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Insulated Loop Antenna Immersed in a
Conducting Medium

James R. Wait

A solution is given for the fields of a circular loop in a conducting medium. The loop
is assumed to have a uniform current, and it is enclosed by a spherical insulating cavity.
The impedance of the loop is also considered. It is shown that the power radiated from the
loop varies approximately as the reciprocal of the radius of the cavity for a specified loop
current. Furthermore, if the cavity is electrically small, relative to the external medium,
the radiation field is not significantly affected by the presence of the cavity.

1. Introduction

There has been some interest shown in recent years on the subject of radiating systems
immersed in dissipative media [1 to 9]."  Such a condition exists when transmitting antennas
are located in sea water, buried beneath the ground, or surrounded by an ionized medium, such
as the ionosphere. Most investigators have considered only the propagation aspects of the
general problem. That is, attention was devoted only to the radiated field for a specified
antenna current. An associated, and a usually much more difficult problem; is the calculation
of the impedance of the antenna.

Tai [1], in an interesting analysis, showed that for a Hertzian electric dipole in a dissipative
medium, infinite power is required to produce a finite field strength at some distant point in the
medium. This difficulty 1s overcome when the dipole is placed in an insulated cavity. It has
also been shown that a magnetic-dipole-type antenna was more efficient than an electric-
dipole-type antenna [2, 5].

It is the purpose of the present paper to reinvestigate the problem treated before. Spe-
cifically, the impedance and fields are caleulated for a circular loop with a spherical insulating
avity, all immersed in a homogeneous dissipative medium. In the previous analysis [5], the
loop was represented as a magnetic dipole at the center of the cavity. It was implied that the
dimensions of the loop were small compared to those of the cavity. In this sequel, these limi-
tations are removed by treating the problem from another viewpoint.

In terms of spherical coordinates (7, 6, ¢) the insulating cavity is defined by »<Z @ and has a
dielectrie constant, ¢. The exterior homogeneous dissipative medium, 7 _>a, has a dielectric
constant, ¢, and a conductivity, . The permeability, g, of both regions is taken to be that of
free space. The loop, for the moment, is considered to be a single turn carrying a uniform
current, I.  The coordinates of the loop are 6=p3 and r=b, so that the axis of the (circular) loop
passes through the center of the spherical cavity (see fig. 1).

The dimensions of the cavity are taken to be very small compared to the wavelength,
which suggests that a quasi-static approach to the problem should be adopted. As a conse-
quence, the fields are a solution of Laplace’s equation inside the cavity and a solution of the
wave equation outside. Although it is not necessary to invoke the quasi-static assumption for
the field calculation, it leads to the desired result in a direct fashion without becoming en-
cumbered with a myriad of spherical Bessel functions. Furthermore, in any instance where
the cavity was not small compared to the wavelength, the assumption of uniform current around
the loop would be a poor one for a localized generator.

1 Figures in brackets indicate the literature references at the end of this paper.
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Frcvre 1. Circular loop antenna in a spherical insulating
cavity.

The surrounding homogeneous dissipative medium is infinite in extent.

2. Formal Solution

In view of the polar symmetry of the stated problem, the usual vector potential, A, has

only an azimuthal component, A. The nonvanishing field components are then given by

E, ——ipoA,
1 o(Ar)
Hy=— 250 (1)
H=—L1 2Asing
" rsingof” 2o

The (quasi-static) form of the vector potential of the primary field of a circular loop_in an

msulating space can be expressed in terms of spherical harmonies (see appendix):
sm B =
rAr— 1)1 ])1 ((,,)\ B (2)
2 n—l”(”+1) r o ! )

for »>b, where I’} is the associated lLegendre function. To account for the spherical wall of
the cavity, a secondary field, A% must be added. Because it is also a solution of Laplace’s

equation and is finite »=0, it must be of the form

Ismﬁ 2, S.b r)”*‘ )
A= -)  Plicos 0)P)(cos B) 3
for r<Za, where S, is an unknown coeflicient.

