Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 1 od 1  
Entalpija i Gibsova energija solvatacije protona i elektrona - uticaj solvatacionih modela
aUniverzitet u Kragujevcu, Prirodno-matematički fakultet, Srbija
bIstraživačko razvojni centar za bioinženjering - BioIRC, Kragujevac, Srbija
cDžavni univerzitet u Novom Pazaru, Srbija

e-adresajelena.tosovic@kg.ac.rs, mark@kg.ac.rs, deki82@kg.ac.rs, zmarkovic@np.ac.rs
Projekat:
Dinamika nelinearnih fizičkohemijskih i biohemijskih sistema sa modeliranjem i predviđanjem njihovih ponašanja pod neravnotežnim uslovima (MPNTR - 172015)
Sinteza, modelovanje, fizičko-hemijske i biološke osobine organskih jedinjenja i odgovarajućih kompleksa metala (MPNTR - 172016)

Ključne reči: solvatisani proton; solvatisani elektron; dvadeset rastvarača; solvatacioni model C-PCM
Sažetak
Izvedeno je sistematično ispitivanje entalpije i Gibsove energije solvatacije protona i elektrona u dvadeset rastvarača različite polarnosti. Primenjeno je jedanaest kvantno mehaničkih metoda u kombinaciji sa bazisnim skupom 6-311++G(d,p) i solvatacionim modelom C-PCM. Ustanovljeno je da različite metode rezultiraju u konzistentnim vrednostima za entalpiju i Gibsovu energiju solvatacije protona kod svih rastvarača, dok se odgovarajuće vrednosti za elektron međusobno dosta razlikuju. Minesota funkcionali često vode do nekonzistentnih vrednosti za entalpiju i Gibsovu energiju solvatacije elektrona, što ukazuje na njihovu nepouzdanost kada se primenjuju bez odgovarajućeg solvatacionog modela SMD. Ostale ispitane metode veoma malo zavise od solvatacionog modela. Poređenje rezultata ovog istraživanja sa rezultataima koji su dobijeni uz primenu modela SMD pokazuje da C-PCM proizvodi nešto negativnije (manje pozitivne) entalpije i Gibsove energije solvatacije elektrona, dok su vrednosti za proton manje negativne. Ovakvi rezultati su u saglasnosti i sa podacima iz literature koji se odnose na solvatacioni model IEF-PCM.
Reference
Atkins, P.W. (1998) Physical chemistry. Oxford, itd: Oxford University Press / OUP
Bartmess, J.E. (1994) Thermodynamics of the Electron and the Proton. Journal of Physical Chemistry, 98(25): 6420-6424
Becke, A.D. (1993) Density-functional thermochemistry, III: The role of exact exchange. Journal of Chemical Physics, 98 (7), str. 5648-5652
Bockris, J.O`M., Reddy, A.K.N. (1970) Modern Electrochemistry. New York: Plenum
Coe, J.V. (2001) Fundamental properties of bulk water from cluster ion data. International Reviews in Physical Chemistry, 20(1): 33-58
Conway, B.E. (1964) Proton solvation and proton transfer processes in solution. u: Bockris J.O.M., Conway B.E. [ur.] Modern Aspects of Electrochemistry, London: Butterworth-Heinemann
Cossi, M., Rega, N., Scalmani, G., Barone, V. (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry, 24(6): 669-681
Curtiss, L.A., Raghavachari, K., Redfern, P.C., Pople, J.A. (2000) Assessment of Gaussian-3 and density functional theories for a larger experimental test set. Journal of Chemical Physics, 112(17): 7374-7383
Donald, W.A., Demireva, M., Leib, R.D., Aiken, M. J., Williams, E.R. (2010) Electron Hydration and Ion−Electron Pairs in Water Clusters Containing Trivalent Metal Ions. Journal of the American Chemical Society, 132(13): 4633-4640
Fifen, J.J., Nsangou, M., Dhaouadi, Z., Motapon, O., Jaidane, N. (2011) Solvent effects on the antioxidant activity of 3,4-dihydroxyphenylpyruvic acid : DFT and TD-DFT studies. Computational and Theoretical Chemistry, 966(1-3): 232-243
Fifen, J.J., Nsangou, M., Dhaouadi, Z., Motapon, O., Jaidane, N. (2013) Solvation Energies of the Proton in Methanol. Journal of Chemical Theory and Computation, 9(2): 1173-1181
Grimme, S. (2006) Semiempirical hybrid density functional with perturbative second-order correlation. Journal of Chemical Physics, 124(3): 034108
Grimme, S. (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15): 1787-1799
Grimme, S., Antony, J., Ehrlich, S., Krieg, H. (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 132(15): 154104
Halliwell, H.F., Nyburg, S.C. (1963) Enthalpy of hydration of the proton. Transactions of the Faraday Society, 59: 1126
Han, P., Bartels, D.M. (1990) Reevaluation of Arrhenius parameters for hydrogen atom + hydroxide .fwdarw. (e-)aq + water and the enthalpy and entropy of hydrated electrons. Journal of Physical Chemistry, 94(18): 7294-7299
Head-Gordon, M., Pople, J.A., Frisch, M.J. (1988) MP2 energy evaluation by direct methods. Chemical Physics Letters, 153(6): 503
Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V. (2013) Gaussian 09, Rev D.1. Wallingford CT: Gaussian Inc
Marcus, Y. (1987) The thermodynamics of solvation of ions. Part 2.—The enthalpy of hydration at 298.15 K. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83(2): 339
Marenich, A.V., Cramer, C.J., Truhlar, D.G. (2009) Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. Journal of Physical Chemistry B, 113(18): 6378-6396
Marković, Z., Milenković, D., Đorović, J., Jeremić, S. (2013) Solvation enthalpies of the proton and electron in polar and non-polar solvents. Journal of Serbian Society for Computational Mechanics, vol. 7, br. 2, str. 1-9
Marković, Z., Tošović, J., Milenković, D., Marković, S. (2016) Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents. Computational and Theoretical Chemistry, 1077: 11-17
Mejı́as, J.A., Lago, S. (2000) Calculation of the absolute hydration enthalpy and free energy of H+ and OH−. Journal of Chemical Physics, 113(17): 7306-7316
Rashin, A.A., Namboodiri, Krishnan. (1987) A simple method for the calculation of hydration enthalpies of polar molecules with arbitrary shapes. Journal of Physical Chemistry, 91(23): 6003-6012
Rottmannová, L., Škorňa, P., Rimarčík, J., Lukeš, V., Klein, E. (2013) Solvation enthalpies of the proton in polar and non-polar solvents: Theoretical study. Acta Chimica Slovaca, 6(1): 60-63
Schwarz, H.A. (1991) Enthalpy and entropy of formation of the hydrated electron. Journal of Physical Chemistry, 95(17): 6697-6701
Shiraishi, H., Sunaryo, G.R., Ishigure, K. (1994) Temperature Dependence of Equilibrium and Rate Constants of Reactions Inducing Conversion between Hydrated Electron and Atomic Hydrogen. Journal of Physical Chemistry, 98(19): 5164-5173
Škorňa, P., Rimarčík, J., Klein, E. (2014) Solvation enthalpies of the electron in polar and non-polar solvents: Theoretical study. Acta Chimica Slovaca, 7(1): 31-33
Tao, J., Perdew, J.P., Staroverov, V.N., Scuseria, G.E. (2003) Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Physical Review Letters, 91(14)
Tissandier, M.D., Cowen, K.A., Feng, W.Y., Gundlach, E., Cohen, M.H., Earhart, A.D., Coe, J.V., Tuttle, T.R. (1998) The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data. Journal of Physical Chemistry A, 102(40): 7787-7794
Zhao, Y., Schultz, N.E., Truhlar, D.G. (2006) Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation, 2(2): 364-382
Zhao, Y., Truhlar, D.G. (2008) Density Functionals with Broad Applicability in Chemistry. Accounts of Chemical Research, 41(2): 157-167
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/jsscm1602066T
objavljen u SCIndeksu: 25.03.2017.

Povezani članci

Nema povezanih članaka