Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[19]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:5

Sadržaj

članak: 1 od 1  
2016, vol. 44, br. 2, str. 133-138
Eksperimentalna istraživanja glodanja žljeba od legure titanijuma primenom obrade abrazivnim vodenim mlazom
aCollege of Engineering Guindy, Anna University, Chennai, India
bSt Josephs College Of Engineering, Chennai, India
cSt Josephs College OF Engineering, Anna University, Chennai, India

e-adresakb@annauniv.edu
Projekat:
Special Assistance Programme (SAP) by the University Grants Commission (UGC), Government of India, New Delhi, India to carry out this research work under the sanctioned project titled: Abrasive Water Jet Machining for High Strength Materials

Sažetak
Obrada abrazivnim vodenim mlazom je jedan od najrasprostranjenijih nekonvencionalinih procesa obrade materijala teških za obradu. Pored obrade rezanjem, koristi se za i za obradu struganjem, narezivanje navoja, izradu žljebova, glodanje, itd. U ovom radu podrobno su prikazana eksperimentalna istraživanja obrade titanijuma (TOAMV) abrazivnim vodenim mlazom primenom granatnog abraziva. Vršena su ispitivanja uticaja pritiska vodenog mlaza, razmaka između putanja alata, brzina putanje alata i brzine protoka abrazivne mase na konačne vrednosti dubine rezanja i rapavosti površine. Plan eksperimenata je napravljen pomoću programskog paketa L9 Orthogonal Array dok je ANOVA analiza varijanse bila od pomoći kod određivanja značaja procesa. ANOVA analiza dubine rezanja je pokazala da su razmak između putanja alata i brzina putanje alata dva najvažnije parametra procesa. Međutim, ANOVA analiza rapavosti površine nije dala ubedljive rezultate i parametri od značaja za proces obrade nisu mogli biti određeni.
Reference
Ahmad, J. (2009) Machining of Polymer Composites. Springer
Alberdi, A., Rivero, A., de Lacalle, L. N. L. (2011) Experimental Study of the Slot Overlapping and Tool Path Variation Effect in Abrasive Waterjet Milling. Journal of Manufacturing Science and Engineering, 133(3): 034502
Dadkhahipour, K., Nguyen, T., Wang, J. (2012) Mechanisms of channel formation on glasses by abrasive waterjet milling. Wear, 292-293: 1-10
Escobar-Palafox, G.A., Gault, R.S., Ridgway, K. (2012) Characterisation of Abrasive Water-jet Process for Pocket Milling in Inconel 718. Procedia CIRP, 1: 404-408
Ezugwu, E.O. (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. International Journal of Machine Tools and Manufacture, 45(12-13): 1353-1367
Fowler, G., Pashby, I.R., Shipway, P.H. (2009) The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear, 266(7-8): 613-620
Fowler, G., Shipway, P.H., Pashby, I.R. (2005) A technical note on grit embedment following abrasive water-jet milling of a titanium alloy. Journal of Materials Processing Technology, 159(3): 356-368
Haghbin, N., Spelt, J.K., Papini, M. (2015) Abrasive waterjet micro-machining of channels in metals: Comparison between machining in air and submerged in water. International Journal of Machine Tools and Manufacture, 88: 108-117
Hascalik, A., Çaydaş, U., Gürün, H. (2007) Effect of traverse speed on abrasive waterjet machining of Ti-6Al-4V alloy. Materials & Design, 28(6): 1953-1957
Hashish, M. (1998) Controlled-Depth Milling of Isogrid Structures With AWJs. Journal of Manufacturing Science and Engineering, 120(1): 21
Kong, M.C., Axinte, D., Voice, W. (2011) An innovative method to perform maskless plain waterjet milling for pocket generation: a case study in Ti-based superalloys. International Journal of Machine Tools and Manufacture, 51(7-8): 642-648
Kong, M.C., Axinte, D., Voice, W. (2010) Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide. Journal of Materials Processing Technology, 210(3): 573-584
Kumar, N., Shukla, M. (2012) Finite element analysis of multi-particle impact on erosion in abrasive water jet machining of titanium alloy. Journal of Computational and Applied Mathematics, 236(18): 4600-4610
Momber, A.W., Kovačević, R. (1998) Principle of abrasive waterjet machining. London: Spinger-Verlag
Paul, S., Hoogstrate, A.M., van Luttervelt, C.A., Kals, H.J.J. (1998) Analytical modelling of the total depth of cut in the abrasive water jet machining of polycrystalline brittle material. Journal of Materials Processing Technology, 73(1-3): 206-212
Shipway, P.H., Fowler, G., Pashby, I.R. (2005) Characteristics of the surface of a titanium alloy following milling with abrasive waterjets. Wear, br. 258, str. 123-132
Wang, J., Guo, D. (2003) The cutting performance in multipass abrasive waterjet machining of industrial ceramics. Journal of Materials Processing Technology, 133(3): 371-377
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fmet1602133K
objavljen u SCIndeksu: 25.06.2016.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka