skip to main content
research-article
Open Access

Multimodal child-robot interaction: building social bonds

Authors Info & Claims
Published:28 January 2013Publication History
Skip Abstract Section

Abstract

For robots to interact effectively with human users they must be capable of coordinated, timely behavior in response to social context. The Adaptive Strategies for Sustainable Long-Term Social Interaction (ALIZ-E) project focuses on the design of long-term, adaptive social interaction between robots and child users in real-world settings. In this paper, we report on the iterative approach taken to scientific and technical developments toward this goal: advancing individual technical competencies and integrating them to form an autonomous robotic system for evaluation "in the wild." The first evaluation iterations have shown the potential of this methodology in terms of adaptation of the robot to the interactant and the resulting influences on engagement. This sets the foundation for an ongoing research program that seeks to develop technologies for social robot companions.

References

  1. Baldridge, J. (2002). Lexically specified derivational control in combinatory categorial grammar. Unpublished doctoral dissertation, University of Edinburgh, United Kingdom.Google ScholarGoogle Scholar
  2. Baldridge, J., & Kruijff, G.-J. (2003). Multi-modal combinatory categorial grammar. In Proceedings of the 10th Annual Meeting of the European Association for Computational Linguistics. Budapest, Hungary. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in cognitive sciences, 11(7), 280--289Google ScholarGoogle Scholar
  4. Baxter, P. (2010). Foundations of a constructivist memory-based approach to cognitive robotics. Unpublished doctoral dissertation, University of Reading, United Kingdom.Google ScholarGoogle Scholar
  5. Baxter, P., Cuayáhuitl, H., Wood, R., Kruijff-Korbayová, I., & Belpaeme, T. (2012). Towards augmenting dialogue strategy management with multimodal sub-symbolic context. In Proceedings of the 35th German conference on Artificial Intelligence (KI) (p. 49--53).Google ScholarGoogle Scholar
  6. Baxter, P., Greeff, J. de, Wood, R., & Belpaeme, T. (2012). "And what is a seasnake?": Modelling the acquisition of concept prototypes in a developmental framework. In Proceedings of the international conference on development and learning and epigenetic robotics. IEEE Press.Google ScholarGoogle Scholar
  7. Baxter, P., Wood, R., & Belpaeme, T. (2012). A touchscreen-based `Sandtray' to facilitate, mediate and contextualise human-robot social interaction. In IEEE/ACM International Conference on Human-Robot Interaction (HRI2012) (p. 105--106). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Baxter, P., Wood, R., Morse, A., & Belpaeme, T. (2011). Memory-centred architectures: Perspectives on human-level cognitive competencies. In P. Langley (Ed.), Proceedings of the AAAI Fall 2011 symposium on Advances in Cognitive Systems (p. 26--33). AAAI Press.Google ScholarGoogle Scholar
  9. Beck, A., Cañamero, L., & Bard, K. (2010). Towards an affect space for robots to display emotional body language. In Ro-man 2010.Google ScholarGoogle Scholar
  10. Beck, A., Cañamero, L., Damiano, L., Sommavilla, G., Tesser, F., & Cosi, P. (2011). Children interpretation of emotional body language displayed by a robot. In Proceedings of the International Conference on Social Robotics (ICSR2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Beck, A., Stevens, B., Bard, K., & Cañamero, L. (2012). Emotional body language displayed by artificial agents. Transactions on Interactive Intelligent Systems (Tiis), 2(1), 2--29 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Betty, H., France, L., Heisel, A., & Beatty, M. (2004). Is there empirical evidence for a nonverbal profile of extraversion?: A meta-analysis and critique of the literature. Communication Monographs, 71(1), 28--48Google ScholarGoogle ScholarCross RefCross Ref
  13. Blanson Henkemans, O., Bierman, E., Janssen, J., Neerincx, M., Looije, R., Bosch, H. v. d., et al. (2012). A personalized robot contributing to enjoyment and health knowledge of children with diabetes at the clinic: a pilot study. Patient Education and Counseling, accepted.Google ScholarGoogle Scholar
  14. Breazeal, C. (2003). Emotion and sociable humanoid robots. International Journal of Human-Computer Studies, 59(1--2), 119--155 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Burton, A., Bruce, V., & Johnston, R. (1990). Understanding face recognition with an interactive activation model. British Journal of Psychology, 81, 361--380Google ScholarGoogle ScholarCross RefCross Ref
  16. Cassimatis, N., Trafton, G., Bugajska, M., & Schultz, A. (2004). Integrating cognition, perception and action through mental simulation in robots. Robotics and Autonomous Systems, 49(1--2), 13--23Google ScholarGoogle Scholar
  17. Cuayáhuitl, H. (2011). Learning dialogue agents with Bayesian relational state representations. In Proceedings of the IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue Systems (IJCAI-KRPDS), Barcelona, Spain (pp. 9--15).Google ScholarGoogle Scholar
  18. Cuayáhuitl, H., & Dethlefs, N. (2011). Optimizing situated dialogue management in unknown environments. In Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), Florence, Italy (pp. 1009--1012).Google ScholarGoogle Scholar
  19. Deci, E., & Ryan, R. (1985). Intrinsic Motivation and Self-determination in human behavior. New York: Plenum Press.Google ScholarGoogle Scholar
  20. Dekens, T., & Verhelst, W. (2011). On noise robust voice activity detection. In 12th Annual Conference of the International Speech Communication Association (INTERSPEECH-2011), Florence, Italy (p. 2649--2652).Google ScholarGoogle Scholar
  21. Draper, T., & Clayton, W. (1992). Using a personal robot to teach young children. Journal of Genetic Psychology, 153(3), 269--273.Google ScholarGoogle ScholarCross RefCross Ref
  22. Fine, A. F. (Ed.). (2010). Handbook on animal-assisted therapy: Theoretical foundations and guidelines for practice (3rd edition). London: Academic Press.Google ScholarGoogle Scholar
  23. Frampton, M., & Lemon, O. (2009). Recent research advances in reinforcement learning in spoken dialogue systems. Knowledge Engineering Review, 24(4), 375--408 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Fuster, J. (1997). Network memory. Trends in neurosciences, 20(10), 451--9Google ScholarGoogle Scholar
  25. Gerosa, M., Giuliani, D., & Brugnara, F. (2007). Acoustic Variability and automatic recognition of children's speech. Speech Communication, 49(10--11, ). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Gonzalez, I., Sahli, H., Enescu, V., & Verhelst, W. (2011). Context-independent facial action unit recognition using shape and Gabor phase information. Affective Computing and Intelligent Interaction, 6974, 548--557 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., et al. (2008). The NAO humanoid: A combination of performance and affordability.Google ScholarGoogle Scholar
  28. Greeff, J. de, Baxter, P., Wood, R., & Belpaeme, T. (2012). From penguins to parakeets: A developmental approach to modelling conceptual prototypes. In PG Conference on Robotics and Development of Cognition at ICANN 2012 (p. 8--11).Google ScholarGoogle Scholar
  29. Hale, R. (2000). Book review: Sandplay therapy with children and families. The Arts In Psychotherapy, 27(1), 75--76Google ScholarGoogle ScholarCross RefCross Ref
  30. Hawes, N., & Wyatt, J. (2010). Engineering intelligent information-processing systems with CAST. Advanced Engineering Informatics, 24(1), 27--39 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Hindriks, K., Neerincx, M., & Vink, M. (2012). The icat as a natural interaction partner. In F. Dechesne, H. Hattori, A. Mors, J. Such, D. Weyns, & F. Dignum (Eds.), Advanced agent technology (Vol. 7068, p. 212--231). Springer Berlin Heidelberg Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Hindriks, K. V. (2009). Programming rational agents in goal. In A. El Fallah Seghrouchni, J. Dix, M. Dastani, & R. H. Bordini (Eds.), Multi-agent programming (p. 119--157). SpringerGoogle ScholarGoogle Scholar
  33. Hiolle, A., Cañamero, L., Andry, P., Blanchard, A., & Gaussier, P. (2010). Using the interaction rhythm as a natural reinforcement signal for social robots: A matter of belief. In Proceedings from the International Conference on Social Robotics (ICSR2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Janssen, J., Wal, C. van der, Neerincx, M., & Looije, R. (2011). Motivating children to learn arithmetic with an adaptive robot game. Amsterdam, The Netherlands.Google ScholarGoogle Scholar
  35. Kanda, T., Hirano, T., Eaton, D., & Ishiguro, H. (2004). Interactive robots as social partners and peer tutors for children: a field trial. Human-Computer Interaction, 19(1), 61--84, &2_4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Kruijff-Korbayová, I., Athanasopoulos, G., Beck, A., Cosi, P., Cuayáhuitl, H., Dekens, T., et al. (2011). An event-based conversational system for the Nao robot. : Springer.Google ScholarGoogle Scholar
  37. Lowenfield, M. (1939). The world pictures of children: A method of recording and studying them. British Journal of Medical Psychology, 18(1), 65--101Google ScholarGoogle ScholarCross RefCross Ref
  38. Masuko, T., Tokuda, K., Kobayashi, T., & Imai, S. (1996). Speech synthesis using HMMs with dynamic features. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing Conference (Vol. 1, pp. 389--392). IEEE Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part 1, an account of basic findings. Psychological Review, 88(5), 375--407Google ScholarGoogle ScholarCross RefCross Ref
  40. Morse, A. F., Greeff, J. d., Belpeame, T., & Cangelosi, A. (2010). Epigenetic robotics architecture. IEEE Transactions on Autonomous Mental Development, 2(4), 325--339. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Muris, P., Meesters, C., & Diederen, R. (2005). Psychometric properties of the big five questionnaire for children (bfq-c) in a dutch sample of young adolescents. Personality and Individual Differences, 38(8), 1757--1769Google ScholarGoogle ScholarCross RefCross Ref
  42. Nalin, M., Baroni, I., Kruijff-Korbayová, I., Canamero, L., Lewis, M., Beck, A., et al. (2012). Childrens adaptation in multi-session interaction with a humanoid robot. In Proceedings of the IEEE RoMan Conference (p. abstract). http://dxGoogle ScholarGoogle Scholar
  43. Nalin, M., Bergamini, L., Giusti, A., Baroni, I., & Sanna, A. (2011). Children's perception of a robotic companion in a mildly constrained setting: How children within age 8--11 perceive a robotic companion. In Proceedings of the Children and Robots workshop at the IEEE/ACM International Conference on Human-Robot Interaction (HRI2011). Lausanne, Switserland.Google ScholarGoogle Scholar
  44. Oveneke, M. C., Enescu, V., & Sahli, H. (2012). Real-time dance pattern recognition invariant to anthropometric and temporal differences. In Proceedings of Advanced Concepts for Intelligent Vision Systems (ACIVS2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Pammi, S. (2011). Prosody control in HMM-based speech synthesis (Tech. Rep.). DFKI Speech Technology Lab, ALIZ-E Project, Saarbrücken, Germany.Google ScholarGoogle Scholar
  46. Read, R., & Belpaeme, T. (2012). How to use non-linguistic utterances to convey emotion in child-robot interaction. In Proceedings of the IEEE/ACM International Conference on Human-Robot Interaction (HRI2012), Boston, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Robben, S. (2011). Facilitate bonding between a child and a social robot: Exploring the possibility of a robot adaptive to personality. Unpublished master's thesis, University of Nijmegen, The Netherlands.Google ScholarGoogle Scholar
  48. Ros, R., Nalin, M., Wood, R., Baxter, P., Looiije, R., Demiris, Y., et al. (2011). Child-robot interaction in the wild : Advice to the aspiring experimenter. In Icmi. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Roy, N., Pineau, J., & Thrun, S. (2000). Spoken dialogue management using probabilistic reasoning. In Proceedings of the 38th Annual Meeting on Association for Computational Linguistics (ACL2000) (p. 93--100). Hong Kong Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Salter, T., Werry, I., & Michaud, F. (2008). Going into the wild in child-robot interaction studies: Issues in social robotic development. Intelligent Service Robotics, 1, 93--108Google ScholarGoogle ScholarCross RefCross Ref
  51. Schröder, M., Charfuelan, M., Pammi, S., & Steiner, I. (2011). Open source voice creation toolkit for the MARY TTS platform. In Proc. interspeech. Florence, Italy.Google ScholarGoogle Scholar
  52. Schröder, M., & Trouvain, J. (2003). The German text-to-speech synthesis system MARY: A tool for research, development and teaching. International Journal of Speech Technology, 6(4), 365--377.Google ScholarGoogle ScholarCross RefCross Ref
  53. Steedman, M. (2000a). Information structure and the syntax-phonology interface. Linguistic Inquiry, 31(4), 649--689.Google ScholarGoogle ScholarCross RefCross Ref
  54. Steedman, M. (2000b). The syntactic process. Cambridge, MA: MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Tanaka, F., Cicourel, A., & Movellan, J. R. (2007). Socialization between toddlers and robots at an early childhood education center. Proceedings of the National Academy of Sciences, 104(46), 17954--17958Google ScholarGoogle ScholarCross RefCross Ref
  56. Thomson, B. (2009). Statistical methods for spoken dialogue management. Unpublished doctoral dissertation, University of Cambridge, United Kingdom.Google ScholarGoogle Scholar
  57. Wang, F., Verhelst, W., & Sahli, H. (2011). Relevance vector machine based speech emotion recognition. In Proceedings of the 4th international conference on affective computing and intelligent interaction - volume part ii (pp. 111--120). Berlin, Heidelberg: Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Williams, J., & Young, S. (2007). Partially observable Markov decision processes for spoken dialog systems. Computer Speech and Language, 21(2), 393--422 Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Wood, R., Baxter, P., & Belpaeme, T. (2012). A review of long-term memory in natural and synthetic systems. Adaptive Behavior, 20(2), 81--103 Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Young, Y., Gasic, M., Keizer, S., Mairesse, F., Schatzmann, J., B., T., et al. (2010). The hidden information state model: A practical framework for pomdp-based spoken dialogue management. Computer Speech and Language, 24(2), 150--174 Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Zalm, A. van der. (2011). Help I need some body! The effects of embodiment on learning in children. Unpublished master's thesis, University of Utrecht, The Netherlands.Google ScholarGoogle Scholar
  62. Zen, H., Tokuda, K., & Black, A. W. (2009). Statistical parametric speech synthesis. Speech Communication, 51(11), 1039 -- 1064 Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader