Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

A Graph-Based Algorithm for Inducing
Lexical Taxonomies from Scratch

Roberto Navigli, Paola Velardi and Stefano Faralli
Dipartimento di Informatica
Sapienza Universita di Roma
{navigli,velardi, faralli}@di.uniromal.it

Abstract

In this paper we present a graph-based approach
aimed at learning a lexical taxonomy automatically
starting from a domain corpus and the Web. Un-
like many taxonomy learning approaches in the lit-
erature, our novel algorithm learns both concepts
and relations entirely from scratch via the auto-
mated extraction of terms, definitions and hyper-
nyms. This results in a very dense, cyclic and
possibly disconnected hypernym graph. The algo-
rithm then induces a taxonomy from the graph. Our
experiments show that we obtain high-quality re-
sults, both when building brand-new taxonomies
and when reconstructing WordNet sub-hierarchies.

1

It is widely accepted that ontologies can facilitate text un-
derstanding and automatic processing of textual resources.
Moving from words to concepts is important for solving
data sparseness issues and promises appealing solutions to
polysemy and homonymy by finding unambiguous concepts
within a domain [Biemann, 2005]. Indeed, ontologies have
been proven to be useful for many different applications, such
as question answering, information search and retrieval, etc.
A quite recent challenge is to automatically or semi-
automatically create an ontology using textual data, thus re-
ducing the time and effort needed for manual construction.
Surveys on ontology learning from text and other sources
(such as the Web) can be found in, among others, [Biemann,
2005; Perez and Mancho, 2003; Maedche and Staab, 2009].
In ontology learning from text, two main approaches are used.
Rule-based approaches use pre-defined rules or heuristic pat-
terns in order to extract terms and relations. These approaches
are based on lexico-syntactic patterns, first introduced by
Hearst [1992]. Lexical patterns for expressing a certain type
of relation are used to discover instances of relations from
text. Patterns can be chosen manually [Berland and Char-
niak, 1999; Kozareva e al., 2008] or via automatic bootstrap-
ping [Widdows and Dorow, 2002; Girju er al., 2003]. Dis-
tributional approaches, instead, model ontology learning as
a clustering or classification task, and draw primarily on the
notions of distributional similarity [Pado and Lapata, 2007;

Introduction

1872

Cohen and Widdows, 2009] or clustering of formalized state-
ments [Poon and Domingos, 2010]. Such approaches are
based on the assumption that similar concepts' appear in sim-
ilar contexts and their main advantage is that they are able to
discover relations which do not explicitly appear in the text.
However, they are less accurate and the selection of feature
types, notion of context and similarity metrics vary consider-
ably depending on which specific approach is used.

In this paper we are concerned with the problem of learn-
ing a taxonomy — the backbone of an ontology — entirely from
scratch. Very few systems in the literature address this task.
Among the most promising ones we mention Yang and Callan
[2009], who present a semi-supervised taxonomy induction
framework which integrates various features to learn an on-
tology metric, calculating a semantic distance for each pair
of terms in a taxonomy. Terms are incrementally clustered
on the basis of their ontology metric scores. In their work,
the authors assume that the set of ontological concepts, C,
is known, therefore taxonomy learning is limited to finding
relations between given pairs in C'.

Snow et al. [2006] propose the incremental construction of
taxonomies using a probabilistic model. In their work, they
combine evidence from multiple classifiers using constraints
from hyponymy and cousin relations. Given the body of evi-
dence obtained from all the relevant word pairs, the taxonomy
learning task is defined probabistically as the problem of find-
ing the taxonomy that maximizes the probability of having
that evidence (a supervised logistic regression model is used
for this). Rather than learning a new taxonomy, this approach
aims at attaching new concepts under the appropriate nodes
of an existing taxonomy (i.e., WordNet [Fellbaum, 1998]).

