

(4) R is regular and uniquely clean.

(5) R is a regular UU ring.

(6) R is a semiprimitive exchange UU ring.
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Proof. The equivalence of the first four statements is due to Nicholson

and Zhou (see [NZ: Theorem 19]), and (3) ⇒ (5) is clear. Next, (5) ⇒ (6)

follows from the standard fact that a regular ring is a semiprimitive exchange

ring. We can now complete the proof with the following nontrivial implication.

(6) ⇒ (3). Assuming (6), we first check that nil (R) = {0}. If not, then there

would exist a nonzero a ∈ R with a2 = 0. Since R is an I0-ring 5 (in the sense of

Nicholson [Ni1]) and rad (R) = 0, a classical result Levitzki [Le: Theorem 2.1]

implies that R has a nonzero corner ring eR e ∼= M2(T ) for some (nonzero)

ring T . (For an alternative treatment of Levitzki’s result needed here, see Ja-

cobson’s book [Ja: (X.11.1)].) By Theorem 2.6(2), eR e ∼= M2(T ) is a UU ring,

which contradicts Theorem 2.7. Since nil (R) = {0}, R is now a reduced ex-

change ring, with U(R) = 1 + nil (R) = {1}. In particular, R is an abelian ring,

and therefore a clean ring by [Ni2]. For any r ∈ R, r+ 1 being clean means that

r + 1 = e + u where e = e2 and u ∈ U(R). Therefore, r + 1 = e + 1, and so

r = e, proving that R is a Boolean ring. �

Corollary 4.2. An exchange ring R has a trivial unit group iff it is Boolean.

Proof. It suffices to prove the “only if” part. For this, assume that U(R) =

{1}. Clearly, R is a UU ring, and 1 + rad (R) ⊆ U(R) = {1} implies that

rad (R) = {0}. Applying (6) ⇒ (3) in Theorem 4.1, we see that R is a Boolean

ring. �

Since the class of exchange rings is quite large, Corollary 4.2 applies to many

rings, including for instance all semiperfect rings (such as left or right artinian

rings), and all π-regular rings (such as algebraic algebras over fields). The special

case of Corollary 4.2 for finite rings was recently noted by R. Coleman in [Co].

Corollary 4.2 also implies that, if all (von Neumann) regular elements of an ex-

change ring R are idempotents, then R is Boolean. This fact has been pointed

out before by an anonymous referee of a paper of Chen and Li; see the proof of

[CL: Theorem 8].

By extending Theorem 4.1 to the non-semiprimitive case, we can now prove

the following expanded version of the “Theorem B” in the Introduction. This

result identifies exchange UU rings precisely as the strongly nil-clean rings of

A. Diesl, and retrieves for the latter rings the very simple structural characteri-

zation (5) below that was proved first in [HTY], and later in [KZW]. Note that

the interesting equivalence (4) ⇔ (5) was also proved in the commutative case

in [Di: (3.20)].

5An I0-ring is sometimes also referred to as a “semipotent ring”.
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Theorem 4.3. For any ring R, the following statements are equivalent :

(1) R is an exchange UU ring.

(2) R is a clean UU ring.

(3) R is a strongly π-regular UU ring.

(4) R is a strongly nil-clean ring.

(5) rad (R) is a nil ideal, and R/rad (R) is a Boolean ring.

Proof. For proper credits, (3)⇔ (4) is due to Diesl [Di: (3.11)], and (4)⇔
(5) was recently proved by Koşan, Wang and Zhou [KWZ: (2.6)] (assuming

an earlier result of Chen, Wang and Zhou [CWZ: Corollary 18]), although

the same equivalence was known earlier to Hirano, Tominaga and Yaqub in

[HTY: Theorem 3].6 Also, (1) ⇔ (5) is related to a result of Lee and Zhou in

[LZ: Theorem 13] (which characterized a somewhat broader class of rings). To

make our proof self-contained, we shall not assume any of the aforementioned

results. Instead, we give below a completely independent proof for Theorem 4.3

in the quickest possible way, using a single 5-cycle of implications (with even one

trivial step).

(2)⇒ (1). This is clear, as clean rings are exchange rings by [Ni2: (1.8)].

(1) ⇒ (5). Under (1), R := R/rad (R) remains an exchange ring by [Ni2: (1.4)].

Also, rad (R) is nil and R is UU by Theorem 2.4. Knowing now that R is a

semiprimitive exchange UU ring, Theorem 4.1 implies that R is a Boolean ring.

(5)⇒ (3). Assume (5). For any r ∈ R, we have r−r2 ∈ rad (R), so (r−r2)n = 0

for some n ≥ 1. By expansion, we have rn ∈ rn+1R∩Rrn+1, so R is strongly π-

regular. Now consider any u ∈ U(R). Then u = 1 ∈ R/rad (R) since R/rad (R)

is Boolean. Thus, 1−u ∈ rad (R) ⊆ nil (R), and so u ∈ 1 + nil (R), showing that

R is UU.

(3)⇒ (4). Under (3), R is strongly clean by [BM: Proposition 2.6] or [Ni3: The-

orem 1]. To show that R is strongly nil-clean, consider any a ∈ R. We can write

1 +a = e+u where e = e2, u ∈ U(R), and eu = ue. Thus, a = e+ (u− 1), with

u− 1 ∈ nil (R) (since R is UU). As e commutes with u− 1, this checks that R

is strongly nil-clean.

(4) ⇒ (2). This implication is already well covered by Corollary 3.11(2), but

the latter depended on [Di: (3.10)]. A self-contained proof of (4) ⇒ (2) is as

follows. Assuming (4), any u ∈ U(R) can be written in the form e + b where

e = e2, b ∈ nil (R), and eb = be. Then e = u − b = u (1 − u−1b) ∈ U(R) (since

6In [HTY], it was also proved that (5) is equivalent to “a− a2 ∈ nil (R) for every a ∈ R ”.
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u−1b ∈ nil (R)). Thus, e = 1, so u = 1 + b ∈ 1 + nil (R), showing that R is UU.

Finally, for any a ∈ R, we can write 1+a = e+ b as above. Then a = e− (1− b)
shows that a is clean. �

Remark 4.4. Somewhat surprisingly, in the general (possibly non-semiprim-

itive) case, the class of exchange UU rings in Theorem 4.3 is independent of

the class of the uniquely clean rings of Nicholson and Zhou in [NZ]. First, a

local ring (R,m) with R/m ∼= F2 is uniquely clean by [NZ: Theorem 15], but

m = rad (R) need not be a nil ideal, so R may fail to be a UU ring. Second, the

ring Tn of n×n upper triangular matrices over F2 is a UU ring as in Theorem 2.9,

but if n ≥ 2, Tn is not an abelian ring so it cannot be uniquely clean according

to Nicholson and Zhou [NZ: Lemma 4]. In summary, an exchange UU ring

is uniquely clean iff it is abelian, and a uniquely clean ring R is an exchange

UU ring iff rad (R) is nil. These claims can be easily checked by using the

characterizations of uniquely clean rings in [NZ: Theorem 20].

We record now some consequences of Theorem 4.3 which give further useful

information on the structure of an exchange UU ring (or a strongly nil-clean ring).

Corollary 4.5. For any exchange UU ring R, the following hold.

(A) rad (R) = nil (R).

(B) The center Z of R is a uniquely clean UU ring, with rad (Z) = Z∩ rad (R).

(C) Any factor ring of R is an exchange UU ring.

(D) Any nonzero idempotent e ∈ R is not a sum of two units in R ; that is, e is

not “2-good” in the terminology of Vámos [Va].

(E) If R 6= 0, U(R) generates a local ring rad (R) ∪ (1 + rad (R)) in R, which

contains all local subrings of R.

Proof. (A) Any a ∈ nil (R) maps to zero in R/rad (R) (since R/rad (R)

is a reduced ring by (5) of Theorem 4.3). Thus, we must have a ∈ rad (R), so

nil (R) = rad (R). (We note in passing that an ad hoc proof for (A) when R is

a strongly nil-clean ring has appeared earlier in Nielsen’s review [Ni] of Diesl’s

paper [Di].)

(B) Since R is a (strongly) π-regular (by Theorem 4.3), a classical result of

McCoy [MC: Theorem 1] implies that the center Z of R is π-regular, and

hence an exchange ring. Also, Z is a UU ring by Theorem 2.6(3), and it is

of course abelian. Thus, it follows from Remark 4.4 that Z is uniquely clean.7

7In fact, Z is also uniquely nil-clean, by an application of Theorem 5.9(5) of [Di].
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Finally, in view of Theorem 4.3, we have

rad (Z) = nil (Z) = Z ∩ nil (R) = Z ∩ rad (R).

(C) This follows from (1)⇔ (4) in Theorem 4.3, since any factor ring of a strongly

nil-clean ring is obviously also strongly nil-clean.

(D) The property (D) was first brought to light by Lee and Zhou in [LZ: The-

orem 13]. Here, we observe, more generally, that the property (D) holds for any

ring R for which R/rad (R) is Boolean. Indeed, if e ∈ U(R) + U(R), then

e maps to 1 + 1 = 0, so e ∈ rad (R). As is well known, this is possible only when

e = 0. (We leave it as an easy exercise to show that the property (D) also holds

in any abelian UU ring.)

