skip to main content
research-article
Open Access

Coactive design: designing support for interdependence in joint activity

Published:28 February 2014Publication History
Skip Abstract Section

Abstract

Coactive Design is a new approach to address the increasingly sophisticated roles that people and robots play as the use of robots expands into new, complex domains. The approach is motivated by the desire for robots to perform less like teleoperated tools or independent automatons and more like interdependent teammates. In this article, we describe what it means to be interdependent, why this is important, and the design implications that follow from this perspective. We argue for a human-robot system model that supports interdependence through careful attention to requirements for observability, predictability, and directability. We present a Coactive Design method and show how it can be a useful approach for developers trying to understand how to translate high-level teamwork concepts into reusable control algorithms, interface elements, and behaviors that enable robots to fulfill their envisioned role as teammates. As an example of the coactive design approach, we present our results from the DARPA Virtual Robotics Challenge, a competition designed to spur development of advanced robots that can assist humans in recovering from natural and man-made disasters. Twenty-six teams from eight countries competed in three different tasks providing an excellent evaluation of the relative effectiveness of different approaches to human-machine system design.

References

  1. Allen, J. E., Guinn, C. I., & Horvitz, E. (1999). Mixed-initiative interaction. IEEE Intelligent Systems, 14(5), 14--23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Annett, J. (2003). Hierarchical task analysis. In Handbook of Cognitive Task Design (pp. 17--35). London: Lawrence Erlbaum Associates.Google ScholarGoogle Scholar
  3. Bradshaw, J. M., Feltovich, P. J., & Johnson, M. (2011). Human-agent interaction. In G. Boy (Ed.), Handbook of Human-Machine Interaction (pp. 293--302). Farnham, Surrey, UK: Ashgate.Google ScholarGoogle Scholar
  4. Bradshaw, J. M., Feltovich, P. J., Jung, H., Kulkarni, S., Taysom, W., & Uszok, A. (2004). Dimensions of adjustable autonomy and mixed-initiative interaction. In M. Klusch & G. Weiss (Eds.), Agents and Computational Autonomy (Vol. 2969, pp. 17--39). Berlin/Heidelberg: Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bradshaw, J. M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J., ... Uszok, A. (2005). KAA: Policy-based explorations of a richer model for adjustable autonomy. In Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems. The Netherlands: ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bradshaw, J. M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J., ... Uszok, A. (2008). Toward trustworthy adjustable autonomy and mixed-initiative interaction in KAoS. Springer. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary10.1.1.108.1619Google ScholarGoogle Scholar
  7. Bradshaw, J. M., Sierhuis, M., Acquisti, A., Feltovich, P., Hoffman, R., Jeffers, R., ... Van Hoof, R. (2003). Adjustable autonomy and human-agent teamwork in practice: An interim report on space applications. In H. Hexmoor, R. Falcone, & C. Castelfranchi (Eds.), Agent Aunomy (pp. 243--280). Boston, MA: Kluwer Academic Publishers. Retrieved from http://www.loc.gov/catdir/toc/fy036/2003040054.htmlGoogle ScholarGoogle Scholar
  8. Bradshaw, J. M., Dignum, V., Jonker, C. M., & Sierhuis, M. (2012). Introduction to special issue on human-agent-robot teamwork. IEEE Intelligent Systems, 27, 8--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Christoffersen, K., & Woods, D. D. (2002). How to make automated systems team players. Advances in Human Performance and Cognitive Engineering Research, 2, 1--12. Elsevier Science Ltd.Google ScholarGoogle ScholarCross RefCross Ref
  10. Clark, H H, & Brennan, S. (1991). Grounding in communication. In L. B. Resnick, J. M. Levine, & S. D. Teasley (Eds.), Perspectives on Socially Shared Cognition (127--149). Washington, D.C.: American Psychological Association.Google ScholarGoogle Scholar
  11. Clark, Herbert H. (1996). Using language. New York, NY: Cambridge University Press. Retrieved from http://www.loc.gov/catdir/toc/cam023/95038401.htmlGoogle ScholarGoogle Scholar
  12. Crandall, B., & Klein, G. (2006). Working minds: A practitioner's guide to cognitive task analysis. Cambridge, MA: MIT Press.Google ScholarGoogle Scholar
  13. Endsley, M. R., Bolté, B., & Jones, D. G. (2003). Designing for situation awareness: An approach to user-centered design. Boca Raton, FL: Taylor & Francis.Google ScholarGoogle Scholar
  14. Feltovich, P. J., Bradshaw, J. M., Clancey, W. J., & Johnson, M. (2007). Toward an ontology of regulation: Socially-based support for coordination in human and machine joint activity. In G. O'Hare, M. O'Grady, A. Ricci, & O. Dikenelli (Eds.), Engineering Societies in the Agents World VII (Vol. Lecture No, pp. 175--192). Heidelberg, Germany: Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fong, T. W. (2001). Collaborative control: A robot-centric model for vehicle teleoperation. Pittsburgh, PA: Robotics Institute, Carnegie Mellon University.Google ScholarGoogle Scholar
  16. Hoffman, R. R., & Deal, S. V. (2008). Influencing versus informing design, part 1: A gap analysis. IEEE Intelligent Systems, 23(5), 78--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hoffman, R. R., Hayes, P., Ford, K. M., & Bradshaw, J. M. (Eds.). (2012). Collected Essays on Human-Centered Computing, 2001--2011. New York, NY: IEEE Press.Google ScholarGoogle Scholar
  18. Jennings, N. R. (1996). Coordination techniques for distributed artificial intelligence. In G. M. P. O'Hare & N. R. Jennings (Eds.), Foundations of Distributed Artificial Intelligence (pp. 187--210). New York, NY: Wiley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Johnson, M., Bradshaw, J., Feltovich, P., Jonker, C., van Riemsdijk, B., & Sierhuis, M. (2011). The fundamental principle of coactive design: Interdependence must shape autonomy. In M. De Vos, N. Fornara, J. Pitt, & G. Vouros (Eds.), Coordination, Organizations, Institutions, and Norms in Agent Systems VI (Vol. 6541, pp. 172--191). Springer Berlin/Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Johnson, M., Bradshaw, J. M., Feltovich, P. J., Jonker, C. M., van Riemsdijk, B., & Sierhuis, M. (2012). Analyzing autonomy and its relation to interdependence in human-machine systems. IEEE Intelligent Systems, 27(2), 43--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Klein, G., Feltovich, P. J., Bradshaw, J. M., & Woods, D. D. (2005). Common ground and coordination in joint activity. In W. B. Rouse & K. R. Boff (Eds.), Organizational Simulation (pp. 139--184). Retrieved fromGoogle ScholarGoogle Scholar
  22. Klein, G., Woods, D. D., Bradshaw, J. M., Hoffman, R. R., & Feltovich, P. J. (2004). Ten challenges for making automation a "team player" in joint human-agent activity. IEEE Intelligent Systems, 19(6), 91--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Koenig, N., & Howard, A. (2004). Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (Vol. 3, pp. 2149--2154).Google ScholarGoogle ScholarCross RefCross Ref
  24. Larson, C. E., & LaFasto, F. M. J. (1989). Teamwork: What must go right, what can go wrong. Sage Series in Interpersonal Communication, 10, 150. Newbury Park, CA: SAGE Publications.Google ScholarGoogle Scholar
  25. Malone, T. W., & Crowston, K. (1994). The interdisciplinary study of coordination. ACM Computing Surveys, 26(1), 87--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. March, J. G., Simon, H. A., & Guetzkow, H. S. (1993). Organizations (2nd ed.). Cambridge, Mass., USA: Blackwell.Google ScholarGoogle Scholar
  27. Murphy, R. R., & Burke, J. L. (2008). From remote tool to shared roles. IEEE Robotics & Automation Magazine, 15(4), 39--49.Google ScholarGoogle ScholarCross RefCross Ref
  28. Parasuraman, R., Sheridan, T., & Wickens, C. (2000). A model for types and levels of human interaction with automation. IEEE Transactions on Systems, Man and Cybernetics, Part A, 30(3), 286--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Schraagen, J. M., Chipman, S. F., & Shalin, V. L. (2009). Cognitive task analysis. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.Google ScholarGoogle Scholar
  30. Sheridan, T. B. (1992). Telerobotics, automation, and human supervisory control. Cambridge, MA: MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sierhuis, M., Bradshaw, J. M., Acquisti, R., Hoof, R. Van, & Jeffers, R. (2003). Human-agent teamwork and adjustable autonomy in practice. In Proceedings of the Seventh International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS). Nara, Japan.Google ScholarGoogle Scholar
  32. Smith-Jentsch, K. A., Zeisig, R. L., Acton, B., & McPherson, J. A. (1998). Team dimensional training: A strategy for guided team self-correction. In J. B. Cannon-Bowers & E. Salas (Eds.), Making decisions under stress: Implications for individual and team training(271--297). Washington D.C., American Psychological Association.Google ScholarGoogle Scholar
  33. Sycara, K. (2002). Integrating agents into human teams. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 46, pp. 413--417).Google ScholarGoogle ScholarCross RefCross Ref
  34. Sycara, K., & Sukthankar, G. (2006, November). Literature Review of Teamwork Models. Pittsburgh, PA: Tech. Report CMU-RI-TR-06-50, Robotics Institute, Carnegie Mellon University.Google ScholarGoogle Scholar
  35. Thibaut, J. W., & Kelley, H. H. (1959). The social psychology of groups. New York, NY: Wiley.Google ScholarGoogle Scholar
  36. Thompson, J. D. (1967). Organizations in action; social science bases of administrative theory. New York, NY: McGraw-Hill.Google ScholarGoogle Scholar
  37. Wyrobek, K. A., Berger, E. H., Van der Loos, H. F. M., & Salisbury, J. K. (2008). Towards a personal robotics development platform: Rationale and design of an intrinsically safe personal robot. In Proceedings of the IEEE International Automation (ICRA).Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader