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Abstract

We consider a diffuse-interface model for fluid-fluid systems. In classical models,

an interface between two fluids is treated as infinitely thin, or sharp, and is endowed

with properties such as surface tension. Diffuse-interface theories replace this sharp

interface with continuous variations of an order parameter such as density in a way

consistent with microscopic theories of the interface. Surface tension effects, for exam-

ple, are incorporated into the model through a modified stress tensor in the classical

Navier-Stokes equations. We relate the diffuse-interface model to classical, sharp in-

terface models by deriving asymptotically the governing equations and the associated

boundary conditions used in the sharp-interface formulation. We illustrate the diffuse-

interface approach by modehng internal gravity waves, which have been observed ex-

perimentally by Berg et al. in xenon near its critical point. We obtain static density

profiles, compute internal wave frequencies and compare with their experimental data

and theoretical (classical) results both above and below the critical temperature. The

results reveal a singularity in the diffuse-interface model in the limit of incompressible

perturbations.
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1. Introduction

Classical models of fluid-fluid systems treat the interfacial region between two fluids as

an infinitely thin, or sharp, dividing surface and endow it with properties such as surface

tension. Properties such as density take on their bulk values all the way up to the point

of discontinuity. The equations of motion are solved in separate domains and the interface,

where appropriate boundary conditions are applied, must be tracked explicitly.

In diffuse-interface theory, the interfacial region is represented by continuous variations

of an order parameter such as density in a way consistent with microscopic theories of the

interface (e.g. Rowlinson and Widom^). These density variations, which give the interface

nonzero thickness and internal structure, connect smoothly to the bulk values of the density

on either side of the interface. Interfacial excess quantities are defined in terms of the

density variations through this region. Consequently, these excess quantities, rather than

being defined on a two-dimensional surface, are distributed throughout a three-dimensional

layer. The equations of motion, modified to account for the presence of this layer, apply over

the entire domain. The interfacial region is then identified by a range of constant density

contours; no interface tracking is required.

Diffuse-interface theories have been used successfully in modeling solidification and phase

transitions. A notable example is the computation of dendritic growth (e.g. Kobayashi^,

Wheeler et al.^ and Warren and Boettinger^). These models have focused on diffusive mech-

anisms (thermal and solutal) and have not addressed advective transport.

Recently, there have been studies of a variety of complex hydrodynamic phenomena using

the diffuse-interface approach. Antanovskii® developed a diffuse-interface model describing

fluid flow, with heat and species transport for a binary fluid where composition was the or-

der parameter. A capillary tensor, which accounted for capillary forces associated with the

interfacial region, was derived using reversible thermodynamic arguments and the surface

tension given in terms of the excess internal energy. This model was illustrated by computing

thermocapillary-driven flow in a gap. A similar diffuse-interface model describing the motion

of an isothermal binary fluid was considered by Gurtin et al.^, whose derivation was based on

microforce balance laws. The model consisted of modified Navier-Stokes equations, which

included a capillary tensor accounting for interfacial forces, and a coupled Cahn-Hilliard

equation for the composition modified to account for hydrodynamic transport. A model

for incompressible, immiscible fluids, where the order parameter was a conserved quantity

transported with the fluid (e.g. density), was also described. Those authors illustrated their

approach by computing the coarsening and the associated fluid motion for a binary fluid.

Chella and Vinals^ used this model to compute the mixing and interfacial stretching of a

binary fluid in a shear flow. Jasnow and Vinals® studied thermocapillary drop migration and

coalescence as well as spinodal decomposition using this model. In addition, they presented

a derivation of the model using a Hamiltonian formalism. Jacqmin^ addressed a number of

complex flows, including droplet breakup, wave-breaking and contact-line motion using the
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diffuse-interface approach. His formulation included a wall potential to model the surface

energy of the container boundary. All of the above computations demonstrate the unique

capabilities of the diffuse-interface approach to model flows involving complex interface mor-

phologies and topological changes.

A situation in which diffuse-interface theory arises naturally is in the description of a

fluid near its critical point. Even in the absence of complex interface shapes as described

above, this situation can involve nontrivial interfacial phenomena. At temperatures below

the critical point, two distinct fluid phases, separated by an interface, coexist. At temper-

atures above the critical point, only a single fluid phase is present; the interface ceases to

exist. As the critical temperature is approached from below, the interface becomes infinitely

diffuse. There has been a wealth of literature devoted to the study of the dynamics of a

diffuse interface in the context of critical phenomena. FelderhoH° derived a set of equations

governing the dynamics of the diffuse interface near the critical point of a pure fluid using

a Lagrangian formalism. Langer and Turski^^ developed a similar hydrodynamic model to

describe condensation (nucleation) of a vapor near its critical point using a coarse-grained

(diffuse-interface) approach. Extensive analysis using renormalization-group techniques have

been performed on a diffuse-interface model (‘Model H’, as it is commonly known in the

literature^^) which describes the dynamics of a binary fluid phase transition as well as a

pure fluid near its critical point (e.g. Halperin et al}^, Siggia et and Hohenberg and

Halperin^^). A similar modeH^ has been used to study the dynamics of a near-critical fluid

in a shear flow (Onuki and Kawasaki^® and Onuki et al}^)

These diffuse-interface models share common features with those developed from a more

computational point of view. Brackbill et al}^ developed a ‘continuum surface force’ model

wherein they identified a volume force which represents surface tension spread over a small

but finite three-dimensional interfacial domain. This volume force was related to a ‘color’

function which, for example, can represent density for incompressible flows. The defining

characteristics of this volume force were that it gives the correct surface force in the limit

of a sharp interface and is nonzero only in the interfacial region. Another related approach

has been described by Unverdi and Tryggvason^®’^°. Their approach is a front-tracking

technique which employs a numerically-diffuse description of the interface. They construct

an indicator function, based on the known position of the (sharp) interface, which identifies

fluid properties such as density and viscosity. This function is then artificially spread out

over a small region on the scale of the computational mesh size, allowing the fluid properties

to vary smoothly through this interfacial region. The surface force (i.e. surface tension) is

also distributed over this interfacial region so that a single-domain approach can then be

used to calculate the flow. This flow then determines how the interface is advected.

Recently, a unique hydrodynamic phenomena that occurs near a fluid’s critical point has

been described and analyzed by Berg et They found that, owing to its large compress-

ibility near the critical point, xenon stratifies under its own weight and that this density

stratification supports internal gravity waves when perturbed. In contrast to geophysical

3



applications where length scales can be on the order of miles, the stratification in near-

critical xenon occurs on the scale of centimeters. Experimentally, they measured internal

gravity wave frequencies as a function of temperature, both above and below the critical

temperature. Their theoretical development consisted of two separate classical models; one

that applied above the critical temperature (single-phase region) and another that applied

below the critical temperature (two-phase region). In each case, they used the restricted

cubic modeP^’^^ as the equation of state.

It is in the context of critical phenomena that we shall apply the diffuse-interface approach

to fluid motion. Our first objective is to formulate a diffuse-interface model for a pure fluid

near its critical point. Of specific interest here will be the interpretation in terms of the

underlying global quantities (mass, energy and entropy) and their associated global balance

laws. Our second objective is to analyze the model in the sharp-interface limit in order to

recover both the governing equations and interfacial conditions of the classical model. Our

third objective is to illustrate the diffuse-interface approach using a model for internal gravity

waves in xenon, which follows the work of Berg et The present approach, which applies

both above and below the critical temperature, shall be compared with their experimental

and theoretical results. The focus here is to use this application to highlight the diffuse-

interface model rather than to improve on the good agreement between the experiments

and the classical theory used by Berg et al?^ Consequently, we shall use a simpler equation

of state, which allows an analytical solution for the density profile, rather than the more

accurate but complicated restricted cubic model used by Berg et al.

In Section 2 we formulate the diffuse-interface model which describes the compressible,

adiabatic motion of a single-component fluid near its critical point. In Section 3 we derive

the classical sharp-interface governing equations and associated boundary conditions from

the diffuse-interface model. In Section 4 we outline the configuration used by Berg et

to study internal gravity waves in near-critical xenon. In Section 5 we obtain static density

profiles using an approximate van der Waals equation of state. In Section 6 we compute

internal gravity wave frequencies associated with these profiles and compare with the results

of Berg et al. A discussion of the results is given in Section 7, and a conclusion is given in

Section 8. We include in the appendices a derivation of the diffuse-interface equations which

take into account viscous and thermal dissipation.

2. Formulation

The hydrodynamic equations governing inviscid, compressible flow of a single-component

fluid near its critical point (e.g. Felderhoff°, Langer and Turski^^, Hohenberg and Halperin^^,

Gurtin et al.^, Jasnow and Vinals® and Jacqmin®) are given by

^ + V(pu) = 0, (la)
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p —Vp — pgz + KV T (lb)(J + („.V)u) =

ds— + u-\/s =
0, (Ic)

where p is the fluid density, u is the three-dimensional fluid velocity with components

(u, Ujtn), p — p{s,p') is the thermodynamic pressure specifled by an appropriate equation

of state, s(T,p) is the entropy per unit mass, T is the temperature, g is the gravitational

acceleration, z is the unit normal in the vertical direction, K is the gradient energy coefficient

which for simplicity we assume to be constant, and T is the capillary tensor given by

T= (^>VV + llV;Op)/-V^®Vp, (2)

where I is the identity matrix and 0 is the tensor (outer) product. Note that T has the

property

V-T = ^V(VV). (3)

The key difference between these equations and the classical equations describing a two-

fluid system is the presence of a capillary tensor T which models capillary forces associated

with the interface. Korteweg^^ was the first to use such a term to describe capillary effects of

a diffuse interface. The presence of this term allows these equations to apply over the entire

domain, including the interfacial region; no interfacial conditions are required. Boundary

conditions applied at container walls, for example, are required. These shall be discussed

more thoroughly as needed for the present work. The intersection of the diffuse interface

and a container boundary is, in general, a moving contact line and is not treated here but

has been discussed to some extent by Cahn^® and by Jacqmin®.

In order to understand the nonclassical capillary terms appearing in the momentum

equation and in the local entropy balance, it is helpful to relate equations (1) to global

quantities and balance laws. We define the mass M, energy E and entropy 5 in a material

subvolume Q,[t) of the total volume V by

The total mass is given simply by the integral over the local density. The total energy is

composed of classical and nonclassical contributions. The classical terms include kinetic

energy, gravitational potential energy and internal energy e[s,p) given per unit mass. In

addition to these classical contributions there is a nonclassical contribution in the form
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of a gradient energy associated with steep variations in density.^® This nonclassical term

represents an energy excess associated with the interfacial region. Consistent with a constant

gradient energy coefficient in equation (4b) there is no gradient entropy term in equation (4c)

(e.g. see appendix B).

The governing equations (1) are consistent with the balance laws

dM
dt

d^
dt

dt

0
,

/ (J6n{t) \

Dp
—pu h + Kn T u -\- K P

' ^ dA,

(5a)

(5b)

(5c)

where 6^n(t) is the boundary of the subvolume and n is its outward normal. The first balance

law (5a) simply represents conservation of mass. The second balance law (5b) states that

the change in the energy of the subvolume is associated with the rate of (reversible) work

done by pressure and capillary forces on the boundary as well as a nonclassical flux of stored

energy in the interface. Note that this flux term is associated with compression of the flow

in the interfacial region. Wang et al?'^ identified a similar nonclassical entropy flux term in

their phase-field model of solidification (see their equation (6)). Whereas their term involved

the partial derivative of the order parameter with respect to time, our term involves the

total derivative, DpjDt = + it • Vp, since we have accounted for fluid motion. They

identified this term as an entropy flux associated with variations in the phase-field at the

boundary of the subvolume. The third balance law (5c) states that the change in total

entropy in the subvolume Q,{t) is conserved (i.e. zero entropy production). Note that since

we have neglected dissipation, these equations describe an adiabatic process.

A full derivation of the diffuse-interface equations that account for dissipative effects and

for variations in the gradient energy and entropy coefficients is given in Appendix B.

3. Sharp-Interface Limit

Owing to the nonclassical nature of diffuse-interface models, there has been much effort de-

voted to relating these models to their sharp-interface counterparts. The idea behind the

diffuse-interface approach is that the solutions of the diffuse-interface equations represent

asymptotically the solutions of the classical, sharp-interface equations. Extensive asymp-

totic analyses have been performed on phase-field models of solidification to show that they

recover a number of sharp-interface solidification models (e.g. see Caginalp^®), and further

comparisons between sharp- and diffuse-interface models of solidification can be found in

Braun et al?^ Diffuse-interface models of fluid-fluid interfaces have received less attention in

this regard. Antanovskii® derived from the diffuse-interface model, the classical hydrostatic

balance for the case of a flat interface in equilibrium and the Laplace-Young equation for the

case of a spherical interface in equilibrium. Jasnow and Vinals® derived from the capillary
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term in their momentum equation the appropriate sharp-interface tangential and normal

forces when the surface tension was a slowly varying function along the interface.

In this section we derive from equations (1) the associated sharp-interface equations and

boundary conditions. A complete description of the sharp-interface boundary conditions

appropriate for two-phase systems can be found in Delhaye^®.

We begin by writing K = e^K = e^[gL/pc)K* in (1) where e is a small parameter

measuring the thickness of the interface and K* is dimensionless and 0(1). It is clear that

if we formally take the limit e —> 0 in the bulk regions away from the interfacial layer we

recover at leading-order, the classical equations appropriate for the bulk phases,

Dp

Dt
= -pV • u. (6a)

Du
(6b)

Dt
= -Vp-pgz,

Ds
(6c)

'm
= 0.

Next, we seek the sharp-interface boundary conditions. Since the diffuse-interface gov-

erning equations apply over the entire domain, including the interfacial region, we shall use

standard pillbox arguments to obtain these conditions. We define the cylindrical pillbox as

follows. We consider the contour of density upon which the interfacial region collapses in

the limit e —> 0. The pillbox (shown in figure 1) encloses a portion of this surface at a fixed

point in time in such a way that the top of the pillbox is above the surface at a height ( = S

and the bottom of the pillbox is below the surface at a height (= —6. Here, ( is a local

coordinate which measures distance from the surface in the normal direction. We define

normal vectors htop, ribot ^iid m for the top, bottom, and side of the pillbox, respectively.

The pillbox position is then fixed and the interface is allowed to sweep through at the next

increment of time. The key limit in the pillbox argument is that e <C ^ -C T where L is

an 0(1) length scale associated with the outer flow. In this limit, the volume of the pillbox

becomes negligible on the outer scales but the variations in the density, which define the

interfacial region, occur over a region fully contained within the pillbox.

Mass balance: Consider first the mass balance (la). We integrate this equation over

the volume of the pillbox Vp to obtain

In the limit e <C ^ <C T we have the properties that

dp

JV-o Ot JSr,

f - f {pu)ui ndS,
JVr, ot JS^'vp dt

(
7

)

(8a)

(8b)
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where Uj = (0, O^wj^x^y)) is the velocity of the surface described above and Sp denotes the

surface of the pillbox. Note that V uj = 0. It then follows from equation (7) and the

divergence theorem that

0 = f p{u — ui) nsdS, (9)
JSp

where ns is the outward normal to the pillbox. If we further break up the surface integral

into contributions from the top, bottom and side of the pillbox we find that

0
I ^/)

’ '^topdAiop
I pi^'^

^Atop At)ot

+ y J
p(u — uj) • md(dl,

(
10

)

where we have written the surface integral over the side of the pillbox in terms of a line

integral on the surface and an integral in the normal direction. In the limit e <C 6' <C 7/ the

contribution from the side is negligible since the integrand is bounded. Further, in this limit,

T^top — '^hot — ^ and -A^op — .^6ot — A so that

0 — f p{u — uj) h\'^ dA, (11)
JA

where indicates the jump (top to bottom) across the interface. Since the interfacial area

A is arbitrary, we must have

p{u — uj) • = 0.
(
12

)

This is the classical mass balance at an interface. Note that consistent with the original

mass balance, this boundary condition allows mass flux across the interface.

Momentum balance: Consider next the momentum equation (lb). If we integrate over

the pillbox as before, we find that

" - k{
pgz + V • [pu (g) u — pu (g) u/ + pJ — KT] \dV, (13)

where we have used equation (8b) and the fact that

Du d{pu)

dtDt
+ V • {pu 0 u)

.

(14)

In the limit e S L, the gravitational term in (13) is bounded and does not contribute.

We apply the divergence theorem to the remaining terms to obtain

0 = / {pu u — pu <Si uj + pi — KT) nsdS
JSp

=
/ {pu{u - uj) hs A pfis — KT ns} dS.
J Sr.

(15)
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We break up the above surface integral into pieces evaluated on the top, bottom and sides

of the pillbox. Note that in the limit e <C ^ <C i/, local to the interface we have

Vp^-n

vV
d( 2 ’

(16)

(17)

so that

n.

m.

(18)

(19)

Since the top and bottom integrals are evaluated at ^ and ( = —S, respectively, and

the variation in density occurs on a scale measured by e, we find that in the limit e S L

the nonclassical terms do not contribute to the top and bottom surface integrals. This leaves

us with the expression

0 = J
(^pu[u — uj) h\'^ ph\'^^ dA

^ J
{pu[u — Ui) rh + pm — KT m} d(dl.

(
20

)

We again argue that the variation in the classical terms associated with the velocity occurs

on an outer, 0{L), scale so that these terms do not contribute to the side integral in the

limit S L. It then follows that

where

0 = y
(^pu[u — Uj) dA — y

'yiridl,

pS

7 = / {—p + i^m • T • m}

(21)

~ 6
(
22

)

Here = e<^ and we have applied the limit S/e —> oo. We can identify the expression for

7 as the excess Kramer’s (Grand canonical) potential (see below). We next use the surface

divergence theorem (e.g. Weatherburn^^)

y
(f)rndl = J Vs(f>dA — J

(V5 • n) (f)ndA, (23)
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which holds for a scalar
(f)

to further reduce equation (21). Noting that the surface area A is

arbitrary gives

pu{u — ui) n|^ + pn|t = Vs7 — (V 5 • fi) 7n. (24)

This is the classical (inviscid) momentum jump condition across a fluid-fluid interface. Note

that the first term represents an additional normal force which is nonzero whenever there is

a jump in density across the interface and a nonzero mass flux. It remains to confirm that

the expression for 7 given by
(
22

)
can be interpreted as the surface tension.

We appeal to the following thermodynamic arguments to obtain independently an ex-

pression for the surface tension. Consider a nonclassical extension of the free energy defined

by the functional

^ = Jv
{pKp, T) + \k\Vp?) dV. (25)

An equation governing the equilibrium density profile can be obtained by minimizing this

free energy subject to the constraint of constant mass. Therefore, we compute the variation

0 = 6{l^(^pf+'^K\Vp\^-Xpjdv'^, (26)

where A is a constant Lagrange multiplier. Variations in p lead to

0 - / + p/p - KV^P - A, (27)

where A = where is a chemical potential. This has a first

integral whose form local to the surface as described above can be written

const. = —\p pf — -K (28)

The thermodynamic result that p = p^ fp shows that const. =

Next, we consider the Kramer’s potential energy fi = JF — and define its excess

by

where ao represents a Gibbs dividing surface and the superscripts (± 00 )
refer to the far-

fleld values on either side of the interface. If we now use the equilibrium condition (27) to
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find

dC)

2 Uc,

I)’

1 (21
'

2 [d(,

+ pX- ^(-“)/<-“) _ - p<-~>) Uc

j

+ - p(”)/(~) -

+ p<“)|<fC

j

+p‘”>|<iC (30)

where we have used A = Note that p is the solution of equa-

tion (27); gravity does not play a role in determining the density profile local to the interface.

We can combine the two integrals in equation (30) to find that is independent of the

position of the dividing surface. We have,

£{_p + pM + jr(,le + lJ|)

(31)

where we have taken = 0 without loss of generality. This expression is identical to the

previous expression
(
22

)
for 7 ,

which confirms that the correct surface tension appears in

the sharp-interface jump condition (24) derived from the diffuse-interface model. By using

equations (27) and (28) this expression can be rewritten in the more familiar form

(32)

We note here that this expression relates the gradient energy coefficient K (or e) to the

surface tension, which in principle can be measured experimentally.

Entropy balance: Consider next the entropy balance (Ic). We can rewrite this using

the mass balance (la) giving

0 =^ + V (psu). (33)

Based on the same arguments that were used to derive the jump condition for mass, we find

that the associated jump condition for entropy must be

ps[u — uj) h\'^ = J = 0, (34)
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where J is the mass flux across the interface. This condition implies that the jump in entropy

must vanish when there is nonzero mass flux across the interface.

Finally, if we impose the condition of incompressibility V • it = 0, we find that this leads

to the condition u n = 0. Together with (12) it follows that

n u~ n = Ui n. (35)

4. A Model for Internal Gravity Waves

We illustrate the diffuse-interface approach by modeling internal gravity waves. This appli-

cation is based on results of Berg et al?^

,

who observed internal gravity waves in near-critical

xenon. In their experiments, a mesh paddle inside a small sample of xenon was driven at a

fixed frequency, stopped, and then residual internal wave frequencies were measured. This

was done for a range of temperatures, both above and below the critical temperature. For

the case where the cell was oriented horizontally (so that the paddle rotates about a verti-

cal axis, see figure 2), which is the case we shall consider here, they observed two distinct

internal gravity wave modes. They also modeled these waves using two separate classical

models, one that applied in the one-phase region (above the critical temperature) and an-

other that applied in the two-phase region (below the critical temperature). They used as

their equation of state the restricted cubic modeF^’^^, which gave a very accurate description

of the static density profiles as the temperature varied. Their theoretical predictions for the

internal gravity wave frequencies agreed well with those observed experimentally.

The model configuration consists of a rectangular cell with dimensions 0 < a: < a^,

0 ^ ^ s.nd —L<z<L where gravity is in the — z direction (see figure 2). A paddle

is shown in the figure for reference purposes but no paddle is present in the mathematical

model. The physical dimensions used by Berg et al. correspond to = 7.6mm, ay = 38mm
and L = 9.5mm. These values will be used exclusively here. The results of Berg et al.

indicate that while this geometry is a simplification of the actual internal geometry of the

cell used in the experiments, it is a reasonable approximation in terms of identifying the

internal wave modes and frequencies.

We shall model the motion of the fluid in this cell with the diffuse-interface approach

described in section 2. Our analysis of these equations shall proceed as follows. We first seek

static density profiles (vertical stratification and no flow) using an approximate van der Waals

equation of state. We then perturb these density profiles and identify the associated natural

internal wave frequencies. We shall compare the present results with the experimental data

and the theoretical predictions of Berg et al. Additional comparisons shall be made by

computing the internal wave frequencies with the sharp-interface model of Berg et al. but

with the equation of state used in the present work.
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5. Basic-State Density Profiles

The steady basic-state solution, denoted by subscript ‘O’, has zero flow, is isothermal and

horizontally uniform, and satisfies

dz
~Pog +

d^Po

dz^
' (36)

This equation determines the static density profile when an equation of state p = p{T^ p) is

given. Note that since the system is isothermal, it is convenient to treat the pressure as a

function of T and p rather than of 5(T, p) and p. It will be useful to work with a free energy

so we employ the thermodynamic relation

P = (37)

where / is the Helmholtz free energy per unit mass. This allows us to integrate equation (36)

giving

K d^Po

dz^

djpf)

dp
-f- -f Co, (38)

where Cq is a constant of integration. An equivalent derivation of equation (38) involves

minimizing the total energy E (equation (4b)) subject to constant total entropy S (equa-

tion (4c)) and constant total mass M (equation (4a)) over the total volume V for the case of

no flow. Note that in order to focus on the critical point, we have assumed that the average

density is equal to the critical density pc so that M takes on the fixed value p^V.

We shall consider a classical van der Waals equation of state (e.g. Stanley^^, Callen^^) as

a reasonable starting point for our analysis. Despite its shortcomings in terms of predicting

the detailed behavior such as critical exponents, the van der Waals equation of state provides

a simple description of the qualitative behavior of a fluid near its critical point. The van der

Waals equation of state is given by

9RTc 2\
(39)

where R is the universal gas constant, pc is the critical density and Tc is the critical temper-

ature.

If we use equation (37) to write the van der Waals equation of state (39) in terms of a

free energy, we And that it has a double-well structure below Tc and a single-well structure

above Tc- We shall assume a free energy per unit volume of the general form

Pf PcCl{T) + PcC2{T) + Bq
±T^(P_^\
2 T, \ P. )

(40)
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where Ci(T') is a temperature-dependent integration constant whose form is not determined

by the van der Waals equation of state (39) and C2 (T) is related to Ci(T). The determination

of Ci(r) requires an additional thermal equation of state (e.g. see Callen^^). Also, the

parameters Bq and are treated as adjustable. This reduces to the van der Waals form,

expanded locally near the critical temperature and density, when Bq = ^pcRTc and = 4.

Equations (38) and (40) lead to the dimensionless equation for the static density profile

= gz + a^fp (41)

where p = {p - pc)lpc, f = {T - Tc)ITc, z = zjL, = KpHBqB^ and g = pcgLjBo. We
have taken p = pc at z = 0. An approximate analytical solution to equation (41) can be

obtained in the limit e «C 1 - For T < 0 (i.e. two-phase region) and z < 0, we use the method

of matched asymptotic expansions to obtain

P = Pout — ay —T tanh (42)

where pout corresponds to the root of the equation 0 = gz+a^Tp+p^ that has p > ay—T. For

T > 0 (i.e. one-phase region) we can express the solution in terms of the regular expansion

P — po +
(a2r + 3p2)4

(43)

where po is the real root of 0 = pz + a^Tpo + Pq. Note that the density profiles are antisym-

metric about z = 0. Using equations (40), (37) and s = —Jt we can compute expressions

for the basic-state pressure po{z) and entropy So[z). Note that the entropy 50 (
2

)
depends on

Ci(T). Further details of this are discussed in section 7; for now we note that specification

of 5o(a) is not necessary for the development that follows.

Static density profiles are shown in figure 3 for temperatures both above and below the

critical temperature. The parameter values used to calculate these profiles are €dl = 10““*,

a = 4.85 and g = 1.631 x lO-* where = e^/p. The parameters and p were chosen

to fit as closely as possible the density profiles shown in Berg et al. far above the critical

temperature (see their figure 1). The dashed curve corresponds to the density profile at

the critical temperature. Above the critical temperature, there is a single stratified phase.

Below the critical temperature, the fluid separates into two stratified phases. Again, we point

out that while these profiles do not embody the quantitative behavior in terms of critical

exponents, they do capture the qualitative behavior of the density near the critical point.

It is interesting to note that there is a significant amount of stratification which occurs

over a relatively small length scale. While this stratification often plagues those seeking to

make precise measurements of physical quantities of near-critical fluids such as xenon, it can

also be seen as a unique feature through which phenomena that normally occur on much

larger length scales, such as those common in oceanography or atmospheric sciences, can be

studied in the laboratory.
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6. Internal Wave Frequencies

We follow the analysis of Berg et and seek neutrally stable wave modes by introducing

perturbations to the basic-state solution as follows

p TTo
II + ^(2) cos(gxx) cos{qyy)e"‘^\ (44a)

u = 0 + u(z) sm{q^x) cos(5yy)e^"‘, (44b)

V - 0 + v{z) cos{qxx) sin(5y2/)e'"‘, (44c)

w - 0 + w[z) cos{qxx) cos(5yy)e*‘^*. (44d)

p II
O + p{z) cos (5x2:) cos(5yy)e^‘^‘, (44e)

s = -30 (
2:) + s{z)-cos

( 5x0;) cos(5yy)e^‘^‘. (44f)

where = "kj ja^ and qy
= -Kk/ay are the wavenumbers in the two horizontal directions with

integer values for j and k and uj is the frequency. Note that we are interested in natural wave

modes confined to the box and therefore have a discrete rather than continuous set of wave

vectors. In fact, the modes we describe below have j = k = \. The form for the velocity

components has been chosen to allow u • n = 0 on each wall.

As a simplification, we shall consider incompressible perturbations. In physical terms,

this means that the response of a fluid parcel to a vertical perturbation is associated with

changes in the background density gradient rather with any further compression of the

parcel. That is, although the basic-state density profile develops as a result of the large

compressibility of the fluid near its critical point, acoustic waves do not interact strongly

with internal gravity waves. This can be put in more quantitative terms if we consider the

Brunt-Vaisala frequency

p dz
(45)

where c is the acoustic sound speed. This quantity measures the fluid’s oscillatory response

to stratification and compression.^'^ Berg et al. argued that for the near-critical xenon system

under consideration, the Brunt-Vaisala frequency could be approximated by the stratification

term alone. This was based on a direct comparison for xenon of the first and second terms

in equation (45). Since we expect that our density profiles approximate theirs in the bulk

regions and that in the interfacial layer the density gradients used here may be quite large,

we anticipate that this is a reasonable approximation to pursue here. This can be stated

more formally in terms of incompressible perturbations if we consider the equation of state

p = p[s,p). It follows that

Dp
'm

dp Ds dp Dp dp Ds
2 ^P

Dt ds Dt Dt
p

(46)

Since the base state has no flow and varies only in the vertical direction we can reduce this
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to a statement about the perturbed quantities (denoted by primes)

dp
,

'dpQ ' dp / dpo dp

ds

ds idso
(47)

In terms of dimensionless quantities, the condition LgjcP' <C 1 reveals at leading order the

condition of incompressible perturbations dp /dt + w dpo/dz = 0, or V • u =0 using (la).

We insert expansions (44) into the governing equations (1), use the condition of incom-

pressible perturbations, linearize, and find that the perturbation quantities satisfy

• -
,

dpo
lujp -f w—— ==

dz

dw
q^u + qyV — =

dz

icopou - q^p =

iiopov — qyp =

dp
lujpow 4- — =

dz

0
,

0
,

Kpoqx
d^p \

dzy ’

Kpoqy 9 ^ - VT

-pg -t- Kpo
dz^J

+ Kp
d^pQ

dz^
’

(48a)

(48b)

(48c)

(48d)

(48e)

where q'^ = ql -h q^- Note that by virtue of the incompressible perturbation assumption,

the equation for entropy s decouples and is not needed to compute the frequency. These

equations can be comoined in a straightforward manner to obtain the single perturbation

equation

1 -
d^w jV2

^

q^ 1 d{poM^) dw ,— q 1 - ^
[

u;2
J

dz^
. 9 pq dz dz

where

(49)

9 dpo

Po dz ’

K
Po \dz J

(50a)

(50b)

The boundary conditions are that the vertical component of the velocity vanishes on the

upper and lower boundaries w{L) = w[— L) = 0. This is an eigenvalue problem where the

eigenvalue is the frequency io and the eigenfunction w characterizes the wave mode.

It is of particular interest to note that this is a second-order system. The classical model

us^'-d by Berg et al. for the single-phase region, which is also second-order, can be obtained by

taxing K = 0 (i.e. = 0) in equation (49). That is, the inclusion of the nonclassical terms

in the incompressible limit does not result in a higher-order differential equation relative to

that obtained for the classical model. However, we note here (and show later) that if we
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include the effects of compressible perturbations the result is a set of two coupled second-

order equations. We present those equations and discuss them in more detail in section 7.

We have solved the eigenvalue problem (49) using a method given by Keller^^ whereby we

replace one of the homogeneous boundary conditions with an independent inhomogeneous

one. The integration of the resulting inhomogeneous boundary value problem was done

using SUPORT^®. This code uses a superposition of linearly-independent solutions coupled

with an orthonormalization procedure to maintain their (numerical) independence. The

integrations were performed with either an Adams-type method or a Runge-Kutta method.

The eigenvalue u) and eigenfunction w[z) which satisfy the original homogeneous boundary

condition were then obtained iteratively.

Figure 4 shows the internal wave frequencies obtained experimentally (solid points) and

theoretically using the restricted cubic model (dashed curves) by Berg et al. and the theoreti-

cal predictions of the present diffuse-interface approach using the van der Waals model (solid

curves). The parameter values used for the diffuse-interface calculations are cdl = 10“'^,

a = 4.85 and g = 1.631 X 10 The value of e^L used here was chosen somewhat arbitrarily

but is well within the convergence region (with respect to the internal wave frequencies).

If we first focus on the experimental data, we see that there are two separate modes,

whose frequencies have different behavior with respect to the temperature. Based on the

eigenfunctions obtained theoretically by Berg et ai, corresponding to the eigenvalues shown

by the dashed curves, we know that the upper mode corresponds to a wave mode in which

there is relatively large amplitude disturbances near the horizontal mid-plane of the cell.

Above the critical temperature this corresponds to an internal wave set up over the whole

cell, while below the critical temperature, this mode corresponds to a sloshing-type mode

with relatively large interface deflection. The lower mode has relatively little motion near

the center of the cell. Above the critical temperature, this corresponds to internal waves set

up in both the upper and lower portions of the cell, while below the critical temperature

this corresponds to a relatively quiescent lower phase and internal wave motion in the upper

phase only.

There are a number of comparisons that can be made between the theoretical results

predicted with the diffuse-interface model and those obtained by Berg et al. using a classical

approach. While by design, the diffuse-interface model agrees with the classical theory for

temperatures well above the critical temperature (recall that the parameters in the present

equation of state were chosen so that the density profile matches that of the Berg et al.

theory well above the critical temperature), the difference becomes more pronounced as

the temperature is decreased. As we shall see below and in the next figure, this difference

can be attributed in full to the difference between the two equations of state used in the

two models. That is, the diffuse-interface results differ from the classical ones of Berg et

al. because the variation with temperature of the density profiles obtained with the van

der Waals equation of state used here does not precisely match that of the density profiles

obtained using the restricted cubic model. Another result of the diffuse-interface model is
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the premature termination of the frequency curves below the critical temperature. As we

shall see below, this is the result of a breakdown of the disturbance equation (49) as the

coefficient of the term d^wjdz^ vanishes.

Figure 5 shows a comparison of the frequency computed using the diffuse-interface model

and that computed using the classical model of Berg et ai, where in each case the equation

of state (40) is used. Again the solid curves show the diffuse-interface results (with the same

parameter values as shown in figure 4) and the dashed curves show the classical results. This

comparison shows that with the exception of the regions below the critical temperature where

the disturbance equation breaks down (see below), the diffuse-interface results reproduce the

classical results. This indicates that it is the use of the simpler equation of state (40) in the

present model, rather than an inherent difference between the diffuse and classical models,

which accounts for the differences between the theoretical predictions shown in figure 4.

The disturbance equation (49) is a second-order equation whose leading coefficient 1 —

as noted, may vanish. Although this coefficient depends on the vertical coordinate,

we can estimate the point at which it first vanishes by evaluating it at i = 0, where the

density gradient, and hence M, is largest. In terms of the frequency = a;/27r (in Hz) and

temperature T this boundary is given by

n _ {qL)a^ T-T^

yJJJl 27rV^ Tc

Note that this result does not depend on the thickness of the interface. We have plotted

this boundary in figure 5 (dashed-dotted line) for the parameter values as given above.

This boundary is consistent with the points at which we can no longer compute numerical

solutions to the present model (i.e. where the solid curves terminate in figures 4 and 5).

7. Discussion

In this section we discuss several of the issues raised by the above described analysis and

numerical results. In particular we shall address possible improvements in terms of the

equation of state used in the diffuse-interface model and also the issue of the limitations of

the incomnressible perturbation assumption.

The aavantage of the equation of state employed in the present analysis is that from both

a physical and mathematical viewpoint it is the simplest characterization of the near-critical

behavior. The disadvantage, as we have seen, is that it does not provide as accurate of a

representation of the density profiles as does the restricted cubic model, for example. One

possible improvement which can be made is to use a modified van der Waals equation of state

(e.g. Rowlinson and Widom^, Fisk and Widom^^). The modified van der Waals equation of

state improves on the predictions in terms of critical exponents relative to the van der Waals

equation of state but still allows an analytical solution for the density profiles.

(51)
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The numerical solution and analysis of the disturbance equation (49) showed that its

leading coefficient can vanish. This indicates the presence of a singularity. A key assumption

used to derive this equation was that the perturbations were incompressible. Although we

have used a simple equation of state and have used approximate techniques to write down

the basic-state density profile, it seems quite clear that a more accurate representation of the

density profile shall ultimately suffer the same consequences. In order to further understand

this singularity, we shall rederive the disturbance equations without making the assumption

of incompressibility. Using the same approach as described in section 6, we find that the

disturbance equations that retain the effects of compressibility are given by

.
.dp

^
(Pp

^ ^ dq
.
d?q

A\p + A2
—

h + A4q -f As- f- Aq-— = 0,
CJ/Z CLZ CbZ CLZ

Bip + ^2^ + B^q Bs^ A Be^ = 0,
dz dz dz^

(52a)

(52b)

where q = pow and the (variable) coefficients Ai and Bi are given in appendix C.

These are two coupled second-order equations describing a ‘diffuse/compressible’ flow.

It is of interest to recover several lower-order cases from this system; that is, the ‘dif-

fuse/incompressible’, ‘classical/compressible’ and ‘classical/incompressible’ cases.

The ‘diffuse/incompressible’ case can be obtained formally by setting ljp{z) == 0 in the

expressions in appendix C. In this case, the coefficients A2 ,
A3 and B2 all vanish. It can then

be easily seen that equations (52) reduce to a second-order equation for q, or equivalently,

for w (see equation (49)). Therefore, in the context of the diffuse-interface formulation, the

incompressible limit is singular.

This is in contrast to the classical case, as can be seen if we compare the ‘classi-

cal/compressible’ and ‘classical/incompressible’ cases. First, to obtain the classical (single-

phase) description from equations (52) we take K = 0. Here, the coefficients A2 ,
A3 and Ae

vanish. It is again easy to see that the resulting coupled equations for p and q can be reduced

to a second-order equation for q. This represents the ‘classical/compressible’ case. In the

‘classical/incompressible’ case, which again we can obtain by further setting l/P[z) = 0, we

find that the coefficient B2 vanishes. Therefore, in the classical case, the disturbance equa-

tions are second-order regardless of whether or not the effects of compressibility are included.

The above description shows that the limit of incompressible perturbations is a regular limit

in the classical formulation but is a singular limit in the diffuse-interface formulation.

In order to solve equations (52), the sound speed must first be specified. This, however,

cannot be calculated from the classical van der Waals equation of state alone. A ther-

mal equation of state, consistent with the van der Waals equation, must be given (e.g. see

Callen33).

For the present purposes, we would like only to confirm that the inclusion of the terms

due to compressibility relieve the singularity observed in the incompressible calculations and

allow us to calculate frequencies at lower temperatures. Therefore, we shall not be concerned

with the specific form used for the sound speed. In the single-phase region, we have used
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the ‘linear model’ as given by Hohenberg and Barmatz^® to compute the sound speed. Note

that this model is used to compute the sound speed only; we still use the van der Waals

equation of state to compute the density profiles. Our calculations show that the inclusion

of compressibility effects in the one-phase region lead to negligible corrections in terms of

the resulting internal wave frequencies. This is to be expected based on the fact that our

incompressible calculations encountered no difficulty in the one-phase region. That is, the

inclusion of compressibility in the one-phase region represents a regular perturbation. This

reinforces the statements given by Berg et al.^^ who argued that the compressibility effects

should be negligible with respect to the internal gravity wave frequency predictions. The

above described ‘linear model’ applies in the classical sense below the critical point, in that it

can be used to calculate the sound speed on either side of a sharp interface. However, there

is no rigorous way of connecting the two profiles through the diffuse-interface used in the

present calculations. Therefore, in the two-phase region we have used a constant value for

the sound speed in order to solve the eigenvalue problem. Although this ad hoc prescription

for the sound speed does not provide an accurate approximation to the true sound speed,

which can vary significantly in the vertical direction, it is sufficient for our purposes in that

it is nonzero everywhere and can be made to represent the true sound speed in an average

sense. We have found that this approach does in fact allow us to calculate internal wave

frequencies beyond the line of singularity shown in figure 5. Therefore, we can conclude that

the effects of compressibility relieve this singularity and may not be negligible when using

the diffuse-interface formulation as we have presented here.

As an additional check, we have calculated the solutions for the case where the capillarity

terms are included in the basic-state density profile while the terms involving and its

derivatives are ignored in an ad hoc way in equation (49). From the point of view of the

perturbation equation, the system behaves as if it were in a single phase, with the density

profile represented as before in both the one-phase and two-phase regions. The results of this

calculation are graphically identical to the dashed curves shown in figure 5, which represent

the sharp-interface model results. Unlike the full incompressible case where the capillary

terms are included in the perturbation equation (49), these calculations are not limited

by the line of singularity.

8. Conclusions

We have presented diffuse-interface equations for an inviscid, compressible and adiabatic

flow and have described these equations in terms of global quantities and balance laws. The

key difference between the diffuse-interface formulation and the classical approach is the

presence of a capillary tensor in the momentum balance. This tensor models the capillary

forces associated with the diffuse interface. In contrast to the classical formulation, no

interface needs to be tracked.

We have analyzed these equations and found that we can recover the classical equations
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and interfacial jump conditions for a fluid-fluid system in the sharp-interface limit. The

interfacial tension is found to be consistent with the excess Kramer’s (Grand canonical)

potential energy.

We have used this diffuse-interface model to describe internal gravity waves in near-

critical xenon. This analysis is an extension of that done by Berg et al.^^

,

who studied the

problem experimentally and theoretically using classical hydrodynamic descriptions above

and below the critical temperature. The present diffuse-interface description of the hydro-

dynamics can be used to calculate the internal wave frequencies both above and below the

critical temperature. Our results show that the diffuse-interface model recovers the classical

results when the same equation of state, used to compute the equilibrium density profiles, is

used in each case.

