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SysML Extension for Dynamical System Simulation Tools 

Ion Matei and Conrad Bock 

 

Abstract: Computer-interpretable representations of system structure and behavior are at the 

center of designing today’s complex systems. Engineers create and review such representations 

using graphical modeling languages that support specification, analysis, design, verification and 

validation of systems that include hardware, software, data, personnel, procedures, and facilities, 

in particular the Systems Modeling Language (SysML), an extension of the Unified Modeling 

Language.   However, SysML’s constructs are insufficient to capture all details necessary for 

dynamic (solver-based) simulation and must be enhanced with domain specific tools for this 

purpose. SysML modeling tools and simulation tools are often used separately and sequentially, 

which reduces the efficiency of the engineering process. As a result, there is an increasing need 

for integrating modeling constructs specific to simulation tools into SysML. In this report, we 

first analyze if SysML possesses constructs that match the constructs used in simulation tools. 

We conclude that such constructs exist only partially and propose extensions of SysML to 

accommodate modeling dynamical systems. In addition, we show through an example, how the 

newly proposed extensions can be used to model an electrical circuit in SysML. 

1. Introduction 

Systems engineering is an interdisciplinary field of engineering focusing on how complex 

engineering projects should be designed and managed over their life cycles. A system 

engineering process is a process for applying systems engineering techniques to the development 

of systems. Many different systems engineering process models have been developed over the 

years as shown in [1]. Recognizing the need for a standard systems engineering (SE) modeling 

language to support the SE process, the International Council on Systems Engineering 

(INCOSE) initiated an effort with the Object Management Group (OMG) to extend the Unified 

Modeling Language version 2 (UML 2) for full-lifecycle systems engineering. UML has proven 

popular with software engineers since its adoption in 1997, to the point where it is now the only 

widely used visual modeling language for software engineering. INCOSE saw extending it as a 

path to a modeling language that would address the combination of hardware and software that is 

characteristic of modern systems. Although UML has many useful capabilities for systems 

engineering, its focus on software had discouraged many system engineers from adopting it in 

earnest [2]. Requirements were developed for a UML-based language suitable for the analysis, 

specification, design, and verification of a wide range of complex systems (UML SE RFP) and 

issued through the OMG. Industry and government responded with the Systems Modeling 

Language (SysML) extension to UML 2, and with updates to UML 2 during its finalization [3]. 

SysML is not a methodology, nor a tool, but a modeling language intended to provide support for 

the systems engineering process. 

  

http://en.wikipedia.org/wiki/Interdisciplinary
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Enterprise_life_cycle
http://en.wikipedia.org/wiki/Process_(engineering)
http://en.wikipedia.org/wiki/Systems_engineering
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SysML has strong dynamic modeling capabilities, but these do not cover all the information 

needed to perform dynamic (solver-based) simulation. These missing capabilities are important 

in the design and analysis stages of the systems engineering process, where simulations, 

optimizations and trade-offs are performed. Currently, simulations, optimizations and trade-offs 

are performed using separate and dedicated simulation tools. In this paper we focus on extending 

the SysML with capabilities for modeling and simulation of dynamical systems; systems that are 

ubiquitous in modern complex systems. Simulating dynamical systems is important since it is 

useful to answer questions without experimenting on the real system, experiments that may be 

too expensive or dangerous to perform. 

 

Most integration efforts between SysML and simulation tools were focused on Simulink® and 

tools based on the Modelica® language. In [4], the authors propose an extension of SysML 

which enables description of continuous-time behavior. They also develop its execution tool 

integrated on an Eclipse-based platform by exploiting co-simulation of SysML and Matlab/ 

Simulink. In [5], the authors explore the usage of activities that describe continuous behavior. 

Another integration between SysML and Simulink was done in [6] and [7], where the authors use 

SysML to capture the architecture of a system, and to transform the behavior representation of 

the architecture into a ready-to-simulate Simulink model. Similar ideas were pursued in [8], 

where Simulink was integrated with UML/SysML-based Rhapsody. In [9], the author presents an 

approach for user-interactive simulation of system models, which are created using SysML and 

translated into executable Modelica models. Another SysML-Modelica transformation is 

described in [10], where a SysML profile is defined to represent the Modelica constructs. This 

transformation was standardized by the Object Management Group and the specification can be 

found in [11]. We would like to point out that some  previous integration efforts were made with 

respect to the SysML version 1.2. The new specifications of SysML version 1.3 contain some 

differences with respect to the ports and flow properties, compared to version 1.2. In addition, 

the integration efforts are focused on a specific language (Matlab or Modelica). This may be 

problematic when models created using different modeling languages need to be integrated in 

SysML models. 

In this paper, we propose an integration between SysML and simulation tools for dynamical 

systems that is independent of the particular simulation tools involved. We extend SysML with 

general concepts for all simulation tools for dynamical systems, rather than focusing on a 

specific simulation language. The advantage of this approach is that the extension is general 

enough to be applied to different simulation languages.  To that end, we use a simulation tool  

abstraction proposed in one of our previous papers [12]. We identify the SysML constructs that 

are the best match to simulation constructs and extend some of the SysML constructs to match 

simulation semantics. 