The field in the external region is a solution of the wave equation, and furthermore the

solution must give rise to outgoing waves at infinity. Therefore,
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for » >a, where k,(2) is a spherical Hankel function defined by

k(o) =e-i3n—AFml (5)

—mn— m)’(Zz)i”

= (lpow—enw?)’2, and 7', is an unknown coefficient. The boundary condition at r=a requires
the continuity of £, and .  The solution of the resulting algebraic equations leads to

| nta, b 2n+1 ‘
S _I:('l Aell)= a,,](a) (6)
m (2n—+1) _
Tu= [(n—Hf)f:a :I( (7)
a":[ r;i log k(2 ):| e

When S, and 7, are inserted into eq (3) and (4), the complete solution is obtained.

and

where

3. Discussion of Result

It is now of interest to investigate the influence of the cavity on the external fields.  With
this in mind, A, for » >a, 1s written in the form

I sin B & b k,(yr)n!

o = T ! 5) YAl o1 S D1 <8 (:
I's 2 ”21”(”%_]\) (2“\)' ( b) (n><1 ((() 017/((() B)v \%)
where
y 2n—+1 (2n)!
(l"ﬁ[('%”‘ a ] n!(2va)"k,(va) ©)

It can be readily verified that lim (,=1. When this limiting form is inserted into eq (8),
ya—0

the resulting expression would be the field of a small loop in an infinite dissipative medium
without any cavity. Specific values of 7, for finite ya are

3e°
Gh=———; (10)
D RO e )
and
: 15¢7
Gy=—— s 11
© 15+4-1524-62%4-2° (1)
where z=~a. The value ; can be regarded as the ratio of the effective dipole moment for a
loop in an insulated cavity to that of the loop without any cavity. It agrees with a result

given previously [5] by a somewhat different method. (/5 is the corresponding ratio for the

next higher multipole term. For most cases of practical interest, ya is somewhat less than
unity, and the multipole terms are not important in the external region when y7 is large com-
pared to one. Furthermore, in this case

.
G]:l—i—:ﬁr—}—. o o221l

and the external fields for a specified loop current are not dependent on the presence of the
cavity.
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Attention is now turned to the effect of the cavity on the impedance of the circular loop.
The impedance of the loop in free space is denoted Z;, which is assumed known. The im-
pedance of the loop inside the cavity is then written

Z:Z()+ AZ

where AZ is the incremental change due to the finite size of the cavity. AZ is the secondary
electric field £ integrated along the circumference for a unit loop current. Therefore,

AZ:i#wAsg}lz (12)
. = T, b2l ;
==7uw sin B(rb) 2 ot D) EZ) Pl(cos B)PL(cos 0), (13)

where 7', is given by eq (7). The above expression is simplified somewhat in the important
case where |ya| is small compared to unity, because then

2 2
T2 =t nen—1 " (=

neglecting terms containing (ya)?, (ya)!, ete. Furthermore, if 6=p==/2, it follows that

_\ZN(,uw)Q(U—i-’iwe)S"“’ © 6 <é 2n—2
- bra a=1 n(n+1)2n+1)(2n—1) \a

N(uw)2(0+7:we)S2 1 /b\*, 1 /b\* _
T e [“is a) +76<a>+- : ] (15)

where S==b*.  When displacement currents are negligible (i. e., we< o) and (b/a)’<1,

(uw)’oS?.

7~
e 6Gmra

(16)

For a specified current, 7, on the loop, the power supplied to the surrounding conducting medium
is then given by

e e B (n
— 127a
which agrees with a previous result [5] derived from energy considerations.

Although the preceding analysis refers to a single-turn loop, the results are directly appli-
cable to a loop of N turns by replacing S by SN. The appropriate expression must also be used
for Z,, of course.

It would appear that power radiated from the loop for a specified current varies approxi-
mately as the reciprocal of the diameter of the cavity. 'This conclusion is not modified to any
extent by the finite size of the loop in the cavity.

4. Appendix

It is well known that the vector potential can be obtained from a volume integration over
the contained current. Furthermore, because the loop has a filamental uniform current with
a component only in the ¢ direction, the vector potential has polar symmetry and has only a
¢ component A; it is given by the line integral

il

2w
AP:Er c_()]s)@ b sin Bdé, (18)
0 L
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where ¢, is the azimuthal coordinate for a point on the loop relative to the reference plane, and
where
R2=7r24-b>—2rb cos Q

and cos Q=cos 0 cos S+ sin 0 sin B cos ¢;.  Now the factor 1// is a solution of Laplace’s equa-
tion and can be written in terms of spherical harmonies; as is well known [10].

1 = L (=)l Al
= 2. 2 en, =y Prlcos 0)P3(cos B) - cos mé, (19)
i n=0 m=0 (n’+ nL)' 7’"/()"4_1; 7‘<b,

where =1, ¢,=2 (m5£0), and where the P} are the associated Legendre polynomials. On
inserting the above expression for 1/R, and utilizing orthogonality, eq (18) reduces to

Ap:ZSillv[‘zZ“) Pl(cos 6)Pl(cos B) (b/ryr+t; r>b
2 4 wltD) (b)"; r<b,

which is the desired result.
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