A method which is closer to our research is presented
in [Kozareva and Hovy, 2010]. From an initial given set of
root concepts and basic level terms, the authors use Hearst-
like lexico-syntactic patterns recursively to harvest new terms
from the Web. The result of the first part of the algorithm is
a set of hyponym-hypernym relations. To induce taxonomic
relations between intermediate concepts they then search the
Web again with surface patterns. Finally, nodes from the re-
sulting graph are removed if the out-degree is below a thresh-
old, and edges are pruned by removing cycles and selecting

"Because we are concerned with lexical taxonomies, in this paper
we use the words “concepts” and “terms” interchangeably.

the longest path in the case of multiple paths between con-
cept pairs. Kozareva and Hovy’s method has some limita-
tions: first, patterns used to harvest hypernymy relations are
very simple, thus they are inherently incapable of extracting
relations for specialized domains, as shown by Navigli and
Velardi [2010]; second, the pruning method does not produce
a taxonomy, but an acyclic graph; furthermore, in evaluating
their methodology, the authors select only nodes belonging to
a WordNet sub-hierarchy (they experiment on plants, vehicles
and animals), thus limiting themselves to Yang and Callan’s
target of finding relations between an assigned set of nodes.

In practice, none of the algorithms described in the liter-
ature actually creates a new, usable taxonomy from scratch,
instead each measures the ability of a system to reproduce as
far as possible the relations of an already existing taxonomy
(a common test is WordNet or the Open Directory Project?).

In this paper, we present a considerable advancement over
the state of the art in taxonomy learning:

o First, except for the selection of just a few root nodes,
this is the first algorithm to build a new taxonomy truly
from scratch.

Second, we tackle the problem with no simplifying as-
sumptions: we cope with issues such as term ambiguity,
complexity of hypernymy patterns and multiple hyper-
nyms.

Third, we propose a new algorithm to extract an optimal
taxonomy from the resulting hypernymy graph. Taxon-
omy induction is based on the topological structure of
the graph and some general properties of taxonomies.
Fourth, our evaluation is not limited, as it is in most pa-
pers, to the number of retrieved hypernymy relations that
are found in a reference taxonomy, because we also anal-
yse the extracted taxonomy in its entirety. Furthermore,
we also acquire a “brand new” taxonomy in the domain
of Artificial Intelligence.

In Section 2 we describe our taxonomy induction algo-
rithm. In Section 3 we present our experiments, and the per-
formance results. Evaluation is both qualitative (on a new Ar-
tificial Intelligence taxonomy) and quantitative (on the recon-
struction of WordNet sub-hierarchies). Section 4 is dedicated
to concluding remarks.

2 Graph-based Taxonomy Induction

Our objective is to produce a domain taxonomy in the form
of a directed graph. We start from an initially-empty directed
graph G = (V, FE), where V = E = {). Our approach to
graph-based taxonomy induction consists of four steps, de-
tailed hereafter.

2.1 Terminology Extraction

Domain terms are the building blocks of a taxonomy. While
relevant terms for the domain could be selected manually, in
this work we aim at fully automatizing the taxonomy induc-
tion process. Thus, we start from a text corpus for the do-
main of interest and extract domain terms from the corpus
by means of a terminology extraction algorithm. To this end,

http://www.dmoz.org/

1873

we used our term extraction tool, TermExtractor® [Sclano and
Velardi, 2007]. Note that any equally valid term extraction
tool can be applied in this step. As a result, a domain termi-
nology T'©) is produced which includes both single-word and
multi-word expressions. We add to our graph GG one node for
each termin 79, ie, V := vV U T,

The aim of our taxonomy induction algorithm is to learn
a hypernymy graph by means of several iterations, starting
from T(©) and stopping at very general concepts. We define
the latter as a small set of upper terms U (e.g., object, abstrac-
tion, etc.), that we consider as the end point of our algorithm.

2.2 Definition and Hypernym Extraction

For each term ¢t € T (initially, ¢ = 0), we first check
whether ¢ is an upper term (i.e., t € U). If it is, we just skip
it (because we do not aim at further extending the taxonomy
beyond an upper term). Otherwise, definition sentences are
sought for ¢ in the domain corpus and in a portion of the Web.
To do so, we use Word-Class Lattices (WCLs) [Navigli and
Velardi, 2010], that is, domain-independent machine-learned
classifiers that identify definition sentences for the given term
t, together with the corresponding hypernym - i.e., lexical
generalization — in each sentence. An example of a lattice
classification model is shown in Figure 1. The following sen-
tences are examples of definitional patterns that can be re-
trieved using the lattice in Figure 1 (we use bold for the terms
being defined and italics for the extracted hypernyms):

e computer science is a branch of engineering science.

o artificial intelligence is a prominent branch of computer
science that...

For each term in our set T’ (i), we extract definition candi-
dates from the domain corpus and from Web documents by
harvesting all the sentences that contain ¢. We also add def-
initions from the Web obtained using the Google define
keyword. Finally, we apply WCLs and collect all those sen-
tences that are classified as definitional.

2.3 Domain Filtering

Given a term t, the common case is that several definintions
are found for this term. However, many of these will not per-
tain to the domain of interest, especially if they are obtained
from the Web or if they define ambiguous terms. To eliminate
these sentences, we weigh each definition candidate d(¢) ac-
cording to the domain terms that are contained therein using
the following formula:

_ By N D|
‘Bd(t)‘

where By is the bag of content words contained in the
definition candidate d(t) and D is given by the union of
the initial terminology 7'°) and the set of single words of
the terms in 7®) that can be found as nouns in WordNet.
For example, given 70 = { greedy algorithm, informa-
tion retrieval, spanning tree }, our domain terminology D =

DomainWeight(d(t)) (1)

*http://lcl.uniromal.it/termextractor

P@%@

Figure 1: Lattice for the pattern “(TARGET) is a * branch of
(HYPER)”.

7©) { algorithm, information, retrieval, tree }. Accord-
ing to the above formula, the domain weight of a definition
d is normalized by the total number of content words in the
definition, so as to penalize longer definitions. Domain fil-
tering is performed by keeping only those definitions d(t)
whose DomainWeight(d(t)) > 6, where 6 is a threshold
empirically set to 0.38, tuned on a dataset of 200 manually-
annotated definitions. We note that domain filtering performs
some implicit form of Word Sense Disambiguation [Navigli,
2009], as it aims at discarding senses of hypernyms which do
not pertain to the domain.

Let H; be the set of hypernyms extracted with WCLs
from the definitions of term ¢ which survived this filtering
phase. For each t € T), we add H, to our graph G, i..,
V =V U H,. For each t, we also add a directed edge (h,t)*
for each hypernym h € H;. As a result of this step, the
graph contains our domain terms and their hypernyms ob-
tained from domain-filtered definitions. We now set:

U H, \ OT(J')

teT () Jj=0

T+ =)

that is, the new set of terms 701 is given by the hyper-
nyms of the current set of terms 7() excluding those terms
that were already processed during previous iterations of the
algorithm. Next, we move to iteration ¢ 4+ 1 and repeat the
last two steps, i.e., we perform definition/hypernym extrac-
tion and domain filtering on 701 As a result of subsequent
iterations, the initially-empty graph G is increasingly popu-
lated with new nodes (i.e., terms) and edges (i.e., hypernymy
relations). After a maximum number of iterations K, we ob-
tain a dense hypernym graph, that most likely contains cycles
and multiple hypernyms for the vast majority of nodes. In or-
der to eliminate noise and obtain a full-fledged taxonomy, we
perform a final step of graph pruning, as described in the next
Section.