The structure of this paper is as follows. In Section 2 we present a short overview of SysML. 

Section 3 introduces the main constructs used to model dynamical systems in simulation tools. In 

Section 4 we identify the SysML constructs that are the closest to the simulation constructs and 

compare them. Section 5 contains an extension of SysML constructs to exactly match the 

simulation tools constructs. We end the paper with an example and some conclusions. 
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2. Overview of SysML 

Systems engineers use a wide range of modeling languages, tools, and techniques on large 

systems projects. As outlined in Section 1, the need for a unified approach in modeling large 

systems led to SysML, published by OMG. SysML is designed to provide simple but powerful 

constructs for modeling a wide range of systems engineering problems. It is particularly effective 

in specifying requirements, structure, behavior, allocations, and constraints on system properties 

to support engineering analysis. SysML reuses a subset of UML 2 and provides additional 

extensions to represent requirements and constraints on the system. A high level overview of the 

interrelationship between SysML and UML is shown in Figure 1.  

 

Figure 1– Overview of SysML/UML interrelationship [3] 

SysML includes diagrams that can be used to specify system requirements, behavior, structure 

and parametric relationships, also known as the pillars of SysML. The system structure is 

represented by block definition diagrams and internal block diagrams. A block definition 

diagram describes the system hierarchy and system/component classifications. The internal block 

diagram describes the internal structure of a system in terms of its parts, ports, and connectors. 

The package diagram is used to organize the model. The behavior diagrams include the use case 

diagram, activity diagram, sequence diagram and state machine diagram. A use-case diagram 

provides a high-level description of the system functionality. The activity diagram represents 

sequences of actions and flow of items (information/energy) between them. An interaction 

diagram represents the interaction between collaborating parts of a system. The state machine 

diagram describes the state transitions and actions that a system or its parts performs in response 

to events. The requirement diagram captures requirement hierarchies and the derivation, 

satisfaction, verification and refinement relationships. The relationships provide the capability to 

relate requirements to one another and to relate requirements to system design models and test 

cases. The requirement diagram provides a bridge between typical requirements management 

tools and the system models. The parametric diagram represents constraints on system property 

values such as performance, reliability and mass properties to support engineering analysis. 

Figure 2 summarizes the SysML diagram taxonomy, emphasizing what is new in SysML 

compared with UML [2]. 

UML

UML not required by 
SysML

UML-UML4SysML

SysML

UML reused by 
SysML

(UML4SysML)

SysML extensions 
to UML

(SysML profile)
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Figure 2- SysML diagram taxonomy [3] 

3. Modeling dynamical systems in simulation tools 

This section contains a brief description of the main modeling methodologies and constructs 

used in simulation tools. A more comprehensive presentation of this section can be found in [12]. 

The terminology of this section is suitable for understanding simulation tools, but differs from 

SysML terminology, including different meanings for the same terms, as explained in Section 4. 

Simulation requires a model of a system, which is used to answer questions without 

experimenting on the real system. A model can be seen as a simplified system that reflects some 

properties of the real system. The primary modeling methodologies used for simulation are 

signal-flow and physical-interaction modeling. In signal-flow modeling, the relationship between 

system components is unidirectional, from outputs of one component to inputs of others. In 

physical-interaction modeling physical conservation laws are used and the relationship between 

system components is bidirectional. 

Modeling in a simulation tool is based on four basic constructs: components, ports, links and 

block diagrams. Components are the structural/behavioral elements of a system, which through 

their interaction create the model of the system. Ports are a way for components to interact 

(exchange energy/information) with other components. Links are connections between ports of 

components, across which energy/information is exchanged. A subsystem is a component formed 

of other components and/or subsystems. Subsystems show the hierarchical nature of a system or 

simplify the model, when the number of components is significantly large.  Components that 

cannot be decomposed are called atomic. A model can be viewed as a component formed of 

components and/or subsystems. Block diagrams contain components, subsystems, ports and 

links, and are used to describe the model of a system, that is, its components and the interactions 

between them.  

The behavior of a system is determined by the behavior of its components and the interactions 

between them. The behavior of atomic components is represented using mathematical models, 

and in particular, differential equations. 
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Components 

Components consist of subcomponents, variables and parameters. Subcomponents can be other 

components or ports. Variables represent quantities that can change in time, while parameters 

represent quantities that remain constant during each simulation. 

The behavior of a component that is not a subsystem is given by a mathematical model 

describing the mathematical relationships (equations) between the variables and the parameters 

of the component. Mathematical models can be dynamic,
1
 stationary, continuous,

2
 discrete

3
 or 

hybrid. Dynamic mathematical models implicitly or explicitly include time, causing some 

variables of the model to vary. Static models are used to represent steady-state or equilibrium 

regimes. Variables of continuous time models evolve continuously while variables of discrete-

time models change only at discrete time instants. Models with both continuous and discrete 

components are called hybrid.  

The most general mathematical models that simulation tools use are differential algebraic 

equations (DAEs). Formally, a continuous-time DAE can be expressed as 

 ( ̇( )  ( )  ( )  ( )    )     ( )      

where  ( )  ( ) are the input and output vectors, respectively,  ( )  (  ( )   ( )     ( )) 
is a vector of dependent variables also known as state vector,   (          ) is a function-

valued vector and  ̇( ) is the derivative of the state vector. In the above equations time is 

denoted by t and   refers to the (constant) parameters of the model. DAEs differ from ordinary 

differential equations (ODE) in that a DAE is not completely solvable in closed form for the 

derivatives of all components of the vector of variables  .  

We can have discrete versions of the above equations that can be expressed as 

 ( (   )  ( )  ( )  ( )    )     ( )      

where k is the discrete time,  ( )  ( ) are the input, output vectors, respectively,  ( )  

(  ( )   ( )     ( )),   (          ) and  ( ) is updated at discrete time instants. 

More generally, by combining the continuous and discrete equations, we obtain hybrid 

mathematical models for describing systems. In first principle modeling methodology, we find 

useful to identify the conserved variables and the non-conserved variables of a system.
4
 

Generally speaking, the non-conserved variables represent the driving force in the system and the 

conserved variables represent rates of flow. Note that the product of the conserved variables and 

non-conserved variables typically has the units of power. 

 

                                                           
1
 The state of a dynamical system changes with time, unlike the case of stationary systems. 

2
 A variable x (depending on time)  is continuous if for every time instant t0, the limit of x(t) as t approaches t0 exists 

and is equal to x(t0). 
3
 The time evolution of a discrete variable is piecewise constant. 

4
 Conserved variables are also known as through variables. Non-conserved variables are also known as across 

variables. 

http://en.wikipedia.org/wiki/Limit_of_a_function
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Ports 

Components interact with other components through ports. Ports have variables describing 

aspects of the energy or information exchanged with other components, with exactly one kind of 

energy or information for each port. For example, variables on a port for electrical flow might 

give voltage and current (the driving force and rate of flow, respectively).  Each electrical flow is 

specified by a separate port, because the voltage and current might be different for each flow.  In 

the case of signal-flow modeling, ports specify which variables are inputs and which variable are 

outputs, and are commonly referred to as input or output ports, and collectively as directional.
5
 

In the case of physical-interaction modeling, ports still specify which variables interact with 

other blocks, but not whether they are inputs or outputs, and are referred to as bidirectional.
6
 

Links  

As mentioned in the previous section, the first step in building a model is to identify the main 

components of the system and how they interact. The interactions between components induce 

the behavior of the model. Connecting components actually means connecting the interfaces 

(ports) of the components using links. Depending on the modeling methodology, we distinguish 

two types of links: signal-flow links
7
 and physical interaction links.

8
 

In signal-flow links [12], the variables belonging to the ports are designated as inputs or outputs. 

Interconnecting components means connecting the outputs of some components to the inputs of 

other components, under some constraints: an input can only be connected to one output; an 

output cannot be directly connected to the input of the same component; an output can be 

connected to several inputs. From the semantic point of view, when an output is connected to an 

input, the output value assigns the same value to the connected input. Therefore the output and 

the input to which it is connected must have compatible type and the same dimension in case 

they are vectors. 

Physical-interaction links are used in physical-interaction modeling, where components are 

connected bidirectionally. We distinguish two types of variables present on ports of 

bidirectionally-connected components: conserved and non-conserved variables. Bidirectional 

links between ports have the following semantics: conserved variables sum up to zero, and non-

conserved variables must be equal. Obviously, the variables must match, that is, they must have 

compatible types and the same dimension if they are vectors. 

Block diagram 

Block diagram is used to represent the model of a system, that is, its composing components, 

ports and links. The behavior of a system is dictated by the behavior of its components and by 

the interconnections. Therefore, in addition to the structural aspect, a block diagram describes 

behavioral aspects of a system, as well. 

                                                           
5
 Directional ports are also known as causal ports. 

6
 Bidirectional ports are also known as acausal ports. 

7
 Signal-flow links are also known as causal links. 

8
 Physical-interaction links are also known as acausal links. 

http://en.wikipedia.org/wiki/System
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4. SysML constructs and simulation tools constructs compared 

In this section we give a brief description of a set of relevant SysML constructs and analyze if 

and how they can be used to represent simulation tools constructs [3]. We perform the analysis 

from both structural and behavioral perspectives. 

4.1 Structural constructs 

Among the structural constructs of SysML relevant for representation of simulation tools 

constructs, we enumerate:  block, connector and internal block diagram.  

SysML blocks extend the UML structured classes and represent any level of the system 

hierarchy including the top-level system, a subsystem, or logical or physical component of a 

system or environment. SysML blocks provide a general-purpose capability to describe the 

architecture of a system. They provide the ability to represent a system hierarchy, in which a 

system at one level is composed of systems at a more basic level. They can describe not only the 

connectivity relationships between the systems at any level, but also quantitative values or other 

information about a system. Using the properties of a SysML block we can specify the 

subcomponents of a block, while Internal Block Diagrams (IBDs) are used to describe how the 

subcomponents interact with each other (internal structure).  The features of blocks can be 

represented using properties. Among the most important properties we describe below: parts, 

references, values, port and constraint properties. 

 

It naturally follows that the correspondent of a simulation tool model in SysML is a block with 

internal structure (a SysML block that contains part properties, port properties and connectors, in 

addition to the properties pertinent to the behavior description). The Internal Block Diagram 

corresponds to the block diagram in a simulation tool and depicts the internal structure of the 

block. Similarly, a subsystem corresponds to a SysML block with internal structure. An atomic 

block corresponds to a SysML block without internal structure, but with properties relevant for 

the description of the block’s behavior. 

Parts are properties typed by SysML blocks and describe the decomposition of a block into its 

constituent elements. Hence it follows that the blocks typing these properties correspond to the 

components of a model. Reference properties are used on a block definition diagram to capture 

relationships between blocks other than decomposition. Value properties describe the 

quantifiable characteristics of a block, such as weight or velocity, and therefore we may be 

inclined to consider them to represent variables and parameters of a simulation tool component. 

 

In SysML the word “port” is used to designate a set of any kind of features available to other 

system components, rather than a specification of a single information or energy exchange as it is 

the case in simulation tools. SysML port properties are properties with a type that specifies 

features available to the external entities via connectors to the ports. Ports are points at which 

external entities can interact with a block in different or more limited ways than interacting 

directly to the block itself. Figure 3 depicts SysML block diagram presenting several blocks with 

examples of properties. Figure 4 shows an internal block diagram with examples of ports on 

blocks. 
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Figure 3 – SysML Block Definition Diagram [2] 

 

 
Figure 4 – SysML Internal Block Diagram [2] 

 

Connecting two SysML port properties implies that there exists some relation between the ports. 

In simulation tools, links have additional mathematical constraints. We can use SysML 

connectors to represents links with mathematical constraints added for the ports being connected. 

As previously mentioned, a SysML block can have value properties that describe the quantifiable 

characteristics of a block, such as weight or velocity. However, SysML does not directly 
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distinguish between parameters and variables on the one hand, and between continuous, discrete, 

conserved and non-conserved variables on the other hand (SysML uses the terms “continuous” 

and “discrete” in activity semantics, but not in with the same meanings as simulation tools, see 

Section 3).  Therefore, we need new constructs that can distinguish between these kinds of value 

properties. 

Blocks typing port properties of a SysML block represent components of that block available to 

external entities. They specify properties that are accessible to other blocks. Some of these 

properties might be flow properties, which specify the kinds of items that might flow between 

instances of a block and its environment, whether it is information, material, or energy.  Ports 

specify the kind of item flowing with the property type, which means the values of flow 

properties are the portions of information, material, or energy flowing in or out of an instance of 

the block at a single point in time. Flow properties can have direction (in, out or inout) and if all 

flow properties defined on a port have the same direction, then the port can be considered to be 

an input, output or input and output port. Note however, that we may want to specify that a 

current is an input for a simulation block describing an electrical circuit. But the items that flow 

between a SysML block would be in this case the electrical charge and not the current (current is 

the rate of flow of electrical charge). Therefore, using only flow properties to specify simulation 

variables is insufficient. 

 

Connectors in SysML are used to specify relationships between parts of the same containing 

block, and therefore can be used to represent a system hierarchy. Figure 5 shows a connector 

connecting the ports of the blocks WaterSupply and WaterClient as they are used in the internal 

structure of a house. The connector is typed by the association waterDelivery. Flow can occur 

between connected ports if flow properties at each end match in their type and direction.  For 

example, flow properties with direction out and type Water match flow properties with direction 

in and type Fluid. Links in simulation tools have the same role as SysML connectors. However, 

SysML cannot completely characterize the type of connections found in signal-flow and physical 

interaction methodologies, which depend of the type of variables defined on ports. A special kind 

of connector, called binding connector, is used to specify that the properties at both ends of the 

connector have equal values. A similar phenomenon happens in the case of directional links, but 

a binding connector does not give any information about the direction of the ends of the 

connector, that is, whether they are inputs or outputs. 

 

 
 

Figure 5 – Connector typed by the “waterDelivery” association [3] 

 

A constraint property is a property of a block that is typed by a constraint block. The main 

advantage of using constraint blocks comes from reusability, that is, constraint blocks define 

generic forms of constraints that can be used in multiple contexts. A constraint block includes the 

constraint, such as {F=m*a}, and the parameters of the constraint such as F, m, and a (SysML 

: WaterSupply

ibd House

 : WaterClientfaucet
waterDelivery

sbank
suppliedBy deliveredTo
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uses the term “parameter” in a different sense than simulation tools). SysML constraint 

parameters are properties of constraint blocks. They are bound to properties of other blocks in a 

surrounding context where the constraint is used. Parametric diagrams include usages of 

constraint blocks to constrain the properties of another block. The usage of a constraint binds the 

parameters of the constraint, such as F, m, and a, to specific properties of a block, such as a 

mass, that provide values for the parameters.  
 

Since differential equations modeling the behavior of simulation tools components can be seen 

as mathematical constraints, constraint properties are good candidates to represent them in 

SysML. 

 
 

Figure 6 –SysML Constraint Block [3] 
 

Constraint blocks are used in the context of Parametric Diagrams (Figure 7), which are particular 

types of SysML diagrams used to express mathematical relationships between constraint 

parameters. They contain a particular type of blocks, called Constraints Blocks, and connections 

between them. From this point of view they serve the same purpose as block diagrams in 

simulation tools. 
 

 
 

Figure 7 – Example of Parametric Diagram [2] 
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However, there are several drawbacks with this approach. As pointed out in [10], in Parametric 

Diagrams, there is no notion of ports. The closest thing that graphically mimics ports is the 

constraint parameter (the Reals x and y in Figure 6). However, Constraint Parameters are not 

actual ports in the sense defined in SysML or simulation tools, but graphical representations 

(rectangles) of constraint parameters. Additionally, constraint blocks accept only parameters as 

properties and hence we cannot distinguish between variables and parameters of a simulation 

tool component. 

 

Binding connectors are used to create complex mathematical relationships by connecting 

constraint parameters. The semantics of binding connectors is mathematical equality, similar to 

the semantics of links used to connect non-conserved variables in simulation tools block 

diagrams. Unfortunately, binding connectors do not support the semantics for connecting 

conserved variables, such as the Kirchhoff law for currents, and do not include direction 

(inputs/outputs), as needed for the signal-flow modeling methodology.   

4.2 Behavior constructs 

The behavior of a SysML block can be specified using activities, interactions, state machines and 

use cases (see Figure 8). Activities describe the sequences of actions and flow of inputs and 

outputs among actions. Interactions define message-based behaviors. State Machines specify 

state-based behavior in terms of system states and transitions between them, while use cases 

describe behavior in terms of the high-level functionality and uses of a system, that are further 

specified in the other behavioral diagrams referred to above.  We study if these constructs for 

describing behavior are suitable to describe the behavior of blocks used in simulation tools. 

 

 
(a) 
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 (b) 

 

  
(c) 
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(d) 

 

Figure 8 – (a) Activity diagram; (b) State machine; (c) Use case; (d) Interaction diagram [6] 

Use cases in SysML are the behavior construct farthest from modeling in simulation tools 

because they only represent the breakdown of interactions between systems and their operators. 

For example, in Figure 8c, the interaction between a person and car for driving is broken down 

into interactions for starting, steering, and so on.  Any detail about these interactions is specified 

by interaction diagrams, see next. 

 

Interactions in SysML specify the time-ordering of items passing between components in a 

system (or between systems and their operators, as in use cases above).  For example, in Figure 

8d, in the interaction between a person and car for driving, starting occurs before selecting the 

gear, which happens before accelerating, and so on. Interaction models are limited to discrete 

and finite flows between components, because each flow is separate element in the model, shown 

graphically as a line between the components.  They cannot represent the behavior of typical 

continuous dynamical systems.  Interactions can only represent inputs and outputs between two 

components in the “request-reply” pattern, not inputs from multiple components that result in   

outputs to multiple other components as often occurs in dynamical systems. 

 

States machines in SysML describe the state dependent behavior of a block in terms of its states 

and the transitions between them.  It is apparent that SysML state machines are suitable for 

modeling systems with discrete states.  Unfortunately, the number of discrete states must be 

finite and therefore SysML state machines are not suitable even for the simplest discrete linear 

systems that can have an infinite number of states. We recall that the most general dynamic 

systems that a simulation tool block can represent are hybrid systems. Hybrid systems are 

characterized by continuous and discrete states. For simplicity let us assume that the number of 

discrete states is finite so that it can correspond to a state of a SysML state machine. In each of 
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these discrete states the continuous states evolve according to some continuous time dynamics. 

SysML state machines do not provide direct ways to represent continuous dynamics in a 

particular state. The discrete state may change as a result of an event generated by the continuous 

dynamics corresponding to that specific state. SysML can model this with ChangeEvents, which 

detect changes at any time, but there’s no standard way to specify the change to be detected in 

the case of general mathematical models needed for dynamic systems.  

Activities in SysML are probably the behavior construct closest to modeling in simulation tools. 

This is because an activity specifies the transformation of inputs to outputs through a controlled 

sequence of actions, which can be continuously flowing. The activity diagram is the primary 

representation for modeling flow-based behavior and is analogous to the functional flow diagram 

used for modeling systems [5]. 

 

As in the case of the rest of SysML behavior constructs, an activity (or action) does not have 

direct means to describe a mathematical model associated with simulation tool blocks. As we 

know, a mathematical model is characterized by variables and parameters and therefore we 

would need a mechanism to specify them in an activity. 

 

Activities are built using actions, which describe how activities execute. Each action can accept 

inputs and produce outputs called tokens. The token are placed on input or output buffers called 

pins, until they are ready to be consumed. Streaming pins can continue to accept tokens while 

nonstreaming pins only accept and produce tokens at the beginning and end of the execution. 

 

The activities (and their usages as actions) work with inputs and outputs to describe what tokens 

are received and produced. Therefore, activities are not appropriate to model behavior in 

physical-interaction modeling methodology, with direct implication in modeling the connection 

semantics of simulation tools blocks. 

4.3 Conclusions on mapping between SysML and simulation tool constructs 

From the analysis presented in the previous sections we note that SysML provides constructs that 

partially correspond to the constructs used in simulation tools.  These constructs are summarized 

in Table 1. However, there are significant semantic differences between them. Among the main 

differences we found are: 

 

 SysML value properties cannot distinguish between variables and parameters, and 

between continuous, discrete (in the sense simulation tools use these terms), non-

conserved and conserved variables. 

 SysML can use flow properties to specify direction of simulation tool ports.  However, 

the semantics of flow properties do not completely match the semantics of properties of 

simulation tool ports, since the former specify the kinds of things that flow, while the 

latter do not, and the latter specify other characteristics of flow, such as driving force and 

flow rate, while the former do not. 

 The semantics of SysML connectors provide some of the semantics for links used in 

signal-flow modeling (with binding connectors), but not the direction of signal-flow, and 

none of the semantics for links used in physical-interaction modeling.  

 The SysML behavioral constructs do not match the behavior constructs in simulation 

tools, but using constraints properties may be a solution. 
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Simulation tools constructs SysML constructs 

Model 
Block with internal structure, but not a 

component of other blocks 

 

Component 

Atomic 

component 
Block without internal structure 

Subsystem Block with internal structure 

Links Connectors 

Ports Flow properties 

Dynamic equations 
Constraint blocks typing constraint 

properties 
 

Table 1 – SysML and simulation tools constructs mapping 

In conclusion, we need to extend the aforementioned SysML constructs with new semantics such 

that they can match the semantics of simulation tools constructs. 

5. Extension of SysML constructs for modeling dynamical systems 

As emphasized in the previous section, the semantics of the closest SysML constructs that 

correspond to the constructs used in simulation tools do not match exactly. In the following we 

introduce extensions of SysML constructs, so that dynamical systems can be modeled. 

We emphasized earlier that SysML does not distinguish between parameters and variables, and 

between continuous and discrete variables (in the sense simulation tools use these terms, see 

Section 3). As a consequence we introduce a new stereotype named SimConstant which extends 

Property from UML4SysML (the SysML constructs that are from UML, as shown in Figure 1). 

This stereotype is used to specify that the value remains constant during each simulation 

execution (the stereotype name does not use the term “parameter” because it has different 

meanings in SysML than simulation).
9
 The abstract syntax of this stereotype is shown in Figure 

9. 

  
 

Figure 9 - SimConstant abstract syntax 

                                                           
9
 The term “constant” in simulation tools refers to values that are the same across all simulation executions, such as 

the physical constant for gravitational acceleration, rather than just during each simulation execution separately 

(“parameter”).  Simulation constants can be modeled in SysML as read-only properties with default values. 

«metaclass»
Property

{ property is a value property }

«stereotype»
SimConstant
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In addition, we introduce SimVariable, that again extends Property from UML4SysML. We use 

this stereotype to specify that a property is a simulation tool variable (that is, its value will be 

used by simulation tools and might change over time). The abstract syntax of this stereotype is 

presented in Figure 10, and has the following attributes: 

 isContinuous : Boolean = true 

If the attribute is true the variable is continuous. If the attribute is false, the variable is 

discrete.
10

 The default value is true. 

 

 isConserved : Boolean = false 

If the attribute is false the variable is non-conserved. If the attribute is true the variable is 

conserved. The default value is false. 

 

 changeCycle: Real = 0  

The attribute specifies the time cycle at which a discrete variable (isContinuous = false) 

might change values. During each cycle, the value must be constant.  The value might 

change at the end of each cycle, but not necessarily. In the case of continuous variables, 

the attribute takes value zero, which means the value might change at any time. 

 

Figure 10 – SimVariable abstract syntax 

SimConstants and SimVariables can be applied to any property to indicate it is relevant for 

simulation tools, but SimVariables can characterize interactions between components, while 

SimConstants cannot, because interactions always have the potential to change property values 

of components.  As a consequence, we propose a special kind of SysML Block named SimBlock 

that has properties that are all SimVariables. This kind of block has the constraint that all 

properties have the SimVariable stereotype applied. SimBlocks are particularly useful for 

describing interactions between components from the viewpoint of simulation tools, but can also 

be used to describe components themselves if needed. The abstract syntax of this block is shown 

in Figure 11. 

                                                           
10

 This is continuous and discrete in the sense given in footnotes 2 and 3 (Section 3 under Components), 

respectively, rather than continuous in the SysML sense of zero time between items flowing in activity models, see 

Section 1.4.2. 

isContinuous : Boolean = true
isConserved: Boolean = false
changeCycle: Real = 0

{ property is a value property }

«stereotype»
SimVariable

«metaclass»
Property
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Figure 11 – SimBlock abstract syntax 

As described in Section 4.1, SysML has a special type of property indicating direction of flow 

(flow properties). However, these properties only designate the kind of items that flow, rather 

than the characteristics of the flow, such as driving force or flow rate, whereas simulation tool 

ports can contain variables representing non-conserved and conserved quantities describing these 

aspects of the flow. Still we argue that an extension of flow properties can be used to specify 

simulation tool ports. The reason is that in any type of modeling (signal-flow or physical-

interaction) there are items that flow between ports, although these items are not directly 

represented by variables at the level of simulation tool ports. For example, in the case of 

physical-interaction modeling when currents and voltages are port variables, we can think at 

electrons as the items flowing on links, or more generally, we can think of electricity. Similarly, 

in the case of signal-flow modeling we can think of electrical signals or information flowing on 

links connecting ports. 

Next, we propose a stereotype named SimProperty, extending Property from UML4SysML. The 

abstract syntax of this stereotype is shown in Figure 12. Properties with this stereotype applied 

are always typed by a UML Class with the SimBlock stereotype applied. The SimProperty 

stereotype has an attribute referTo that identifies a flow property used to specify the direction of 

the flow. The value of properties that have SimProperty applied are the instantaneous flows 

through the flow properties they refer to (see Section 4.1 about the values of flow properties). 

For simplicity, if the direction of the flow property given by the attribute referTo is in or out, we 

say that the usage of the SimBlock typing the SimProperty has input, output direction 

respectively. In the case the direction is inout, we say that the usage of the SimBlock typing the 

SimProperty is bidirectional. We have the following constraints on the SimProperties of 

SimBlocks: 

a) A SimBlock with direction input or output can have only non-conserved variables. 

 

b) A bidirectional SimBlock can have both non-conserved and conserved variables. 

 

«stereotype»
Block

«stereotype»
SimBlock

{ all properties have SimVariable stereotype applied }
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Figure 12 – Abstract syntax for SimProperty 

SimProperties can be used as properties of blocks typing port properties, in which case they refer 

to flow properties of the block typing the port property. We can connect the ports using SysML 

connectors. For simplicity, if flow properties on port types at each end of connector match (see 

Section 4.1 about matching flow properties), we say SimBlocks are connected if they type 

SimProperties referring to matching flow properties on the types of the connected ports, and we 

say SimBlocks have a direction in their usage as types of SimProperties referring to flow 

properties that have direction.  We have the following constraints on connected SimBlocks:
11

 

a) The SimVariables of connected SimBlocks  must match, that is, they must have the same type, 

the same name, and their number must be the same. 

 

b) A SimBlock with output direction can be connected to one or several ports matching 

SimBlocks with input direction. However, a SimBlock with input direction can be connected 

to only one matching SimBlock with output direction. During simulation, the variables of the 

block with input direction will be assigned the values of the matching variables in the 

SimBlock with output direction. 

 

c) A bidirectional SimBlock can be connected to one or several matching bidirectional 

SimBlocks, for both input and output direction.  During simulation, the values of the matching 

non-conserved variables of the connected blocks must be equal, while the values of all 

matching conserved variables must sum up to zero. 

SimVariables on the same SimBlock are typically typed in non-overlapping ways to avoid 

redundancy.  For example, if one SimProperty is typed by voltage, there won’t be another 

SimProperty on the same SimBlock typed by voltage, because they would have the same value 

for the flows they describe.  Simulation ports sometimes have multiple variables with the same 

type, where each variable is interpreted as a different flow.  In the extension proposed here, this 

would be modeled in SysML with multiple SimBlocks, one for each of the variables of the same 

                                                           
11

 These apply to connectors between any property typed by block containing SimProperties, but this case is not 

covered here. 

«stereotype»
SimProperty

referTo : FlowProperty

{ property is typed by SimBlock }

«metaclass»
Property
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type, and each of SimBlocks would describe a separate flow, through separate flow properties 

(see next about relating SimBlocks to flow properties). 

For clarity, we present the following example. For visual clarity, we introduced a new 

compartment named SimProperties that contains properties typed by SimBlocks. 

 

Figure 13 – Example of modeling bidirectional simulation tool ports in SysML 

Figure 13 shows how we can use the SysML constructs defined above to model a simulation tool 

bidirectional port. We first define the SimBlock Pin containing the conserved variable i and the 

non-conserved variable v. A usage of Pin is in the block Port as the type of SimProperty p, which 

in addition contains the flow property electricity. Note that the attribute referTo of the 

SimProperty is the flow property electricity, through which direction of p and its usage of Pin is 

determined. In this example, the direction of p is inout and the Pin SimBlock is bidirectional. 

Figure 14 shows how we can model an output port using the extended SysML constructs. As in 

the previous example, we use a flow property with direction out. Note that in this case, the 

SimBlock contains only non-conserved variables. 

sim properties
{referTo = electricity} p : Pin

flow properties
inout electricity: Electricity

«simBlock» 
Pin 

sim variables
{ isConserved=true} i : Current
v : Voltage

«block» 
Jack

Corresponds to bidirectional 
simulation tool port
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Figure 14 – Example of modeling in SysML a simulation tool output port 

In both examples, the block Port can be used to type port properties. 

6. Modeling the behavior of simulation tools blocks 

Since differential/difference equations can be interpreted as mathematical constraints, using 

constraint blocks to represent them seems natural. Note that using constraint blocks has another 

advantage: it permits reusability. We can define constraints blocks describing differential 

equations that can be used to express behavior for several simulation blocks. 

 

In Figure 15 we show how we can use constraint blocks to model the following differential and 

difference equations: 

 

 
 

                   
 

Figure 15 – Example of using constraint blocks to model differential and difference equations 

sim properties
{referTo = electricity} p : Pin

flow properties
out electricity: Electricity

«simBlock» 
Pin 

sim variables
v : Voltage

«block» 
Jack

Corresponds to directional 
simulation tool port

«constraint» 
EqDiff1 

constraints
{dx/dt = a*x+b*u} 

parameters
x:Real
a:Real
b:Real
u:Real

«constraint» 
EqDiff2 

constraints
{xn+1 = a*xn+b*un} 

parameters
x:Real
a:Real
b:Real
u:Real

dx/dt = a*x+b*u 

xn+1 = a*xn+b*un 
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The parameters of these constraint blocks can be bound to SimVariables of SimBlock using 

parametric diagrams, see example in Section 7. 

 

If reusability is not a priority, we can use UML Constraint directly to represent equations. A 

UML constraint is shown as a text string in curly braces according to the following syntax: 

 

constraint ::= '{' [  name ':' ] boolean-expression '}' 

 

UML specification does not restrict languages which can be used to describe constraints, but the 

Object Constraint Language is predefined in UML. If we choose to use UML constraints, care 

must be taken to use the variable names in the constraint. 

7. Modeling example 

In the following we show how we can use the newly introduced SysML constructs to represent 

the electrical circuit in Figure 16.  

 

Figure 16 – Electrical circuits 

Figure 17 shows a block definition diagram describing the structure of the electrical circuit while 

In Figure 18 and Figure 19 we show a more detailed description of the components of the 

electrical circuit reflecting their constants, variables, and constraints for describing behavior.  In 

addition, Figure 20 presents an internal block diagram that shows connections between the 

components of the electrical circuit, while Figure 21 shows a usage of a constraint block that 

describes the behavior of the component Resistor. 
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Figure 17 - Electrical circuit structure 

  

Figure 18 – Description of the electrical circuit components with port modeling 

bdd CircuitDecomposition

Circuit

Resistor Capacitor Inductor Ground Source

bdd CircuitComponents

«simBlock» 
ElectricityFlow

sim variables
«isConserved=True» i : Current
v : Voltage

flow properties
inout electricity: Electricity

sim properties
«referTo=electricity» var : ElectricityFlow

«block» 
Pin 

«block» 
Resistor 

sim constants
R : Resistance= 10 

constraints
rc : ResistorConstraint

«block» 
Capacitor 

sim constants
C : Capacitance = 0.01 

constraints
cc : CapacitorConstraint

«block» 
Inductor 

sim constants
L : Inductance = 0.1 

constraints
ic : InductorConstraint

«block» 
Source 

constraints
sc : SourceConstraint

«block» 
Ground 

ports
p : Pin

constraints
sc : GroundConstraint

«block» 
TwoPinElectricalComponent

ports
p : Pin
n : Pin

sim variables
«isConserved=True» iThru : 
Current

vDrop : Voltage
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Figure 19 – Block definition diagram to represent the behavior of the electrical circuit components 

 

Figure 20 – Internal block diagram to represent the internal structure of the electrical circuit 

bdd CircuitEquations

«constraint» 
ResistorConstraint

parameters
R : Resistance

constraints
{R*i = v}

«constraint» 
CapacitorConstraint

parameters
C : Capacitance

constraints
{C*der(i) = v}

«constraint» 
InductorConstraint

parameters
L : Inductance

constraints
{L*der(v) = i}

«constraint» 
SourceConstraint

parameters
t : Time

constraints
{v=220*sin(314*t)}

«constraint» 
GroundConstraint

parameters
posV : Voltage

constraints
{ 0 = posV}

«constraint» 
BinaryElectrical

ComponentConstraint

parameters
i : Current
negI : Current
posI : Current
v : Voltage
negV : Voltage
posV : Voltage

constraints
{ v = posV - negV}
{ 0 = posI + negI }
{i = posI}

ibd [block] Circuit

g : Ground

p: Pin

s : Source

p: Pin

n: Pin c : Capacitor

p: Pin

n: Pin

r : Resistor

p: Pin

n: Pin

i : Inductor

p: Pin

n: Pin

Additional 
constraints / equations

induced by link semantics
(conservation laws)

{ r.n.var.v = i.p.var.v }
{ r.n.var.i + i.p.var.i = 0 }
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Figure 21 - Parametric diagram for connecting the variables of the Resistor block with the parameters of the 

constraint block 

8. Conclusions 

In this report we first investigate if SysML has constructs to model dynamical systems. We 

conclude that SysML has a set of constructs that partially match the constructs used by 

simulation tools to model dynamical systems. However, we need to extend some of these 

constructs to harmonize with the constructs used in simulation tools. The extended constructs 

allow for representation of simulation tool variables and parameters and for setting direction of 

simulation tool ports. In addition we show through an example how we can use the extended 

SysML constructs to model an electrical circuit. 

Disclaimer: Commercial products and services are identified to adequately specify certain procedures. In 

no case does such identification imply recommendation or endorsement by the National Institute of 

Standards and Technology, nor does it imply that the products and services identified are necessarily the 

best available for the purpose. 
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