(E) Since rad (R) = nil (R) and U(R/rad (R)) = {1}, the proof given earlier for

part (3) of Theorem 2.4 carries over verbatim to prove (E). �

Remark 4.6. The reason the above corollary is of interest is that it holds

for exchange UU rings, while without the UU assumption, the conclusions of the

Corollary largely do not hold. For instance, if R is an exchange ring (or even

a clean ring), its center may not be an exchange (or equivalently, clean) ring;

see [HKL] and [BR]. Also, if R is just a UU ring but not assumed to be an

exchange ring, then a factor ring of R may fail to be a UU ring. For instance,

any free F2-algebra F is UU, and a suitable choice of F will map onto M2(F2),

which is not UU by Theorem 2.7. Finally, we note that part (B) and part (C) of

Corollary 4.5 are formal analogues of results of Nicholson and Zhou on uniquely

clean rings [NZ], which showed that the uniquely clean property is preserved by

going down to the center and by passing to factor rings.

While clean rings are not nil-clean in general, we can draw the following

conclusion from Theorem 4.3 on (abelian) clean rings.

Corollary 4.7. (i) Let R be an abelian clean ring. Then R is nil-clean iff

all units of R are nil-clean.

(ii) Let R be a clean ring. Then R is strongly nil-clean iff all units of R are

strongly nil-clean.

Proof. (i) We need only prove the “if” part, so assume that all units of R

are nil-clean. For any u ∈ U(R), write u = e+ r where e2 = e and r ∈ nil (R).

Since e is central, we have ur = ru, so e = u− r ∈ U(R), and hence e = 1. This

shows that R is a UU ring. By (2) ⇒ (4) in Theorem 4.3, R is (strongly) nil-

clean. (We note incidentally that this conclusion can also be proved by a direct
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argument as that in Theorem 3.7 (1), not using (4.3); in fact, each element being

clean is the sum of a unipotent and an idempotent and hence of a nilpotent and

an idempotent, as required.)

(ii) In the notations above, since er = re, we have that ur = ru and thus the

same trick works. �

Remark 4.8. Although Corollary 4.7 can be established directly by using the

natural element-wise manipulation of (strongly) clean and (strongly) nil-clean ele-

ments, the next question seems to be reasonably difficult in general, because even

the sum of two nontrivial central idempotents need not be again an idempotent.

Problem 4.9. Does it follow that a clean ring is nil-clean iff every unit is

nil-clean?

The last consequence of Theorem 4.3 is the following result relating nil-clean

rings to strongly nil-clean rings in terms of the unit group U(R).

Corollary 4.10. A ring R is strongly nil-clean iff R is nil-clean and U(R)

is a 2-group.

Proof. If R is strongly nil-clean, of course it is nil-clean. And it is a UU ring

by Theorem 4.3, so Theorem 3.4(1) implies that U(R) is a 2-group. Conversely,

if R is nil-clean and U(R) is a 2-group, then R is a UU ring by Corollary 3.6. On

the other hand, the nil-clean ring R is clean by [Di: Proposition 3.4]. Applying

(2)⇒ (4) in Theorem 4.3 shows that R is strongly nil-clean, as desired. �

As a simple illustration for Corollary 4.10, consider a matrix ring R = Mn(S)

over a ring S. If S ∼= F2, R is known to be a nil-clean ring by [BCDM] or [KLZ].

However, as long as S 6= 0 and n ≥ 2, R has a unit diag (V, In−2) of order 3

for V =

(
0 1

−1 −1

)
. And indeed, we know (from either Theorem 2.7 or Theo-

rem 3.4(1)) that R is not a UU ring, and in particular not a strongly nil-clean

ring.
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[KWZ] T. Koşan, Z. Wang and Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure
Appl. Algebra 220 (2016), 633–646.

[La] T. Y. Lam, A First Course in Noncommutative Rings, Second Edition, Graduate Texts
in Math., Vol. 131, Springer-Verlag, Berlin – Heidelberg – New York, 2001.

[LZ] T.-K. Lee and Y. Zhou, A class of exchange rings, Glasgow Math. J. 50 (2008),
508–522.

[Le] J. Levitzki, On the structure of algebraic algebras and related rings,

Trans. Amer. Math. Soc. 74 (1953), 384–409.

[MC] N. McCoy, Generalized regular rings, Bull. Amer. Math. Soc. 45 (1939), 175–178.

[Ni1] W. K. Nicholson, I-rings, Trans. Amer. Math. Soc. 207 (1975), 361–373.



466 P. V. Danchev and T.-Y. Lam : Rings with unipotent units

[Ni2] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc.
229 (1977), 269–278.

[Ni3] W. K. Nicholson, Strongly clean rings and Fitting’s lemma, Comm. Algebra 27
(1999), 3583–3592.

[NZ] W. K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an

idempotent and a unit, Glasgow Math. J. 46 (2004), 227–236.

[Ni] P. P. Nielsen, Review ZBL 1296.16016.

[Pa] D. P. Patil, Basic Algebra, Indian Institute of Science, Bangalore, India, 2003.
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