2.4 Taxonomy Induction

Taxonomy induction is the core of our work. As previously
remarked, the graph obtained at the end of the previous step
is particularly complex and large (see Section 3 for statis-
tics concerning the experiments that we performed). Wrong
nodes and edges might originate from errors in any of the def-
inition/hypernym extraction and domain filtering steps. Fur-
thermore for each node, multiple “good” hypernyms can be
harvested. Rather than using heuristic rules, we devised a
novel algorithm that exploits the topological graph properties
to produce a full-fledged taxonomy. Our algorithm consists
of four steps, described hereafter with the help of the noisy

*In what follows, (h,t) or h — t reads “t is-a h”.

1874

graph in Figure 2(a), whose grey nodes belong to the initial
terminology 7(°) and the bold node is the only upper term.

Graph trimming. We first perform two trimming steps:

i) Eliminate “false’ roots: recursively delete each edge
(v,v") such that v € U and v has no incoming edges.

ii) Eliminate “false” leaf nodes: Recursively delete each
edge (v, v’) such that v’ ¢ T(®) and v has no outgoing
edges.

These steps disconnect the false root service and the false
leaf band (see Figure 2(b)).

Edge weighting. The most important aspect of our algo-
rithm is the edge weighting step. A policy based only on
graph connectivity (e.g., in-degree or betweenness, see [New-
man, 2010] for a complete survey) is not sufficient for tax-
onomy induction’. Consider again the graph of Figure 2: in
choosing the best hypernym for biplane, a connectivity-based
measure would select aircraft rather than airplane, since the
former reaches more nodes. However, in taxonomy learning,
longer hypernymy paths should be preferred, e.g., craft —
aircraft — airplane — biplane is better than craft — aircraft
— biplane.

Our novel weighting policy is aimed at finding the best
trade-off between path length and the connectivity of tra-
versed nodes. It consists of 3 steps:

i) weight each node v by the number of nodes belonging
to 7(©) that can be reached from v (possibly including v
itself). Let w(v) denote the weight of v (e.g., in Figure
2(b), node aircraft reaches airplane and biplane, thus
w(aircraft) = 2, while w(watercraft) = 3). All weights
are shown in the corresponding nodes in Figure 2(b).

ii) for each node v, consider all the paths from a root r €

U to v. Let T'(r, v) be the set of such paths. Each path

p € T'(r,v) is weighted by the cumulative weight of the

nodes in the path, i.e., w(p) = >, c, w(v').

assign the following weight to each incoming edge
(h,v) of v (i.e., h is one of the direct hypernyms of v):

3)

i)

h,v) =
w(h,v) ry{leagperrrlgfh)w(p)

This formula assigns to edge (h, v) the value w(p) of the
highest-weighting path p from A to any rootin U. For ex-
ample, in Figure 2(b), w(airplane) = 2, w(aircraft) =
2, w(craft) = 5. Therefore, the set of paths I'(craft, air-
plane) = { craft — airplane, craft — aircraft — air-
plane }, whose weights are 7 (w(craft) + w(airplane))
and 9 (w(craft) + w(aircraft) + w(airplane)), respec-
tively. Hence, according to Formula 3, w(airplane, bi-
plane) = 9. We show all edge weights in Figure 2(b).

3As also remarked by Kozareva and Hovy [2010], who experi-
mented with in-degree.
®Nodes in a cycle are visited only once.

Figure 2: A noisy graph excerpt (a), its trimmed version (b), and the final taxonomy resulting from pruning (c).

Finding the optimal branching. This step aims at produc-
ing a taxonomy by pruning the noisy graph on the basis of our
edge weighting strategy. A maximum spanning tree algorithm
cannot be applied, because our graph is directed. Instead, we
need to find an optimal branching, that is, a rooted tree with
an orientation such that every node but the root has in-degree
1, and whose overall weight is maximum. To this end, we
apply Chu-Liu/Edmonds’s algorithm [Edmonds, 1967] to our
directed weighted graph G to find an optimal branching. The
initial step of the algorithm is to select, for each edge, the
maximum-weight incoming edge. Next, it recursively breaks
cycles with the following idea: nodes in a cycle are collapsed
into a pseudo-node and the maximum-weight edge entering
the pseudo-node is selected to replace the other incoming
edge in the cycle. During backtracking, pseudo-nodes are ex-
panded into an acyclic directed graph, that is, our final tax-
onomy. The resulting taxonomy for our example is shown in
Figure 2(c).

Pruning recovery. The weighted directed graph from
which we induce our taxonomy might contain many weakly
connected components. In this case, an optimal branching is
found for each component. Moreover, the number of taxon-
omy components could be increased as a result of Edmond’s
breaking-cycle strategy, thus losing relevant taxonomic rela-
tions. Most of these components are actually noise, but some
of them could be included in the final taxonomy. Let r be
the root of one of these disconnected components. To recover
from excessive pruning, we apply a simple heuristic: first, if
there existed at least one edge pointing to r in the original
noisy graph, we select the best-ranking edge (v, r) according
to the domain score of the definition from which this taxo-
nomic relation was extracted; else, if in the final taxonomy
there exists a node v which is the maximal left substring of
(e.g., r=combat ship and v=ship), then we add edge (v,).

3 Evaluation

Taxonomy evaluation is a hard task which is difficult even
for humans. One reason for this is that different taxonomies
might model the domain of interest equally well. Nonethe-
less, various different evaluation methods have been proposed
in the literature to assess the quality of a taxonomy. These in-
clude: i) manual evaluation performed by domain experts, ii)
structural evaluation of the taxonomy, iii) automatic evalua-
tion against a gold standard, iv) application-driven evaluation,
in which a taxonomy is assessed on the basis of the improve-
ment its use generates within an application. In our experi-

1875

ments, we take advantage of the first 3 evaluation strategies.
To this end, we performed two different experiments: the first
aimed at inducing a brand-new taxonomy of Artificial Intel-
ligence (AI), the second at making a gold-standard compari-
son with WordNet sub-hierarchies. We describe these experi-
ments in the following subsections.

3.1 Experiment 1: Inducing an AI Taxonomy

Setup. Our first experiment was aimed at inducing a full-
fledged taxonomy of Al To extract the domain terminology,
we created a corpus consisting of the entire IJCAI 2009 pro-
ceedings (334 papers, overall). The same corpus was used to
extract definitions for the domain terms. We collected addi-
tional definitions by querying Google with the define key-
word. Finally, we manually selected a set of 13 upper terms U
(such as process, abstraction, algorithm) used as a stopping
criterion for our iterative definition/hypernym extraction and
filtering procedure (cf. Sections 2.1 and 2.2).

Results. As a result of terminology extraction, we obtained
374 initial domain terms (our 79, cf. Section 2.1). The re-
sulting noisy graph included 715 nodes and 1025 edges. After
applying Edmond’s algorithm and pruning recovery (cf. Sec-
tion 2.4), our taxonomy contained 427 nodes (of which 261
were initial terms, while for the remaining 113 initial terms
no definition could be found’) and 426 edges.’

First, in order to study the structural effect of our taxon-
omy induction algorithm, we determined the compression ra-
tio of the resulting graph against the unpruned graph: the node
and edge compression ratios were 0.60 (427/715) and 0.41
(426/1025), respectively. In Figure 3 we show the compres-
sion effect of pruning (on the right) over the noisy graph (on
the left). In Figure 4 we show an excerpt of the Al taxonomy
rooted at algorithm. The maximum depth of the final taxon-
omy is 11. An example of a hypernymy path is: abstraction
— representation — model — model of a synchronous order
machine — finite-state machine — Markov model.

Second, we performed a manual evaluation of the whole
set of edges (i.e., present in the final graph) and calculated a
precision of 81.5%. Notice however that evaluating the cor-
rectness of individual edges in isolation, as we and virtually
all the other works in the literature do, is not entirely appro-
priate. Despite the specificity of the domain, the average am-
biguity of graph nodes before edge pruning was 1.4, and for

"This will be improved in future work by extending Web search
and the domain corpus to the full archive of IJICAI proceedings.
8 Any tree contains |V'| — 1 edges, where V is the set of nodes.

Table 1: Results on the three WordNet sub-hierarchies: animals, plants, vehicles.

animals plants vehicles
node compression ratio 0.48 978/2015 0.40 744/1840 0.41 144/353
edge compression ratio 0.49 977/1975 0.35 743/2138 0.35 143/413
coverage of initial terminology 0.71 484/684 0.79 438/554 0.73 85/117
precision by hand of edges not in WN (100 randomly chosen) 0.76 ~ 76/100 0.82 82/100 0.92 92/100
precision by hand of nodes not in WN (all) 0.70 218/312 0.77 158/206 0.69 9/13
depth-first
search cryptography | cearch
/ dijkstra’s
best-first search f algomhm
heuristic search
search algorithm g;‘g'::’;’::'l algor’mmop'a’zzilgf;ﬁdy "
appraxlmate
string matching algorithm
\\ / bmary search
conquer search™
breadth first /Aulgonthm
»{;////\'\n'-'-'-'\'-'--‘ search‘
L E R T S T 3] }Igorlfhm — first-order
polyiSllisktime—" “dptimization
algonfhm algorith
Figure 3: The effect of graph pruning (right) on the AI hyper- ol ﬂmmn \
nym graph (left). ‘ data mining gradient descent
‘::;g: eb":‘;;y pubhc :‘ g tree search
some node over 10 hypernyms were found. For example, we Ao algorithm graph mining
found for the term discriminant analysis the following hy- meEZii,on s | poiffbup

pernyms: field, procedure, tool, technique. The taxonomy in-
duction algorithm selects procedure, based on the connectiv-
ity properties of the graph, and this is an appropriate choice,
but, by looking at the overall structure of the taxonomy, and
the collocation of other similar concepts (e.g., logistic regres-
sion, constraint propagation, etc.), technique would probably
have been a better choice. However such structural evaluation
should be performed by a community of experts. For the mo-
ment, the Artificial Intelligence taxonomy® has been released
to the scientific community and will be further analysed and
enriched in a future collaborative experiment.

3.2 Experiment 2: Evaluation against WordNet

Setup. In our second experiment we performed an au-
tomatic evaluation against a gold standard, that is, Word-
Net. This is a commonly adopted standard in the literature.
Kozareva and Hovy [2010] show very high values of preci-
sion (0.98) and varying recall (0.60-0.38) in reproducing the
animals, plants and vehicles WordNet sub-hierarchies. How-
ever, in computing the precision and recall of extracted rela-
tions, they consider only node pairs found by the system and
in WordNet.

Similarly, in [Yang and Callan, 2009] the F-measure varies
from 0.82 (on WordNet “is-a” sub-hierarchies) to 0.61 (on
WordNet “part-of” sub-hierarchies). But they only com-
pute the number of correctly retrieved relations, given the
set of concepts to be related by a given relation, since the
authors are concerned with finding relations, not concepts.
Snow et al. [2006] evaluate their algorithm in a task of sense-
disambiguated hyponym acquisition, starting with the base of
WordNet 2.1 and adding novel noun hyponyms. For the best-
performing inferred taxonomy (with 30,000 new hyponyms),
they report achieving a 0.58 precision and 0.21 recall.

°Available at: http://lcl.uniromal.it/taxolearn

1876

dynamic
programming

/

pagerank

rsa encryption

dynamic wn
iterative _ ___programming— 435n§f",c
dynamic programming
programming
space-efficient
dynamic
programming

recursive
dynamic
programming

Figure 4: An excerpt of the Al taxonomy rooted at algorithm.

As is the case with the majority of experiments in this do-
main, the objective of our second experiment was to learn tax-
onomies for specific domains and compare them with existing
sub-hierarchies rooted at specific synsets in WordNet. In or-
der to enable a comparison with previous work, we selected
the same domains as Kozareva and Hovy [2010], namely: an-
imals, plants and vehicles.

Unlike the setup of our previous experiment, we did not
perform any terminology extraction because we used the ini-
tial terminology provided by Kozareva and Hovy [2010] for
the three domains. Concerning definition and hypernym ex-
traction, we did not use any domain corpus, while we re-
tained the use of Google define. Given that each of the
three taxonomies is rooted at a specific synset in WordNet
(animal#n#1, plant#n#2, vehicle#n#1, respectively), we used
the synonyms of the corresponding root synset as the set of
upper terms for that domain (e.g., { plant, flora, plant life }
for the plants domain).

Results. We show the results for the three domains in Table
1. The first 3 rows provide some general statistics concerning
the taxonomy induction experiment, such as node and edge
compression and coverage. Coverage is defined as the num-
ber of terms in the initial terminology which survive the prun-
ing phase. The animal, plant and vehicle domains are progres-

Table 2: Precision and recall compared with K&H.

Our approach | K&H 2010
Domain P R P R
Animals | 97.0 43.7 | 97.3 38.0
Plants 97.0 383 | 972 394
Vehicles | 90.9 48.7 | 98.8 60.0

sively less ambiguous as regards terms, and progressively less
structured as regards the reference taxonomy (the animal tax-
onomy has an average depth of 6.23, while vehicles 3.91): this
explains why we obtained a much larger hypernymy graph for
animals. In Table 1 rows 4 and 5 provide a manual evaluation
of edges and nodes appearing in the induced taxonomy but
not in WordNet: precision is quite good, with the “caveat” of
Section 3.1. To determine our ability to “reconstruct® Word-
Net, similarly to [Kozareva and Hovy, 2010] (K&H in what
follows) we first removed from our taxonomy all the nodes
not included in the WordNet sub-hierarchies and then com-
puted precision and recall on the is-a relations from the initial
terminology to the root. As shown in Table 2 our performance
figures are higher than K&H on animals, similar on plants and
lower on vehicles, even though 1) starting from a richer ter-
minology than that of K&H would reinforce our algorithm’s
choices, 2) we induce a tree-like taxonomy while K&H ob-
tain a graph with multiple paths from each term to the root.
We replicated K&H’s evaluation for the sake of comparison,
however a better validation procedure should compare the ac-
tual result of “blind” taxonomy (or graph) learning with the
ground truth, rather than mapping the latter onto the first.

4 Conclusions

In this paper we presented the first algorithm to induce a lexi-
cal taxonomy truly from scratch using highly dense, possibly
disconnected, hypernymy graphs. The algorithm performs the
task of eliminating noise from the initial graph remarkably
well, using a weighting scheme that accounts both for the
topological properties of the graph and for some general prin-
ciple of taxonomic structures. Taxonomy induction was ap-
plied to the task of creating a new Artificial Intelligence tax-
onomy and three plant, animal and vehicle taxonomies for
gold-standard comparison against WordNet.

This paper was primarily concerned with the description
of the algorithm, thus, for the sake of space, we could not
present a detailed analysis of the extracted taxonomies, which
we defer to a future publication. In summary, this analysis led
us to conclude that errors and sub-optimal choices in graph
pruning do not depend on the algorithm, but rather on the
quality and amount of knowledge available in the source hy-
pernymy graph. Future work, therefore, will be directed to-
wards improving the hypernym harvesting phase.

Acknowledgments

The authors wish to thank Zornitsa Kozareva and Ed Hovy for
providing all the necessary data for comparison, Senja Pollak
and Jim McManus for their useful comments. The first au-
thor gratefully acknowledges the support of the ERC Starting
Grant MultiJEDI No. 259234.

1877

References

[Berland and Charniak, 1999] Matthew Berland and Eugene Char-
niak. Finding parts in very large corpora. In Proceedings of ACL
1999, pages 57-64, Stroudsburg, USA, 1999.