An unexpected result identified here is that the incompressible flow limit is singular in

the context of the diffuse-interface limit. That is, when the effects of compressibility are

neglected, the internal wave problem is governed by a second-order perturbation equation,

but when the effects of compressibility are included, the problem is governed by a system of

two second-order perturbation equations. This is in contrast to the classical case where the

limit of incompressibility is regular; both cases, compressible and incompressible, result in a

second-order perturbation equation describing the wave modes.
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Appendix A. Integral Quantities

The following expressions are used in calculating the time rates of change of the total mass,

momentum, energy and entropy. First, we note that for a material volume which moves

with the fluid the identity

dt [ 4>dV=[ (^ + y-i^u)]dV,
jQ{t) Jn{t) \dt J

(Al)

holds for the scalar quantity
(f).

Note that the following results make use of the condition of mass conservation dM/dt — 0,

or

dp Dp ^
^ + V.(p«) = — + ;>V.u = 0.

We find.

(A2)

d

dt

d f—
/ pudV =

dt Jn{t)

f Du
/ p—dV,
Jn{t) ^ Dt

^ f l-p\u\^dV =
dt Jn{t) 2

f Du
/ PU- dV,
jQ{t) ^ Dt

d f--
/

pgzdV =
dt Jn{t) 1

u {pgz) dV,
Jn{t)

d f- / pedV =
dt Jn{t)

f De
/ PTrdy^
jQ{t) ^ Dt

|2vif(T).Vp+i|VH
1 lK{T)\Vp\^dV =
/n(t) 2

f (
K{T)T : Vu -

Jn{t) \

(A3a)

(A3b)

(A3c)

(A3d)

DK{T)\

Dt }
dV

K(T)^VpudA. (A3e)

Appendix B. Dissipative Effects

Here we formulate the diffuse-interface equations that account for thermal and viscous dissi-

pation. Our approach follows the formalism used in notes by Sekerka^® on entropy produc-

tion.

We start with the same total quantities for mass M and energy E as used in Section 2 with

the exception that the gradient energy coefficient is now assumed to depend on temperature

T

.

The total entropy S now includes both classical and nonclassical contributions and a

temperature-dependent gradient entropy coefficient. Additionally, we include a definition

for total momentum P

.

These quantities, defined on the material volume 0(i), are

M = f pdV, (Bla)
Jn{t)
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p = f pudV,
Jn{t)

(Bib)

E = (Blc)

S = (Bid)

First, we require that the mass in any subvolume Q,{t) is conserved, giving dMj dt = 0

and

+ = 0. (B2)

Next, we write down the general forms of physical balance laws associated with P, E
and 5,

dP r

/ m ndA — / pgzdV,
dt JSQ.{t) Jn{t)

dE
[ \

[u m n — q
dt

dS

dt / iIt
+ 3s • h] = [ k^°^dV > 0

J Jn{t)

(B3a)

(B3b)

(B3c)

where m is a general stress tensor which may include both classical and nonclassical stresses,

q is the classical conductive heat flux, is a nonclassical energy flux, is a nonclassical

entropy flux and is the volumetric rate of entropy production which may include both

classical and nonclassical contributions. In physical terms, the momentum balance (B3a)

states that changes in momentum result from forces on the boundary and body forces in

the interior (here we are considering gravity as the only such body force). The energy

balance (B3b) states that changes in energy result from the rate of work done by the forces

on the boundary, the classical heat flux and a nonclassical energy flux through the boundary.

The entropy balance (B3c) states that the rate of change of entropy in the control volume

minus the fluxes of entropy (classical and nonclassical) through the boundary must be equal

to the entropy production. The Second Law of Thermodynamics requires that this entropy

production be positive for dissipative systems.

In what follows, we use the definitions (Bl) to derive identities for dP jdt, dE/dt and

dSjdt with the aid of the results given in Appendix A. We then equate these expressions with

the balance laws (B3) to obtain local balance laws in terms of the general quantities m, g,

3^e^\ Finally, we appeal to the Second Law of Thermodynamics > 0)

to identify thermodynamically consistent forms for m, g, and

Momentum: We seek a local balance law for momentum by calculating the time rate

of change of the total momentum given by equation (Bib) and then equating the result with

the balance law for momentum (B3a). We use the divergence theorem to express boundary
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integrals as volume integrals and note that the domain of integration Q(t) is arbitrary. This

gives the local momentum balance

Du
V • m + pgz = 0. (B4)

Energy: Next, in the same manner as described above, we obtain the local energy

balance

/ Du „ De „ „ „
u — V • m + pgz] + P^^ + V • g — m : Vu + Ke{T)T : Vit

= 0. (B5)

Here we have defined T = (/9V^/?+^|V/jp)J— V/O0 Vp, which we can identify as a Korteweg-

like capillary tensor^'^. We shall find below that the tensor m is related to T. We can simplify

the local energy balance by subtracting the contribution due to mechanical energy, which

is expressed as the velocity u dotted with the momentum balance (B4). This leads to the

simplified local energy balance

De ^ Dpm : Vw — Ke{T)T : Vu + Ke Vp
L

2' Dt
Ke{T)^Vp + (B6)

We can express this equation in terms of the entropy density s by first noting that the energy

density e is a function of s and p and then appealing to the thermodynamic relationships

dejds — T and de/dp = pj
p^ which allow us to write

De
^ rj,Ds p Dp

Dt Dt p'^ Dt

Combining this with equations (B2) and (B6) yields

pT
Ds Dp

+ V • g = pV u m : Vtt — Ke{T)T ; Vit + • Vp

--\Wp\^P^ -V (- V - {Ke(T)PAVp +

(B7)

(B8)

Entropy: Finally, we can obtain a local entropy balance using equations (Bid) and

(B3c). This equation is given by

4 +^ = -Ks{T)T:Vu + ^VKs-Vp-\\Vp\^P§^

-q V
(^)

+ - V
.

{Ks(T)^Vp + •
(B9)

We assume that m can be written as the sum of a purely classical part, which we take to

be the stress tensor cr = —pi + t where t is the deviatoric stress tensor, and a nonclassical
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part so that m = <t + As a consequence of this and equations (B8) and (B9)

we obtain the following expression for the volumetric rate of entropy production

^prod aV|- r : Vu
^

1

^ T ^ f
- [Ke{T) - TKs{T)]t) ;

Vu

+ ^ (VA:^ - TVifs) -
Dt ^

^ 2' T \ Dt Dt J

+V + - iv
.

(ifE(r)|^Vp+iM)
.

(bio)

We can^^simplify the expression (BIO) using the following argument which relates the

gradient energy and gradient entropy coefficients. Suppose we write the total free energy

density (and similarly e‘°‘ and 5*°‘) as a function of not only of the classical variables

but also a = as defined below

f^\T,p,a) = f{T,p) + KF{T)^-\Vp\\ (Blla)

e°\s,p,a) = e{3,p) + KE{T)^\Vp\\ (Bllb)

s^°\T,p,a) = s(T,p) + Ks(T)^-\Vp\\ (Bile)

Further, we assume that the same thermodynamic relations which hold for the bulk quantities

also hold for the total quantities. In particular, we assume = e*°‘ — Ts‘°* and =

—fj^. Here the subscript denotes differentiation with respect to temperature while the other

variables (i.e. p and a) are held fixed. Then, if we use f = e — Ts, s = —/t we must also have

the relations Kf{T) = Ke{T) - TKs{T), Ks[T) = -K'e[T), Ke{T) = Ke{T) - TK'e{T) so

that K'g{T) = —Ke{T) and K'^[T) = —TKe{T) = TKg{T) where ' denotes the derivative

with respect to temperature. These results lead to a simplified expression for the volumetric

rate of entropy production

= g . V (i) + 1 (m(“) -
: V-u

+V
.
{ks{T)^Vp + it'') - iv . (^Ke{T)^Vp + jt^) . (B12)

Our next objective is to identify forms for the quantities q, r, and which

are consistent with positive entropy production.

Since equation (B12) must hold when the nonclassical terms are absent we can first focus

on the classical terms. In the classical case we can guarantee positive entropy production

locally by choosing

q = kT^V (B13)

and

r = p,{Vu + Vtfc^) /i(V • u)J, (B14)
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where k is the thermal conductivity and // is the dynamic viscosity of the fluid. The form

for q is the Fourier Law for heat conduction (e.g. see Kittel and Kroemer'^° or Carslaw and

Jaeger"^^). The form for the deviatoric stress tensor r is just that for a Newtonian fluid

(e.g. see Batchelor'^^).

We now consider the nonclassical contributions to the entropy production (B12). This

form suggests that the surface tension is associated with the excess free energy, which is

consistent with what we expect based on thermodynamic arguments (see Section 3). Further,

we make the ansatz that the effects of surface tension are reversible in nature. This implies

that if the effects of classical viscous and thermal dissipation are neglected, the entropy

production is zero. The following specifications for and j^s^\

(nc)
‘ = Kf{T)T, (B15a)

3e — -KdT)fvp, (B15b)

3 s — -Ks(T)^Wp, (B15c)

are consistent with these conditions. This says that the nonclassical stress tensor

corresponds to the Korteweg capillary tensor T with the coefficient associated with the

gradient free energy. The nonclassical flux terms are in the direction of the density gradient

and are zero if the flow is incompressible (i.e. Dp/Dt = 0). These nonclassical energy

and entropy fluxes are associated with the gradient internal energy and gradient entropy,

respectively. A similar nonclassical entropy flux term was identified in the phase-field model

of solidification derived by Wang et al?’^ (see their equation (6)). Whereas their term involved

the partial derivative of the order parameter with respect to time, our term involves the total

derivative, since we have accounted for fluid motion. They identified this term as an entropy

flux associated with variations in the phase-field at the boundary of the subvolume.

The above prescription leads to the set of governing equations

= —pV • It, (B16a)

= V - a - pgz + V {Kf{T)T), (B16b)

= CT-.WU-Wq- TKs(T)T : Vu + ^VKe ^ Vp -

= r : V« - V g - TKs(T)T : V« + Vp - ilV^|";^.(B16d)

V ^ (Kf(T)T) = pV [Kf{T)V^p) - ]^\Vp\'‘VKe(T). (B17)

Dt
Du

De

rr^Ds

Note that
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Appendix C. Coefficients of Compressible Equations

The following are the coefficients appearing in the compressible perturbation equations (52).

Ai —

A2 —

As —

Ae —

=

B2 =

B, =

Bs -

Be =

1

ioj

U)

q
-

2Kq^

c2(z)
+ Kq^po

c2(z)

ILV

,2

-Po

Kq^ Po

iu) 0^( 2 )’

Nk{z) Kq^

9 9^

1 +
9^

^PoNKiz),
9^

1

iuj

1

2
PoNk{z) + ^\poN'^{z),

9^

1 dpo uj^

+ -r
1

+
g K (Ppo

pI dz ' ypQc'^{^z)l ' poC^{z) Po(A{z) dz^

UJ^

iuj yq^pQC^{z)

1 I Nk{z)\ Nk{z)
^

1
^

K NK{z)d^po

<^^Po Po 9<^'^ Po dz^
’

99 Po

Nk{z) 1 dpo

99^ Po q^pl dz ’

1

2 ^

9 Po

where

Nk{z) = 9 dpo

Po dz

9^ K9 d^po

c^{z) d^{z) dz^

(Cla)

(Clb)

(Clc)

(Cld)

(Cle)

(Clf)

(Clg)

(Clh)

(Cli)

(Clj)

(Clk)

(C2)
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2D view:

Figure 1: The pillbox enclosing the interfacial region shown in a side view.

We identify the constant density surface that is the limiting surface of the

interfacial region as its thickness goes to zero. This surface has the normal

vector n. The pillbox has normal vectors iitop, Ubot and m on its top, bottom

and side, respectively. The figure also illustrates the limiting case considered

in the pillbox argument. The upper and lower surfaces of the pillbox, defined

by C = where is a local normal coordinate, are squeezed together in such a

way that the variation in density p through the interfacial region is completely

enclosed within the pillbox. That is, we consider the limit e <C <C T where

e is a measure of the interfacial thickness and L is an outer 0(1) length scale.
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Figure 2: This figure shows the model configuration filled with a stratified

fluid. The dimensions are 0 < x < Ui, 0 < y < Uy and —L < z < L where

Ui = 7.6mm, ay = 38mm and L = 9.5mm are the values corresponding to the

experiment by Berg et al. The paddle, which in the experiments creates the

initial disturbance, is shown for reference and is not present in the mathemat-

ical model.
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Figure 3: This figure shows the static density profiles representing solutions of

equation (41). Each curve corresponds to a different temperature as indicated.

The dashed curve corresponds to the density profile at the critical tempera-

ture. Above the critical temperature, there is a single stratified phase. Below

the critical temperature, the fluid separates into two stratified phases. The

parameter values used to calculate these profiles are e^L — 10“^, a — 4.85,

g = 1.631 X 10-A
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T-Jc (mK)

Figure 4: This figure shows the internal wave frequencies Q = uj{2'k (in Hz) ob-

tained experimentally by Berg et al. (data points), the theoretical predictions

by Berg et al. (dashed curves) using two separate models above and below the

critical temperature coupled with a restricted cubic model for the equation of

state, and the theoretical predictions of the present diffuse-interface approach

(solid curves) using a van der Waals equation of state. The vertical dashed

line indicates the critical temperature. The parameter values used for the

diffuse-interface calculations are em = a = 4.85 and g = 1.631 x 10“'^.
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T-T^ (mK)

Figure 5: This figure shows a direct comparison of the frequency calculated

using the classical model and that calculated with the diffuse-interface model.

In each case we have used (40) as the equation of state. The vertical dashed

line indicates the critical temperature. We find that in this case the diffuse-

interface model (solid curves) recovers the classical model (dashed curves)

given by Berg et al. The dashed-dotted line in this figure indicates the location

where the coefficient 1 — q^M'^ fuj'^ of the second-order term in equation (49) is

predicted to vanish, and hence indicates the boundary beyond which we can-

not compute with the present model in the incompressible perturbation limit.

Since this coefficient depends on the vertical coordinate, we have identified this

boundary by evaluating the coefficient at i = 0, where the density gradient,

and hence M, is greatest.
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