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Abstract

It is well-known that satisfiability (and hence va-
lidity) in the minimal classical modal logic is a
PSPACE-complete problem. In this paper we
consider the satisfiability and validity problems
(here they are not dual, although mutually re-
ducible) for the minimal modal logic over a finite
Lukasiewicz chain, and show that they also are
PSPACE-complete. This result is also true when
adding either the Delta operator or truth constants
in the language, i.e. in all these cases it is PSPACE-
complete.

1 Introduction

Classical Modal Logics have been a matter of growing inter-
est in the last decades due to their role in the formalization
of several aspects of Computer Science. In particular, multi-
modal classical logics can be considered as a notational vari-
ant of basic Description Logic (DL) languages likeALC (see
[Baader and et al., 2003] and [Schild, 1991]), and so they play
an important role in the field of Knowledge Representation.

In recent years there have been efforts to generalize the
formalism of DLs to the many-valued and fuzzy case (see
[Hájek, 2005; Straccia, 2006; Bobillo and Straccia, 2008;
Cerami et al., 2010]), but no work has addressed, as long as
the authors know, the analysis of the computational complex-
ity ofALC Fuzzy Description Logics (FDLs) over a multiple
valued logic (either finite or infinite). A first step towards
an answer to the previous problem is the characterization of
the computational complexity of Fuzzy Modal Logics, since
Fuzzy Modal Logics correspond to ALC FDLs when there is
no knowledge base (neither TBox nor ABox).

In this paper we prove that deciding satisfiability (and the
same for validity and entailment) in a minimal finite-valued
Łukasiewicz Modal Logic is a PSPACE-complete problem.

In Section 2 we remind what are minimal n-valued
Łukasiewicz modal logics (for the sake of completeness
we also introduce the non-modal Lukasiewicz propositional
logic). Then, in Section 3 our main PSPACE completeness
theorem is stated and proved. The proof is split in two difer-
ent parts: one concerns being in PSPACE, and the other one
takes care of being PSPACE-hard. Finally, in Section 4 we

explore some further consequences of our result and some
future problems to be considered.

2 Preliminaries

In this Section we introduce the Łukasiewicz logics we are
going to deal with in our main theorem.

2.1 Propositional Łukasiewicz Logic (with Delta
Operator and Truth Constants )

Next we define what is the propositional non-modal logic we
deal with, the n-valued Łukasiewicz logic Łn, using as a gen-
eral framework the infinite-valued one Ł. The formulas of
all these Łukasiewicz logics are built from a countable set of
propositional variables V ar = {p, q, . . .} using the connec-
tives & (conjunction), → (implication) and ⊥ (falsity truth
constant).

In order to introduce the infinite-valued Łukasiewicz logic
Ł we start by considering the Łukasiewicz standard algebra
〈[0, 1], ∗,⇒, 0〉 defined by
• a binary operation ∗ called Łukasiewicz t-norm and de-

fined as a ∗ b := max{0, a+ b− 1}, for all a, b ∈ [0, 1],
• a binary operation⇒ called the residuum (of the t-norm
∗) and defined as a ⇒ b := min{1, 1 − a + b}, for all
a, b ∈ [0, 1].

A propositional evaluation is a homomorphism e from the
algebra of formulas into the previous algebra, i.e., a mapping
e from the set of formulas into [0, 1] such that
• e(ϕ&ψ) = e(ϕ) ∗ e(ψ),
• e(ϕ→ ψ) = e(ϕ)⇒ e(ψ),
• e(⊥) = 0.

A formula ϕ is said to be valid when it is evaluated to 1 in all
propositional evaluations; it is said to be m-satisfiable when
there is some propositional evaluation e such that e(ϕ) = m;
and it is said to be satisfiable when it is 1-satisfiable. Then,
the infinite-valued Łukasiewicz logic Ł is defined as the set
of valid formulas; and analogously, Łn is defined as the set
of formulas that are always evaluated to 1 in the subalgebra
defined over the universe Ln := {0, 1

n−1 ,
2

n−1 , . . . ,
n−2
n−1 , 1}.

In this framework it is common to introduce the connec-
tives ∧,∨,↔,¬,⊕ and
 at the syntactic level (the semantics
counterpart will be denoted, respectively, by ∧,∨,⇔,∼,�
and 1) as the following abbreviations:
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• ϕ ∧ ψ := ϕ&(ϕ→ ψ) [semantically, min(a, b)]
• ϕ ∨ ψ := (ϕ→ ψ)→ ψ [semantically, max(a, b)]
• ϕ↔ ψ := (ϕ→ ψ)&(ψ → ϕ)

• ¬ϕ := ϕ→ ⊥ [semantically, 1− a]
• ϕ⊕ ψ := ¬(¬ϕ&¬ψ) [semantically, min{1, a+ b}]
• 
 := ¬⊥ [semantically, 1].

Another abbreviation we will use is

• ϕi :=

i times︷ ︸︸ ︷
ϕ& . . .&ϕ [semantically, max{0, ia− (i− 1)}],

for every i ∈ N.
In the literature, there are several ways to expand all these

logics Ł and Łn. One way of expanding them is by adding a
unary operator Δ semantically interpreted as

• δa =

{
1, if a = 1

0, otherwise.

Another expansion of Łn considered in this paper is the one
obtained by adding n canonical truth constants, one truth con-
stant a for each a ∈ Ln; the truth constant a is semantically
interpreted as its canonical value a. We will use the three
names Łn,Δ, Łc

n and Łc
n,Δ to denote, respectively, each one

of these expansions (here c refers to the use of canonical con-
stants). It is worth saying that the decision problem for all
these propositional logics (i.e., the tautologicity problem) is
known to be coNP-complete, while its satisfiability problem
is NP-complete (see [Hájek, 1998]).

We point out that in the proof we will use the well known
fact that

(ϕ→ ψ)↔ (¬ψ → ¬ϕ) and ϕ↔ ¬¬ϕ
are valid formulas in propositional Łukasiewicz logic.

2.2 n-valued Łukasiewicz Modal Logic

Following the same pattern as in [Bou et al., ] next
we introduce the many-valued modal logics Λ(Fr,Łn),
Λ(Fr,Łn,Δ), Λ(Fr,Łc

n) and Λ(Fr,Łc
n,Δ) over all

Łukasiewicz frames.
Each one of these modal logics is defined by expanding its

propositional language with two unary modal operators � and
�. As usual the nesting degree deg(ϕ) of a modal formula ϕ
is defined as the maximum number of nested occurrences of
� and �. And the nesting degree deg(Σ) of a finite set Σ is
the maximum of {deg(σ) : σ ∈ Σ}.

A (many-valued) Kripke Łn-model (or simply, Kripke
model, when there is no ambiguity) is a triple M =
〈W,R, V 〉, where:

• the domain W is a set of elements (called possible
worlds),

• R :W ×W → Ln is an n-graded binary relation on W
(called the accessibility relation),

• V : V ar ×W → Ln is a function, called evaluation,
which maps every propositional variable p ∈ V ar and
possible world w ∈W to the set of truth values Ln.

The mapping V can be uniquely extended to one defined over
all pairs of formulas and possible worlds such that

• the function V (•, w) from formulas into Ln is a propo-
sitional evaluation,

• V (�ϕ,w) = max{R(w,w′) ∗ V (ϕ,w′) : w′ ∈W},
• V (�ϕ,w) = min{R(w,w′)⇒ V (ϕ,w′) : w′ ∈W},

for every formula ϕ and every w ∈W .
A modal formula ϕ is said to be modally valid when it is

evaluated to 1 in all Kripke models; it is said to be modallym-
satisfiable when there is some Kripke model and some world
w such that V (ϕ,w) = m; and it is said to be modally sat-
isfiable when it is 1-satisfiable. The logic Λ(Fr,Łn) is de-
fined as the set of its modal formulas that are modally valid;
and analogously we can define Λ(Fr,Łn,Δ), Λ(Fr,Łc

n) and
Λ(Fr,Łc

n,Δ) over all Łukasiewicz frames. Besides these sets
of valid formulas, we will consider, for each m ∈ Ln, the
sets Satm(Fr,Łn), Satm(Fr,Łn,Δ), etc. of modally m-
satisfiable formulas.

It is worth pointing out that for these modal logics (unlike
the general many-valued case, see [Bou et al., ]), the modal
operators are interdefinable by means of the modally valid
formulas

�ϕ↔ ¬�¬ϕ and �ϕ↔ ¬�¬ϕ.

Throughout the paper we will use both of them to ease the
reading, but will prove the inductive result just for �, because
the same results will straightforwardly work for � by means
of the above equivalences.

When the range of R is a subset of {0, 1} we will say
that the Kripke model is crisp. And the restriction of va-
lidity to crisp Kripke models allows us to define the logics
Λ(CFr,Łn), Λ(CFr,Łn,Δ), and so on; and the same for the
sets Satm(CFr,Łn), Satm(CFr,Łn,Δ), etc. In the case
of crisp Kripke models, it holds that the normality axiom
�(ϕ → ψ) → (�ϕ → �ψ) is modally valid; the same does
not hold for arbitrary Kripke models.

We remind that in [Bou et al., ] all these modal logics (not
just the ones based on crisp Kripke models) are explicitly
finitely axiomatized.

A fact that will be used later in the proof of Theorem 14 is
that by the definition of � as a maximum, it is obvious that

• if V (�p, w) = 1, then there is some w′ with
R(w,w′) = 1 such that V (p, w′) = 1.

This tells us that if a diamond is modally satisfiable, then we
can justify it without appealing to any intermediate value in
Ln \ {0, 1}.

3 Complexity of n-valued Łukasiewicz Modal

Logic

The aim of the present section is to study the computational
complexity of the modal logics introduced above.

Theorem 1. For every n ∈ N and every m ∈ Ln,

• the set of modally m-satisfiable formulas over Kripke
Łn-models is PSPACE-complete,

• the set of modally valid formulas over Kripke Łn-models
is PSPACE-complete.
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The same complexity result is attained when we add the Delta
operator and/or the canonical truth constants. And also we
get the same complexity when we only deal with crisp Kripke
models.

In the rest of this section we prove this last theorem. Since

• ϕ is modally valid iff ϕ ∨ a is not modally a-
satisfiable (where a is the penultimate element of Łn,
i.e., a = n−2

n−1 ), and

• ϕ is modally m-satisfiable iff m ↔ ϕ is modally
satisfiable,

it will be enough to prove PSPACE-completeness of the
modal satisfiability problems. It may seem that this trick
needs the use of canonical constants in the language, but
by McNaughton theorem (see [Cignoli et al., 2000, Corol-
lary 3.2.8], we can also reduce m-satisfiability to satisfiabil-
ity without the help of canonical constants; for example, we
notice that

• ϕ is modally 0.75-satisfiable, iff

• ϕ2 ↔ ¬(ϕ2) is modally satisfiable,

Thus, by the inclusion relationships among the sets of
modally satisfiable formulas it will be enough to prove that

• Sat1(Fr,Łc
n,Δ) and Sat1(CFr,Łc

n,Δ) are in PSPACE,

• Sat1(Fr,Łn) and Sat1(CFr,Łn) are PSPACE-hard.

Hence, we get that all sets introduced above in Section 2.2 are
PSPACE-complete.

3.1 Satisfiability is in PSPACE

We start giving a PSPACE algorithm for solving
Sat1(Fr,Łc

n,Δ), and later we will see that this algo-
rithm can be slightly modified to compute Sat1(CFr,Łc

n,Δ).
Our algorithm follows a similar approach to the one given in
[Blackburn et al., 2001, p. 383–388]. We stress the fact that
all formulas considered in this section may contain the Delta
operator and truth constants.

Definition 2. Let Σ be a set of modal formulas, and Sub(Σ)
be the set of its subformulas. We define the closure of Σ, in
symbols Cl(Σ), as the set

(Sub(Σ) ∪ {�¬σ : �σ ∈ Sub(Σ)} ∪ {�¬σ : �σ ∈ Sub(Σ)})+,

where the superscript + refers to the process of deleting all
occurrences of two consecutive negation symbols (i.e., ¬¬).
When Cl(Σ) = Σ we will say that Σ is closed.

Note that if Σ is finite, then so is Cl(Σ).

Definition 3. Let Σ be a closed set of modal formulas. We
define the sequence (Σ0,Σ1, . . . ,Σdeg(Σ)) by the recurrence

• Σ0 := Σ,

• Σr+1 := {ψ : �ψ ∈ Σr} ∪ {ψ : �ψ ∈ Σr}.
The family of modal levels of Σ is the set Σ◦ :=
{Σ0,Σ1, . . . ,Σdeg(Σ)}.

Note that, for every r, deg(Σr) ≤ deg(Σ)−r. In particular
deg(Σdeg(Σ)) = 0.

Definition 4. Let Σ be a closed set of formulas. A Hintikka
function over some Σr ∈ Σ◦ is a mapping H : Σr → Ln

such that

1. H is a homomorphism of non modal connectives (which
includes the Delta operator and truth constants),

2. H(�ψ) =∼ H(�¬ψ), for each �ψ ∈ Σr,

3. H(�ψ) =∼ H(�¬ψ), for each �ψ ∈ Σr.

It is said that H is an atom if there exists a Kripke model
M = 〈W,R, V 〉 and a world w ∈ W such that, for each
formula ψ ∈ Σ, it holds that H(ψ) = V (ψ,w).

Lemma 5. Let H : Σr → Ln and H ′ : Σr+1 → Ln be two
Hintikka functions, then:

min{H ′(ψ)⇒ H(�ψ) : �ψ ∈ Σr} =
= min{H(�ϑ)⇒ H ′(ϑ) : �ϑ ∈ Σr}.

Proof. For every formula �ψ ∈ Σr it is obvious that

H ′(ψ)⇒ H(�ψ) =∼ H(�ψ)⇒∼ H ′(ψ) =
= H(¬�ψ)⇒ H ′(¬ψ) = H(�¬ψ)⇒ H ′(¬ψ).

Then, using that �ψ ∈ Σr iff �¬ψ ∈ Σr (by Definition
2), we get that min{H ′(ψ) ⇒ H(�ψ) : �ψ ∈ Σr} =
min{H(�¬ψ) ⇒ H ′(¬ψ) : �¬ψ ∈ Σr}. From this fact,
it easily follows that min{H ′(ψ) ⇒ H(�ψ) : �ψ ∈ Σr} =
min{H(�ϑ)⇒ H ′(ϑ) : �ϑ ∈ Σr}.
Definition 6. Let H : Σr → Ln be a Hintikka function,
k ∈ Ln and �ψ ∈ Σr. We say that a Hintikka function
H ′ : Σr+1 → Ln is induced by �ψ and k-related to H (in
symbols, H ′ ∈ H�ψ,k) if the following conditions hold:

• H(�ψ) = k ∗H ′(ψ),
• for each �ϑ ∈ Σr, H(�ϑ) ≤ k ⇒ H ′(ϑ).

Lemma 7. Let Σ be a closed set of formulas, Σr ∈ Σ◦ andH
a Hintikka function over Σr. If H is an atom, then for every
�ψ ∈ Σr, there is some k ∈ Ln and some H ′ ∈ H�ψ,k such
that H ′ is an atom.

Proof. Let H be an atom over Σr and �ψ ∈ Σr. Then, by
Definition 4, there exist a Kripke model M = 〈W,R, V 〉 and
w ∈ W such that V (�ψ,w) = H(�ψ). Hence there ex-
ists w′ ∈ W such that V (�ψ,w) = R(w,w′) ∗ V (ψ,w′).
Let H ′ : Σr+1 → Ln be the Hintikka function defined
by H ′(ϕ) = V (ϕ,w′), for every formula ϕ ∈ Σr+1. It
is obvious that H ′ is an atom. Take k = R(w,w′), then
H(�ψ) = V (�ψ,w) = R(w,w′) ∗ V (ψ,w′) = k ∗H ′(ψ)
i.e., H and H ′ satisfy the first condition of Definition 6. On
the other hand, for each �ϑ ∈ Σr, we have that V (�ϑ,w) =
min{R(w,w′′) ⇒ V (ϑ,w′′) : w′′ ∈ W}, and hence
H(�ϑ) = V (�ϑ,w) ≤ R(w,w′) ⇒ V (ϑ,w′) = k ⇒
H ′(ϑ). So, there is k ∈ Ln such that H ′ ∈ H�ψ,k.

Definition 8. Let Σ be a finite closed set of formulas, H be
a Hintikka function over Σ0, and H be a family of Hintikka
functions with domains (denoted by dom) belonging to Σ◦.
We say thatH is a witness set generated by H on Σ when

1. H ∈ H,
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2. if I ∈ H and �ψ ∈ dom(I), then there is some k ∈ Ln

and some J ∈ I�ψ,k such that J ∈ H,

3. if J ∈ H and J �= H , then there are I0, . . . , Ir ∈ H
satisfying I0 = H , Ir = J , and for each 0 ≤ i < r,
there are a formula �ψ ∈ dom(Ii) and an element k ∈
Ln such that Ii+1 ∈ Ii�ψ,k.

Lemma 9. Let Σ be a finite closed set of formulas, and H be
a Hintikka function over Σ0 (i.e., Σ). Then, H is an atom iff
there is a witness set generated by H on Σ.

Proof. Let Σ be a finite closed set of formulas, and H a Hin-
tikka function over Σ0.
(⇒) We proceed by induction on the nesting degree of the set

dom(H).

(0) If deg(Σr) = 0 and H is an atom, then H = {H}
is a witness set generated by H on Σ0.

(d) Let deg(Σr) = d and H be an atom over Σr.
Suppose, by inductive hypothesis, that, for each
Σs ∈ Σ◦ such that deg(Σs) < d and each Hin-
tikka function H ′ over Σs, it holds that, if H ′ is an
atom, then there is a witness set generated byH ′ on
Σs. Since H is an atom over Σr, then, by Lemma
7, for each �ψ ∈ Σr there exist k ∈ Ln and an
atom Iψ ∈ H�ψ,k over Σr+1. Since the degree
of Σr+1 < d, then, by inductive hypothesis, each
atom Iψ generates a witness set Iψ on Σr+1. So,
the set

H = {H} ∪
⋃

�ψ∈Σr

Iψ

is a witness set generated by H on Σ.

(⇐) Suppose now that there is a witness set H generated
by H on Σ, then we have to show that there exists a
model which satisfies H . So, define the model M =
〈W,R, V 〉, where:

– W = H,

– R(I, I ′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min{I ′(χ)⇒ I(�χ) : �χ ∈ dom(I)},
if I ′ ∈ I�ψ,k for some k ∈ Lc

n and
some �ψ ∈ dom(I)

0, otherwise,
– for each variable p ∈ V ar and I ∈ H, let
V (p, I) = I(p).

On the one hand, since for each I ∈ H, dom(I) con-
tains a finite number of formulas of the form �ψ, then,
by Definition 8, each element of the model has a finite
number of R-successors. On the other hand, whenever
I ′ ∈ I�ψ,k, then deg(dom(I ′)) < deg(dom(I)) and,
therefore, the depth of the model is finite as well (it is
indeed equal to deg(Σ)).
To end the proof, we have to show that, for every formula
ϕ ∈ Σ, it holds that V (ϕ,H) = H(ϕ). In order to
achieve this result we will prove by induction that for
each I ∈ W , it holds that V (ϕ, I) = I(ϕ). So, let
I ∈W and ϕ ∈ dom(I), then:

– If ϕ = p is a propositional variable, then, by defi-
nition of V , we have that V (p, I) = I(p).

– If ϕ is a propositional combination of variables or
modal formulas, since H is a Hintikka function, by
Definition 4 it holds that V (ϕ,H) = H(ϕ).

– Let ϕ = �ψ and suppose, by inductive hypothe-
sis, that for each J ∈W such that deg(dom(J)) <
deg(dom(I)) and for each formula χ, it holds that
V (χ, J) = J(χ). By Definitions 6 and 8, we
have that there exists J ∈ I�ψ,k, for a k ∈ Ln,
such that, for each �ϑ ∈ dom(I), we have that
I(�ϑ) ≤ k ⇒ J(ϑ), then, by residuation, k ≤
I(�ϑ) ⇒ J(ϑ), for each �ϑ ∈ dom(I) and,
therefore, by Lemma 5 and the construction of M,
k ≤ min{I(�ϑ) ⇒ J(ϑ) : �ϑ ∈ dom(I)} =
min{J(χ)⇒ I(�χ) : �χ ∈ dom(I)} = R(I, J).
So, by Definition 6 and the inductive hypothesis,
I(�ψ) = k ∗ J(ψ) ≤ R(I, J) ∗ J(ψ) = R(I, J) ∗
V (ψ, J) ≤ max{R(I, I ′) ∗ V (ψ, I ′) : I ′ ∈ W} =
V (�ψ, I). On the other hand, let I ′ ∈ W be such
that I ′ ∈ I�χ,k′ for a �χ ∈ dom(I) and k′ ∈ Ln,
then, by the construction of M and inductive hy-
pothesis, I(�ψ) ≥ I(�ψ) ∧ I ′(ψ) = (I ′(ψ) ⇒
I(�ψ)) ∗ I ′(ψ) ≥ min{I ′(ϑ) ⇒ I(�ϑ) : �ϑ ∈
dom(I)} ∗ I ′(ψ) = R(I, I ′) ∗ V (ψ, I ′). Hence
I(�ψ) ≥ max{R(I, I ′) ∗ V (ψ, I ′) : I ′ ∈ W} =
V (�ψ, I). So, V (�ψ, I) = I(ψ).

So, for each formula ϕ, V (ϕ,H) = H(ϕ) and, then, H
is an atom over Σ.

Next we consider the algorithm Witness(H,Σ) given in
Figure 1. This algorithm returns a boolean, and is very close
to the one given in [Blackburn et al., 2001] for the minimal
classical modal logic.

if H is a Hintikka function and Σ = dom(H)
and for each subformula �ψ ∈ dom(H) there are
k ∈ Ln and a Hintikka function I ∈ H�ψ,k such that
Witness(I, dom(I))

then
return true

else
return false

end if

Figure 1: The Algorithm Witness(H,Σ)

Lemma 10. Let Σ be a finite closed set of formulas, and H :
Σ → Ln. Then, Witness(H,Σ) returns true if and only if
H is a Hintikka function over Σ that generates a witness set
in Σ.

Proof. Let Σ be a finite closed set of formulas, and H : Σ→
Ln.

(⇒) Suppose that Witness(H,Σ) returns true, we proceed
by induction on the degree of Σ.

(0) If deg(Σ) = 0 and Witness(H,Σ) returns true
then, H is a Hintikka function over Σ, and hence
H = {H} is a witness set generated by H on Σ.
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(d) Let deg(Σ) = d and suppose, by inductive hy-
pothesis, that for each set Σ′ of formulas such that
Σ′ ⊆ Σ and deg(Σ′) < d and each function H ′ :
Σ′ → Ln, it holds that, ifWitness(H ′,Σ′) returns
true, then H ′ is a Hintikka function over Σ′ that
generates a witness set in Σ′. If Witness(H,Σ)
returns true then, on the one hand, H is a Hintikka
function over Σ. On the other hand, for each for-
mula �ψ ∈ Σ, there are k ∈ Ln and I ∈ H�ψ,k

such that Witness(I,Σ′), where Σ′ ∈ Σ◦ is such
that deg(Σ′) = d − 1. Since deg(Σ′) < d, and
Witness(I,Σ′) returns true, then, by inductive
hypothesis, I is a Hintikka function over Σ′ that
generates a witness set Iψ in Σ′. So, the set

H = {H} ∪
⋃

�ψ∈Σ
Iψ

is a witness set generated by H on Σ.

(⇐) Suppose that H is a Hintikka function over Σ that gen-
erates a witness set in Σ, we proceed by induction on the
degree of Σ.

(0) If deg(Σ) = 0 then it is enough thatH is a Hintikka
function over Σ for Witness(H,Σ) to return true.

(d) Let deg(Σ) = d and suppose, by inductive hy-
pothesis, that for each set Σ′ of formulas such that
Σ′ ⊂ Σ and deg(Σ′) < d and each function
H ′ : Σ′ → Ln, it holds that, if H ′ is a Hintikka
function over Σ′ that generates a witness set in Σ′,
then Witness(H ′,Σ′) returns true. So, if H is
a Hintikka function over Σ that generates a wit-
ness set H in Σ, then, by Definition 8, we have
that, for each formula �ψ ∈ Σ there are k ∈ Ln

and I ∈ H�ψ,k ∩ H. Then we have that I is a
Hintikka function over Σ′ that generates a witness
set in Σ′, where Σ′ ∈ Σ◦ is such that deg(Σ′) =
d − 1. Hence, since deg(Σ′) < d, then, by induc-
tive hypothesis, Witness(I,Σ′) returns true. So,
Witness(H,Σ) returns true.

Theorem 11. Sat1(Fr, Łc
n,Δ) is in PSPACE.

Proof. Let ϕ be a modal formula. By Lemmas 9 and
10, we have that ϕ is m-satisfiable iff there is a Hintikka
function H : Cl(ϕ) → Ln such that H(ϕ) = m and
Witness(H,Cl(ϕ)) returns true. Thus we need to prove
that Witness can be given a PSPACE implementation. Con-
sider a non-deterministic Turing machine that guesses a Hin-
tikka function H over Cl(ϕ) and runs Witness(H,Cl(ϕ)),
then we need to prove that this machine runs in NPSPACE
and, by an appeal to Savitch’s Theorem we will achieve the
desired result. The key points of the implementation are the
following:

1. As pointed out in [Blackburn et al., 2001], encoding a
subset Σ of Cl(ϕ) requires spaceO(|ϕ|) (here |ϕ| refers
to the length of the encoding of ϕ). On the one hand,
each element of a function H : Σ → Ln can be repre-
sented as an ordered pair 〈ψ, i〉 ∈ Σ × Ln and, on the
other hand, |H| = |Σ|. Hence, if j = max{|r| : r ∈

Ln}, then encoding a Hintikka function requires space
bounded above by |ϕ|+ j · |ϕ|, that is space O(|ϕ|).

2. For each subformula �ψ ∈ dom(H), whether there
are k ∈ Ln and a Hintikka function I ∈ H�ψ,k,
can be checked separately. Given a subformula �ψ ∈
dom(H), the value k ∈ Ln and the Hintikka func-
tion I ∈ H�ψ,k to be checked can be selected by non-
deterministic choice. Note that, although the size of the
set H�ψ,k can be in O(n|�ψ|), for a given function I ,
we do not need to check every element of H�ψ,k to see
whether I ∈ H�ψ,k, since we only need to test if I sat-
isfies the conditions of Definition 6 and this can be done
within space linear on the size of I .

Hence, by the previous points, every time algorithm
Witness is applied to a function H and its domain Cl(ϕ),
a subformula �ψ ∈ dom(H) is selected and a k ∈ Ln

and I ∈ H�ψ,k are non-deterministically chosen, the space
needed is in O(|ϕ|). So, since deg(ϕ) recursive calls are
needed until we meet a Hintikka function I whose domain
contains no modal formula and deg(ϕ) ≤ |ϕ|, the amount
of space required to run the algorithm is O(|ϕ|2). More-
over, to keep track of the subformulas that have been checked
by the algorithm, it is enough to implement two kinds of
pointers to the modal operators occurring in the representa-
tion of ϕ: one pointer to indicate that, for a given subfor-
mula �ψ ∈ dom(H) it has been fully checked whether there
is k ∈ Ln and a Hintikka function I ∈ H�ψ,k such that
Witness(I, dom(I)) and the other pointer when the same
has not yet been fully checked.

Theorem 12. Sat1(CFr, Łc
n,Δ) is in PSPACE.

Proof. It is easy to see that the same algorithm given in Fig-
ure 1, but replacing k ∈ Ln with k ∈ {0, 1}, computes
Sat1(CFr,Łc

n,Δ).

3.2 Satisfiability is PSPACE-hard

Here we will prove that the four problems pointed out at the
end of Section 3 are PSPACE-hard.

The PSPACE-hardness of the set Sat1(CFr,Łn) is proved
by using a polynomial reduction into the problem of satisifi-
ability for classical Kripke models.
Theorem 13. Sat1(CFr, Łn) is PSPACE-hard.

Proof. Let us consider the mapping tr from classical modal
formulas into our modal formulas defined by

• tr(p) = p& (n−1). . . &p, if p is a propositional variable,
• tr(⊥) = ⊥,
• tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2),
• tr(ϕ1 → ϕ2) = tr(ϕ1)→ tr(ϕ2),
• tr(�ϕ) = � tr(ϕ).

This translation is clearly polynomial (because essentially we
are only replacing variables), and by induction on formulas it
is easy to check that for all modal formulas ϕ, it holds that
• ϕ is modally satisfiable in a classical Kripke model, iff
• tr(ϕ) is modally satisfiable in a crisp Kripke model.
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By the PSPACE-hardness of classical modal logic ([Ladner,
1977]) the proof finishes.

Unfortunately, for the case of the set Sat1(Fr,Łn), the
authors do not know how to get the PSPACE-hardness by a
reduction from the classical case. Such a reduction can be
obtained by the mapping tr′ defined like tr except for the
condition
• tr′(�ϕ) = (� tr′(ϕ))n−1,

but this reduction is not polynomial. Thus, in order to prove
our next theorem we need to go into the details of codify-
ing quantified Boolean formulas QBF (it is well known that
validity of QBF is PSPACE-complete). Since we essen-
tially use the same ideas that are used in the classical modal
case (see the proof given in [Blackburn et al., 2001, Theo-
rem 6.50]), we will not go into all the details of the proof.
Theorem 14. Sat1(Fr, Łn) is PSPACE-hard.

Proof. Let us consider β aQBF formula. By the proof given
in [Blackburn et al., 2001, Theorem 6.50], it is well known
how to define (see [Blackburn et al., 2001, p. 390] a classical
modal formula f(β) such that
• β is valid, iff
• f(β) is modally satisfiable in a classical Kripke model.

The formula f(β) can also be seen as one of our modal for-
mulas, and it is quite straightforward to check that for the
formulas of the form f(β) it happens that
• f(β) is modally satisfiable in a classical Kripke model,

iff
• f(β) is modally satisfiable in a Kripke Łn-model.

This fact is based on the properties stated at the end of Sec-
tion 2.2.

To finish this section let us point that when our language
has the Delta operator, this last proof can be simplified quite
a lot just by realizing that the reduction tr′ can be somehow
converted into one that is polynomial; this is so because

Δϕ↔ ϕn−1

is a valid formula.

4 Conclusions and Open Problems

We have seen in Theorem 1 that the minimal n-valued
Łukasiewicz modal logics are PSPACE-complete. An easy
consequence of this statement is the fact that the same com-
plexity is obtained when dealing with the entailment problem.
In other words, for each one of the modal languages consid-
ered in this paper, the set
{(ϕ, ψ) : V (ψ,w) = 1, for every Kripke model (W,R, V )

and world w ∈W such that V (ϕ,w) = 1}
is PSPACE-complete. This is so because, as a consequence
of the definability of Δ in Łn, it holds that ϕ entails ψ iff
ϕn−1 → ψ (which coincides with Δϕ→ ψ) is modally valid.

On the other hand, there is a close connection between
the expressive powers of the minimal n-valued Łukasiewicz
modal logic and the one of the description logic Łn-ALC

without knowledge base. Thus, the research in this paper
can be understood as a first step towards understanding the
complexity of the description logic Łn-ALC when there is a
knowledge base.

Finally, it is worth pointing out that the infinite-valued
Łukasiewicz modal logic (without Delta and truth constants)
has been shown to be decidable in [Hájek, 2005], but char-
acterizing its computational complexity is still an open prob-
lem. This logic is defined like in Section 2.2, but replacing
Ln with the Łukasiewicz standard algebra (over [0, 1]), max-
imum with supremum, and minimum with infimum.
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