[Biemann, 2005] Chris Biemann. Ontology learning from text — a
survey of methods. LDV-Forum, 20(2):75-93, 2005.

[Cohen and Widdows, 2009] Trevor Cohen and Dominic Widdows.
Empirical distributional semantics: Methods and biomedical ap-
plications. Journal of Biomedical Informatics, 42(2):390-405,
April 2009.

[Edmonds, 1967] J. Edmonds. Optimum branchings. J. Res. Nat.
Bur. Standard, 71B:233-240, 1967.

[Fellbaum, 1998] Christiane Fellbaum, editor. WordNet: An Elec-
tronic Database. MIT Press, Cambridge, MA, 1998.

[Girju et al., 2003] Roxana Girju, Adriana Badulescu, and Dan
Moldovan. Learning semantic constraints for the automatic dis-
covery of part-whole relations. In Proc. of NAACL-HLT 2003,
pages 1-8, Canada, 2003.

[Hearst, 1992] Marti A. Hearst. Automatic acquisition of hy-
ponyms from large text corpora. In Proc. of COLING 1992, pages
539-545, 1992.

[Kozareva and Hovy, 2010] Zornitsa Kozareva and Eduard Hovy. A
semi-supervised method to learn and construct taxonomies using
the web. In Proceedings of EMNLP 2010, pages 1110-1118,
Cambridge, MA, October 2010.

[Kozareva et al., 2008] Zornitsa Kozareva, Ellen Riloff, and Eduard
Hovy. Semantic class learning from the web with hyponym pat-
tern linkage graphs. In Proceedings of ACL 2008, pages 1048—
1056, Columbus, Ohio, June 2008.

[Maedche and Staab, 2009] Alexander Maedche and Steffen Staab.
Ontology learning. In Handbook on Ontologies, pages 245-268.
Springer, 2009.

[Navigli and Velardi, 2010] Roberto Navigli and Paola Velardi.
Learning Word-Class Lattices for definition and hypernym ex-
traction. In Proceedings of ACL 2010, pages 1318-1327, Upp-
sala, Sweden, 2010.

[Navigli, 2009] Roberto Navigli. Word Sense Disambiguation: A
survey. ACM Computing Surveys, 41(2):1-69, 2009.

[Newman, 2010] M. E. J. Newman, editor. Networks: An Introduc-
tion. Oxford University Pres, Oxford, UK, 2010.

[Pado and Lapata, 2007] Sebastian Pado and Mirella Lapata.
Dependency-based construction of semantic space models. Com-
putational Linguistics, 33(2):161-199, 2007.

[Perez and Mancho, 2003] Gomez A. Perez and Manzano D. Man-
cho. A Survey of Ontology Learning Methods and Techniques.
OntoWeb Delieverable 1.5, May 2003.

[Poon and Domingos, 2010] Hoifung Poon and Pedro Domingos.
Unsupervised ontology induction from text. In Proceedings of
ACL 2010, pages 296-305, Stroudsburg, USA, 2010.

[Sclano and Velardi, 2007] F. Sclano and P. Velardi. Termextractor:
a web application to learn the shared terminology of emergent
web communities. In Proc. of I-ESA 2007, Portugal, 2007.

[Snow et al., 2006] Rion Snow, Dan Jurafsky, and Andrew Ng. Se-
mantic taxonomy induction from heterogeneous evidence. In
Proc. of COLING-ACL 2006, pages 801-808, 2006.

[Widdows and Dorow, 2002] Dominic Widdows and Beate Dorow.
A graph model for unsupervised lexical acquisition. In Proceed-
ings of COLING 2002, pages 1-7, Stroudsburg, USA, 2002.

[Yang and Callan, 2009] Hui Yang and Jamie Callan. A metric-
based framework for automatic taxonomy induction. In Proc.
of ACL 2009, pages 271-279, Stroudsburg, USA, 2009.

