skip to main content
research-article
Open Access

User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home

Authors Info & Claims
Published:28 July 2012Publication History
Skip Abstract Section

Abstract

In this article, we describe the development of a human-robot interaction concept for service robots to assist elderly people in the home with physical tasks. Our approach is based on the insight that robots are not yet able to handle all tasks autonomously with sufficient reliability in the complex and heterogeneous environments of private homes. We therefore employ remote human operators to assist on tasks a robot cannot handle completely autonomously. Our development methodology was user-centric and iterative, with six user studies carried out at various stages involving a total of 241 participants. The concept is under implementation on the Care-O-bot 3 robotic platform. The main contributions of this article are (1) the results of a survey in form of a ranking of the demands of elderly people and informal caregivers for a range of 25 robot services, (2) the results of an ethnography investigating the suitability of emergency teleassistance and telemedical centers for incorporating robotic teleassistance, and (3) a user-validated human-robot interaction concept with three user roles and corresponding three user interfaces designed as a solution to the problem of engineering reliable service robots for home environments.

References

  1. Arbeiter, G., Bubeck, A., Fischer, J., & Graf, B. (2009). Teilautonome mobile Roboter zur Fernwartung prozesstechnischer Anlagen. In: K. Bender et al. (Eds.), Mesago: SPS/IPC/DRIVES 2009. Tagungsband (pp. 173--181). Nürnberg: VDE-Verlag.Google ScholarGoogle Scholar
  2. Arbeiter, G., Fischer, J., & Verl, A. (2010). 3D perception and modeling for manipulation on Care-O-bot 3. In: Conference Digest of IEEE/RAS International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA (pp. XXIII-XXVII). Piscataway, NJ, USA: IEEE Press.Google ScholarGoogle Scholar
  3. Bayer, A., & Harper, L. (2000). Fixing to stay. A national survey of housing and home modification issues. Washington, DC: AARP. Retrieved from: http://assets.aarp.org/rgcenter/il/home_mod.pdfGoogle ScholarGoogle Scholar
  4. Becker, S., Böhm, U., Röhrig, A., Stuhler, H., & Wurm, S. (2007). Tätigkeiten in Haushalt, Freizeit und Ehrenamt. In W. Friesdorf, & A. Heine (Eds.), sentha - seniorengerechte Technik im häuslichen Alltag (pp. 57--68). Berlin: Springer.Google ScholarGoogle Scholar
  5. Beer, J. M., & Takayama, L. (2011). Mobile remote presence systems for older adults: Acceptance, benefits, and concerns. Proceedings of HRI, Lausanne, Switzerland, 19--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Beyer, H. & Holtzblatt, K. (1998). Contextual design. Defining customer-centered systems. San Francisco: Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bohren, J., Rusu, R. B., Jones, E. G., Marder-Eppstein, E., Pantofaru, C., Wise, M., ... Holzer, S. (2011). Towards autonomous robotic butlers: Lessons learned with the PR2. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 5568--5575.Google ScholarGoogle ScholarCross RefCross Ref
  8. Boissy, P., Corriveau, H., Michaud, F., Labonté, D., & Royer, M. (2007). A qualitative study of in-home robotic telepresence for home care of community-living elderly subjects. Journal of Telemedicine and Telecare, 13, 79--84.Google ScholarGoogle ScholarCross RefCross Ref
  9. Bruemmer, D. J., Dudenhoeffer, D. D., & Marble, J. L. (2002). Dynamic-autonomy for urban search and rescue. AAAI Technical Report WS-02-18. Retrieved from: http://www.aaai.org/Papers/Workshops/2002/WS-02-18/WS02-18-006.pdfGoogle ScholarGoogle Scholar
  10. Buss, M., Peer, A., Schauß, T., Stefanov, N., Unterhinninghofen, U., Behrendt, S., ... Sarkis, M. (2010). Development of a multi-modal multi-user telepresence and teleaction system. International Journal of Robotics Research, 29, 1298--1316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cooper, A. (1999). The inmates are running the asylum. Why high tech products drive us crazy and how to restore the sanity. Indianapolis: Macmillan Publishing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Crandall, J. W., & Goodrich, M. A. (2001). Experiments in adjustable autonomy. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, 1624--1629.Google ScholarGoogle ScholarCross RefCross Ref
  13. Dautenhahn, K., Woods, S., Kaouri, C., Walters, M. L., Koay, K. L., & Werry, I. (2005). What is a robot companion - friend, assistant or butler?. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, Canada, 1192--1197.Google ScholarGoogle ScholarCross RefCross Ref
  14. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13, 319--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Deegan, P., Grupen, R., Hanson, A., Horrell, E., Ou, S., Riseman, E., ... Xie, D. (2008). Mobile manipulators for assisted living in residential settings. Autonomous Robots, 24, 179--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Dorais, G. A., Bonasso, R. P., Kortenkamp, D., Pell, B., & Schreckenghost, D. (1998). Adjustable autonomy for human-centered autonomous systems on mars. Proceedings of International Conference of the Mars Society.Google ScholarGoogle Scholar
  17. Dumas, J. C., & Fox, J. E. (2008). Usability testing: Current practice and future directions. In A. Sears & J. A. Jacko (Eds.), The handbook of human-computer interaction (pp. 1129--1150). New York: Lawrence Erlbaum Associates.Google ScholarGoogle Scholar
  18. Endsley, M. R. (1988). Design and evaluation for situation awareness enhancement. Proceedings of the Human Factors Society 32nd Annual Meeting, Santa Monica, CA, 97--108.Google ScholarGoogle ScholarCross RefCross Ref
  19. Ezer, N., Fisk, A. D., Rogers, W.A. (2009). More than a servant: Self-reported willingness of younger and older adults to having a robot perform interactive and critical tasks in the home. Proceedings of the Human Factors and Ergonomics Society 53rd Annual Meeting, 136--140.Google ScholarGoogle ScholarCross RefCross Ref
  20. Faucounau, V., Wu, Y., Boulay, M., Maestrutti, M., Rigaud, A., & the QuoVADis project (2009). Caregivers' requirements for in-home robotic agent for supporting community-living elderly subjects with cognitive impairment. Technology and Health Care, 17, 33--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ferland, F., Pomerleau, F., Le Dinh, C. T., & Michaud, F. (2009). Egocentric and exocentric teleoperation interface using real-time, 3d video projection. Proceedings of HRI, 37--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Gonzalez, M. F., Facal, D., Navarro, A. B., Geven, A., & Tscheligi, M. (2011). Analysis of older users' perceived requests and opportunities with technologies: A scenario-based assessment. International Journal of Ambient Computing and Intelligence, 3(1), 42--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Goodrich, M. & Schultz, A. C. (2007). Human-robot interaction: A survey. In B. Bederson et al. (Eds.), Foundations and trends in human-computer interaction, Vol. 1 (pp. 203--275). Hanover, MA, USA: now Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Graf, B., Hans, M., & Schraft, R. D. (2004). Mobile robot assistants - Issues for dependable operation in direct cooperation with humans. IEEE Robotics & Automation Magazine, 11(2), 67--77.Google ScholarGoogle ScholarCross RefCross Ref
  25. Graf, B., Parlitz, C., & Hägele, M. (2009). Robotic home assistant Care-O-bot 3 product vision and innovation platform. In: J. A. Jacko (Ed.), Human-computer interaction, part II, HCI International 2009, San Diego, CA, USA, Lecture Notes in Computer Science, Vol. 5611 (pp. 312--320). Berlin: Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Harmo, P., Taipalus, T., Knuuttila, J., Vallet, J., & Halme, A. (2005). Needs and solutions - home automation and service robots for the elderly and disabled. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, Canada, 3201--3206.Google ScholarGoogle ScholarCross RefCross Ref
  27. Hassenzahl, M., Burmester, M., & Koller, F. (2003). AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: J. Ziegler & G. Szwillus (Eds.), Mensch & Computer 2003. Interaktion in Bewegung (pp. 187--196). Stuttgart: Teubner.Google ScholarGoogle Scholar
  28. Hibbert, D., Mair, F. S., May, C. R., Boland, A., O'Connor, J., Capewell, S., & Angus, R. M. (2004). Health professionals' responses to the introduction of a home telehealth service. Journal of Telemedicine and Telecare, 10, 226--230.Google ScholarGoogle ScholarCross RefCross Ref
  29. ISO 9241--210 (2010). Ergonomics of human-system interaction - part 210: Human-centred design for interactive systems. International Standardization Organization.Google ScholarGoogle Scholar
  30. Iwata, H., & Sugano, S. (2009). Design of human symbiotic robot TWENDY-ONE. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 580--586. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kemp, C. C., Edsinger, A., & Torres-Jara, E. (2007). Challenges for robot manipulation in human environments. IEEE Robotics & Automation Magazine, 14(1), 20--29.Google ScholarGoogle ScholarCross RefCross Ref
  32. Khan, Z. (1998). Attitudes towards intelligent service robots (Report No. TRITA-NA-P9821, IPLab-154). Stockholm: Royal Institute of Technology.Google ScholarGoogle Scholar
  33. Kohli, M., Künemund, H., & Lüdicke, J. (2005). Family structure, proximity and contact. In Börsch-Supan et al. (Eds.), Health, ageing and retirement in Europe (pp. 164--170). Mannheim, Germany: Mannheim Research Institute for the Economics of Aging (MEA).Google ScholarGoogle Scholar
  34. Kunz, T., Reiser, U., Stilman, M., & Verl, A. (2010). Real-time path planning for a robot arm in changing environments. Proceedings of IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), Taipei, Taiwan, 5906--5911.Google ScholarGoogle ScholarCross RefCross Ref
  35. Labonté, D., Boissy, P., & Michaud, F. (2010). Comparative analysis of 3-D robot teleoperation interfaces with novice users. IEEE Transactions on Systems, Man, and Cybernetics, 40, 1331--1342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Lazewatsky, D. A., & Smart, W. D. (2011). A panorama interface for telepresence robots. Proceedings of HRI, 177--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Martens, C., Prenzel, O., & Gräser, A. (2007). The rehabilitation robots FRIEND-I & II: Daily life independency through semi-autonomous task-execution. In S. S. Kummo (Ed.), Rehabilitation robotics (pp. 137--162).Google ScholarGoogle Scholar
  38. Mason, M., & Lopes, M. (2011). Robot self-initiative and personalization by learning through repeated interactions. Proceedings of HRI, 433--440. 1957814 Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Mast, M., Burmester, M., Berner, E., Facal, D., Pigini, L., & Blasi, L. (2010). Semi-autonomous teleoperated learning in-home service robots for elderly care: A qualitative study on needs and perceptions of elderly people, family caregivers, and professional caregivers. Proceedings of the 20th International Conference on Robotics and Mechatronics, Varna, Bulgaria, 1--6.Google ScholarGoogle Scholar
  40. McDowell, I. (2006). Measuring health. A guide to rating scales and questionnaires (3rd ed.). New York: Oxford University Press.Google ScholarGoogle Scholar
  41. Merton, R. K., Fiske, M., & Kendall, P. I. (1990). The focused interview. A manual of problems and procedures (2nd ed.). New York: The Free Press.Google ScholarGoogle Scholar
  42. Meyer, S. (2011). Mein Freund der Roboter. Servicerobotik für ältere Menschen - eine Antwort auf den demografischen Wandel? Berlin: VDE-Verlag.Google ScholarGoogle Scholar
  43. Michaud, F., Boissy, P., Labonté, D., Brière, S., Perreault, K., Corriveau, H., ... Létourneau, D. (2010). Exploratory design and evaluation of a homecare teleassistive mobile robotic system. Mechatronics, 20, 751--766.Google ScholarGoogle ScholarCross RefCross Ref
  44. Milligan, C., Roberts, C., & Mort, M. (2011). Telecare and older people: Who cares where? Social Science & Medicine, 72, 347--354.Google ScholarGoogle ScholarCross RefCross Ref
  45. Mukai, T., Hirano, S., Nakashima, H., Kato, Y., Sakaida, Y., Guo, S., & Hosoe, S. (2010). Development of a nursing-care assistant robot RIBA that can lift a human in its arms. Proceedings of IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), Taipei, Taiwan, 5996--6001.Google ScholarGoogle ScholarCross RefCross Ref
  46. Nehaniv, C. L., & Dautenhahn, K. (Eds.). (2007). Imitation and social learning in robots, humans and animals. Behavioural, social and communicative dimensions. Cambridge, UK: Cambridge University Press.Google ScholarGoogle Scholar
  47. Nielsen, C. W., Goodrich, M. A., & Ricks, R. W. (2007). Ecological interfaces for improving mobile robot teleoperation. IEEE Transactions on Robotics, 23, 927--941. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. O'Malley, M. K., & Ambrose, R. O. (2003). Haptic feedback applications for Robonaut. Industrial Robot, 30, 531--542.Google ScholarGoogle ScholarCross RefCross Ref
  49. Pollack, M. E., Brown, L., Colbry, D., Orosz, C., Peintner, B., Ramakrshnan, S., ... Roy, N. (2002). Pearl: A mobile robotic assistant for the elderly. Papers from the AAAI Workshop on Automation as Caregiver (Technical Report WS-02-02). Retrieved from: http://www.aaai.org/Papers/Workshops/2002/WS-02-02/WS02-02-013.pdfGoogle ScholarGoogle Scholar
  50. Ray, C., Mondada, F., & Siegwart, R. (2008). What do people expect from robots? Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice, France, 3816--3821.Google ScholarGoogle ScholarCross RefCross Ref
  51. Rosson, M. B., & Carroll, J. M. (2008). Scenario-based design. In: A. Sears & J. A. Jacko (Eds.), The human-computer interaction handbook (2nd ed., pp. 1041--1060). New York: Lawrence Erlbaum Associates.Google ScholarGoogle Scholar
  52. Sharkey, A., & Sharkey, N. (2012). Granny and the robots: ethical issues in robot care for the elderly. Ethics and Information Technology, 14, 27--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Schermerhorn, P., & Scheutz, M. (2009). Dynamic robot autonomy: Investigating the effects of robot decision-making in a human-robot team task. Proceedings of ICMI-MLMI, Cambridge, MA, USA, 63--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Sheridan, T. B. (1992). Telerobotics, automation, and human supervisory control. Cambridge, MA, USA: MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Shiomi, M., Sakamoto, D., Kanda, T., Ishi, C. T., Ishiguro, H., & Hagita, N. (2008). A semi-autonomous communication robot - a field trial at a train station. Proceedings of HRI, 303--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Song, T. H., Park, J. H., Chung, S. M., Hong, S. H., Kwon, K. H., Lee, S., & Jeon, J. W. (2007). A Study on usability of human-robot interaction using a mobile computer and a human interface device. Proceedings of Mobile HCI, 462--466. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Sung, J., Christensen, H. I., & Grinter, R. E. (2009). Sketching the future: Assessing user needs for domestic robots. Proceedings of IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Toyama, Japan, 153--158.Google ScholarGoogle ScholarCross RefCross Ref
  58. Thayer, R. H., & Dorfman, M. (Eds.). (1990). System and software requirements engineering. Los Alamitos, CA, USA: IEEE Computer Society Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Thomaz, A. L., & Breazeal, C. (2008). Teachable robots: Understanding human teaching behavior to build more effective robot learners. Artificial Intelligence, 172, 716--737. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. United Nations (2010). World Population Ageing 2009. New York: United Nations. Retrieved from: http://www.un.org/esa/population/Google ScholarGoogle Scholar
  61. Wada, K., Shibata, T., Asada, T., & Musha, T. (2007). Robot therapy for prevention of dementia at Home - results of preliminary experiment. Journal of Robotics and Mechatronics, 19, 691--697.Google ScholarGoogle ScholarCross RefCross Ref
  62. Weiss, A., Wurhofer, D., Buchner, R., Tscheligi, M., & Blasi, L. (2009). Development of a teleoperator interface for humanoid robots by means of heuristic evaluation technique. Proceedings of Towards Autonomous Robotic Systems (TAROS), 236--241.Google ScholarGoogle Scholar
  63. Zamora, G., Etxeberria, I., Ansorena, X., García, A., Pigini, L., Facal, D., & Urdaneta, E. (2011). "The house looks messy, but it's easier for me" - Applied ethnography, domestic robotic solutions and elderly people. ESA 10th Conference. Abstract Book, 36--37.Google ScholarGoogle Scholar
Index terms have been assigned to the content through auto-classification.

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader