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A COMPARISON OF THE FORMULAS FOR THE CALCU-
LATION OF THE INDUCTANCE OF COILS AND SPIRALS
WOUND WITH WIRE OF LARGE CROSS SECTION

By Frederick W. Grover

ABSTRACT

Two methods have been used for the calculation of the inductance of coils of

wire having a relatively large cross section. Of these, the summation method
gives the inductance of the coil as the sum of the self-inductances of the turns

and the mutual inductances of all. the pairs of turns. The Rosa method cal-

culates the inductance of the equivalent current sheet as a first approximation

to the inductance of the coil, and obtains the correction which must be applied

by calculating (a) the differences between the self-inductance of the turns of wire

and of the current sheet and (6) the differences of the mutual inductances of

pairs of turns of wire and of the corresponding turns of the current sheet.

It is here shown that, contrary to previous opinions, the two methods give

identical results, when terms of the same degree are retained in the series

expressions.

The accurate formula of Snow for the inductance of a helix is written so as to

include the Rosa correction terms, and it is proved that the error of the Rosa
method may be neglected in all except the most precise work.

It is recommended that, lacking precision formulas, the Rosa method be used

as giving a general solution of the problem in such cases where the current sheet

formula is known. Certain important cases are reviewed briefly.
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I. INTRODUCTION

In a recent paper Doctor Snow (1)
l has derived a formula for the

calculation of the inductance of a helical coil wound with wire of any-

desired cross section, and has illustrated its use both for round wires

and for wires of rectangular cross section. Snow's formula is very-

accurate, since no terms greater than those of the fourth power in

the ratio of pitch of the winding to the radius of the winding form

have been neglected. It also takes into account the helical shape of

the winding, and thus allows for the effect of the axial component

of the current in contributing to the magnetic field. This is true of

no other existing formula, so that Snow's formula is able to serve as

a standard in investigating the accuracy of other formulas for the

inductance of a solenoid.

To a first approximation, the inductance of a single-layer coil or

solenoid may be calculated by one of the numerous formulas for the

inductance of a cylindrical current sheet (2). These give the value

for the current sheet with great accuracy, and for coils wound closely

with fine wire the difference in the inductance of coil and current

sheet is not important. For wire of larger cross section, and for coils

where the diameter of the wire is small compared with the pitch of

the winding, the error due to the assumption that the coil and the

cylindrical current sheet are equivalent is too large to be neglected

in the light of the modern requirements of accuracy.

To obtain more accurate formulas, two general methods have been

used, which may also be applied in other cases, such as, for example,

polygonal single-layer coils and circular and polygonal spirals. For

convenience these may be designated as (a) the summation method,

and (b) the differential or Rosa method. In the former the induc-

tance is found by summing the self-inductances of all the turns and

the mutual inductances of all the pairs of turns of which the coil is

composed. By this method, in 1905, Strasser (3) obtained a formula
for the inductance of a circular single-layer coil of round wire. In

more recent years Esau (4), by the use of the same method has ob-

tained expressions for the inductance of circular flat spirals, of single-

layer coils wound on square forms, and of flat spirals with square

turns, and Koga (5) has extended the method to triangular, hexagonal,

and octagonal coils and spirals of round wire.

The second method was developed in 1906 by Rosa (6), who em-
ployed it to calculate the inductance of a single-layer circular coil

wound with round wire, and published tables to aid in the calculations.

In Rosa's method the difference is calculated between the inductance

of the coil and that of a cylindrical current sheet having the same

1 The figures given in parentheses here and throughout the text relate to the reference numbers in the

bibliography given in Section XI of this paper.
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mean radius, the same number of turns, and an axial length equal to

the product of the number of turns and the pitch of the winding.

The difference of inductance in the two cases is expressed as the sum
of two terms, one of which takes into account the difference in the

self-inductance of a turn of wire and that of a turn of the current

sheet, while the other depends on the difference in the mutual in-

ductance of corresponding pairs of turns of the coil and of the current

sheet. These correction terms are added to the inductance of the

current sheet to find the inductance of the coil. The inductance of

the current sheet may be calculated by that one of the known for-

mulas which is most suitable for the case in question.

The Rosa method is evidently capable of extension to other cases,

provided that the expressions for the correction terms can be obtained.

Its use for single-layer coils of round wire wound on square or rec-

tangular forms has been treated by Niwa (7) in a very complete

paper devoted principally to the derivation of current sheet formulas

for these and many other related cases and to aids in their calculation.

Esau (8) has found differences between the values of the induc-

tances of coils wound on square forms, found by Niwa's method and

by the summation method, and has claimed a greater accuracy for

the summation method. In commenting on Esau's criticism, Niwa
(7) has pointed out numerical errors in Esau's calculations, but has

failed to draw notice to the fact that Esau has incorrectly taken the

dimensions of the current sheet to which the corrections given by the

Rosa method are to be applied.

It is the purpose of the present paper (a) to show that the Rosa
method and the summation method lead to exactly the same formula

if terms of the same order be retained in each, (&) to discuss the

approximations made in deriving the formulas in the two methods,

(c) to compare the Rosa method with Snow's formula for the induc-

tance of a helical coil, for both round wire and rectangular wire, and

to derive the expression for the error of the Rosa method in these

two cases, and (d) to recommend the generalized Rosa method as

giving the most simple and accurate method available in certain other

cases, such as polygonal coils and spirals.

II. EQUIVALENCE OF THE SUMMATION METHOD AND THE
ROSA METHOD FOR CIRCULAR SOLENOIDS OF ROUND
WIRE

The summation method assumes the solenoid to be composed of n
coaxial circular rings of equal radii, spaced uniformly at a distance

apart which is the pitch of the winding g. Thus, the axial length

of the coil is ng. The current is assumed to get from one ring to

the next by means of connections of negligible inductance; that is,
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the helicity of the actual winding is neglected, the current being

assumed to flow in planes perpendicular to the axis of the coil.

The inductance of the coil is then

L = nLi + 2*2 Mp (1)
i

where L\ is the inductance of a turn, and Mp is the mutual inductance

of two turns separated by a distance pg. Strasser used for Xx a

formula which is only approximate. Using the accurate formula for

the inductance of a circular ring (9) of mean radius a having a cross

section of radius p,

nU = 4*»a[(l +£) log, &-^-
£|

(2)

The mutual inductance Mp is obtained by the Maxwell series for-

mula (10) for the mutual inductance of coaxial circular filaments

near together.

^=4„^ +|*+ ..) log„|_(2+g+ ...)] (3)

and summing this over all the pairs of turns of the coil, we have to

find

2[(n-l)M1 +(n~2)M2
+- - + (n-p)Mp +- + Mn_x] (4)

The resulting formula for the inductance of the coil is, neglecting
2

terms in 4>a2

i = 4ira[n(log.— - I.75V 7i(to-1/loge—- 2)-^
(5)

which is slightly more accurate than that given by Strasser, on account

of the greater accuracy in the formula used for Lv In this

^i = 2[log,(n-l)!+log. (n-2)! + - • • +log2!]
51

= 3[(7i-l)l 2 logel + (w-2)2 2 loge 2+- • + (n-p)p2
loSe p (6)

+ • . + (7l-l) 2 l0ge (7l-l)]

Tables of the values of Ai and B x were given by Strasser (3), including

n = 30. These were apparently calculated directly from the defining

formulas (6), a tedious process.

To calculate the inductance by the Rosa method the inductance

L5 of a cylindrical current sheet of n turns of radius a and having a

length b = ng is calculated. To this is to be added the difference

between the inductance of the coil and the current sheet. To obtain

this difference the inductance lw of a turn of the round wire is cal-
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dilated by formula (2), divided by n. The inductance l t of a turn of

the current sheet is obtained by placing b = g in the Rayleigh and

Niven expression (11) for the inductance of a short cylindrical current

sheet. (See Formula (15) below.) Subtracting l
t from lw and mul-

tiplying by n, the difference in inductance of coil and current sheet

due to the fact that the individual turns of wire have a different

T"

ydl

_L__

FlGUEE 1

inductance than the turns of the current sheet is obtained,

result is, neglecting terms in p
2/a2

,

The

n Q,v,-lt) = ±Tca\ w(loge ^-jj-^3 ^log,y + ^jJ=-47moJ. (7)

The principal term of this is the constant A of Rosa, only with

opposite sign. It will be convenient to speak of this type of correc-

tion as the "A correction."

Designating by Mp the mutual inductance of any pair of turns of

the wire separated by a distance of pg, and by mp the mutual induc-

tance of the corresponding turns of the current sheet, then the total

correction to the inductance of the current sheet due to all the pairs

of wire is

2[(n-l)(M1-m1 ) + (n-2)(M2-m2)+--- + (n-p)(Mp-mp)+--

+ (J4_i - m„_i )] = - lirnaB (8)
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For convenience this will be referred to as the "B correction." The

inductance of the coil is then

L= Ls -4irna(A + B) (9)

The values of Mv are to be calculated by the Maxwell expression

for circular filaments, formula (3). To obtain mv we have to find

the mutual inductance of the two equal short cylindrical sheets, 1

and 3, Figure 1, whose lengths are g and whose central planes are

separated by a distance pg. Supposing the space between them to

be filled by a current sheet (2) of the same radius and wound with

the same pitch, its axial length being (p-l)g, the required mutual

inductance will be given by

2mp
= Lm + L2-2L 12 (10)

The self-inductances in this formula may be obtained from the cur-

rent sheet formula (15) below, and the resulting expression is

m,=47ra|7loge 8a-|)+g£3 (6p
2 -

1) (log. y + 4)

-{^lIa

iog.(p+l)»+^=^log.(p-l)^-2>"log.^J (11)

-g|^-2 { (p+ l)
4
l0ge (p+ 1) + (P- l)

4 l0ge (p- l)~2p
i log*?}]

The second fine of this formula differs only by a constant term

from the expression for the geometric mean distance RP of the two

straight lines of length, g, which form the cross sections of the two

turns of the current sheet (13). Writing - Y for the last line of equa-

tion (11), and subtracting equation (11) from equation (3) there is

found the general relation

t/?
*3 7)

2n2 o2 8a
lo^^ ~I6 dF

l0ge p ~32^ l0g
« 7

7j>V g
2

1 Yl
64 a2 128a2 "^

J

which is to be summed over the coil according to equation (8).

Writing for log — its value (12)

loge^= (£+iZioge(i? + l)+fclI
2

loge(p-l)_ :
p2 loge:p

_3
(13)

3
and summing over the coil there is found n2 loge n—-^n{n—l), while

(12)
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the summation of log p gives the constant At of Strasser, defined in

equation (6). Thus we may identify the constant B of Rosa with

the expression

»log.»-|(»-l)-^=-B (14)

in which B has been put for the Rosa constant, which is the principal

term of B in equation (8).

The summation of the second term in equation (12) leads to

1 o2

—- —
2 Bi, where Bi is Strasser 's constant, formula (6), while the sum-

o a

mation of Y yields g^2 ^°Se n only.

In order to compare Rosa's method with the summation method,

the current sheet inductance Ls will here be expressed by the Ray-

leigh and Niven's formula (11) for a short cylindrical current sheet

of radius a, length I,

' i= 4*«n'[(log.^-|)+ 32^(log.f+ |) ]
(15)

although no such limitation is inherent in the method. Thus writing

ng for b in equation (15) the terms in equation (9) may be collected

and we have

Z>-4rt[»»(]og.
jg-

l)+ ijg(log. g+D]

-4imo^ = 47ra[n(log. ~|)-|^(log. J +
j)] (16)

n . r ->i 3 , .,* . 1 <7
2 „ n(n—l)q 2

-4irnaB = 4:Tra\ n2 \oge n—^n{n-l)-Ai-~2Bx-
v

12g ^
n(n-l) g

2
, 8a 7 n2 (n2 -l)g2 rig* , 1

32~a2 log
< 7~384 7 + 32? loge

"J

Adding and simplifying

L = 4 7ra[n 2(loge^-2) + ^(log^ + i)-^l 1-^51

,
»V-l) g

aw 8e n»(n'-l)gH ,17 .

+
32 a

2l0ge
o 96 a2

]
(17)

and if we add and subtract (n loge f-2n.
J,

the expression goes over

into Strasser's formula (5) exactly.

This result was to have been expected, since the methods should

agree if correct inductance formulas are used, and if, in both methods,

terms of the same order are retained.
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In the correction constants A and B, as given by Rosa, terms m —
2

Qj

were neglected as of small effect, compared with the main or geo-

metric mean distance terms. This was justified by Rosa by numerical

examples, but it may be shown more generally that the terms in —^

in equation (17) are very small. To accomplish this, the Strasser

constant Bx may be expanded in the asymptotic series

5i-^n*-n»+^)log.n-^+^(l+^- •)+^+
i6^+ "

s (»)

and substituting this in the last two equations of (16) it is found that

a2 n2a2 / 8a 1\ 1 na2

the combined terms in ~-
2 are ~32a2 \ ^°^ c na~ 3 / 96 -Jr — smaller

terms. For the case 7i = 30, g = 0.1, a =15, these terms amount to

only 8 parts in 10,000 of the total correction, and the latter is only

18 parts in 10,000 of the whole inductance of the coil, so that the

neglected terms here are of the order of only a part in a million of

the whole inductance. A further discussion of this point will be made
in Section VI.

III. SUMMATION FORMULAS FOR THE INDUCTANCE OF
POLYGONAL SOLENOIDS AND SPIRALS AND THEIR
GENERALIZATION

Formulas for the inductance of polygonal solenoids and spirals

have been obtained by Esau (4) and by Koga (5). Esau treated the

case of square coils, making use of the known formulas for the induc-

tance of a square of round wire and for the mutual inductance of

equal parallel coaxial square filaments.

Koga extended the method to triangular, hexagonal, and octagonal

coils and spirals, and derived for this purpose the basic formulas which

had to be summed over the coil. Thus he gives formulas for the

mutual inductance of concentric coplanar polygons with their sides

parallel. His formulas for the inductance of polygons of round wire

and for the mutual inductance of equal parallel coaxial polygons

check those of the author of the present paper which were published

a little earlier (13).

Both Esau and Koga in their use of the summation method first

expanded the basic formulas in terms of the ratio of the pitch to the

length of a side of the polygon. Tables are given for different num-
bers of turns up to 30, and for different sizes of wire and pitch of

winding. Since powers no higher than the square of the ratio of

pitch to side of polygon are retained, the formulas converge well only

for relatively short coils or for spirals of small axial widths
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An inspection of these summation formulas has made clear that

they may all be written in the same form, only with different numerical

coefficients depending upon the number of sides of the polygon.

After checking all the coefficients and correcting errors in two in-

stances,2 the writer finds the following results, the constants being

collected in Tables 1 and 2.

Inductance of a polygon of round wire.

L = 2Na[\oge ^+q] (19)

in which

iV=the number of sides of the polygon,

a = the length of a side of the polygon,

p = the radius of cross section of the wire.

Mutual inductance of equal parallel coaxial polygons.

l0ge|
D

r+ s
d ti

]

where <Z= the distance between their planes.

Inductance of polygonal solenoids.

Letting n be the number of turns, g the pitch of winding

2Nan [(log. ^+ <z)+ (n- 1) (log, |- r)

g n(n*-l)
< £

a 6 a?

Ai is Strasser's constant, formula (6).

Table 1.

—

Values of numerical constants in formulas (19),

(20)

(21)

), {21), and (22)

Triangles..
Squares--.
Hexagons-
Octagons..

-1.1555
-. 52401
+. 098476
+. 46198

1. 4055
. 77401
. 15152

-. 21198

2. 2092
1

.3954

.2146

-0. 0429
+. 1160
+. 1052

Mutual inductance of parallel concentric coplanar polygons.

Putting here a for the mean length of a side of the polygon

M=2Na \}°%°2- r + s' —\-t
a

an
(22)

the constants being given in Table 2, excepting r which is the same

as in the preceding formulas

' Koga gives S1 for the octagon as —(V2"-1)X8.5509= -0.3452 and T for the triangle as rr>
12
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Inductance of a polygonal flat spiral.

If a represents the mean length of a side of the polygonal turns

of the spiral, g the (axial) pitch of the winding, n the number of turns

,
= 2Nan [(log, f+y+ (n ~ x

) \}°Se ^~ r
)

,

n2-l , g n(n2 -l) T?_A±
+

3 a 6 a? n

(23)

Between the coefficient T and t' there exists the relation T—i'

The constants of the last two formulas are collected in Table 2.

Table 2.

—

Values of numerical constants in formulas (22) and (23)

Triangles.
Squares..

Hexagons
Octagons.

1. 2396
.53284

.20328

. 10898

u
0.2947

.1662

Ma
a
0.1280

.0804

V"3
1

1/V~3

(V~2-D

IV. CURRENT SHEET FORMULAS FOR POLYGONAL SOLE-
NOIDS AND SPIRALS AND THE ROSA CORRECTION TERMS

The formula for the inductance for a solenoidal current sheet on a

square form was derived by Niwa (14), and independently, at about

the same time, by the writer (13), who also derived series formulas

for short triangular, hexagonal, and octagonal current sheets.

To obtain the formula for the inductance of a polygonal solenoid

by the Rosa method, it is necessary to start with the formula for the

corresponding current sheet. Putting, as before, a for the mean side

of the polygon, and supposing that the n turns have an axial length

of ng, the generalized formula (13) for the inductance of the current

sheet is

X, = 2«[.og«^+(l^) +if+|^] (24)

which holds for cases where the ratio of the axial length to the side

of the polygon is small. The numerical coefficients have the values

given in Table 1.

The Rosa corrections for the cross section of an actual winding of

round wire may be obtained by the method already outlined for a

circular solenoid in Section II. The A correction is obtained from

equation (24), putting g in place of ng. This gives the inductance of

a turn of the current sheet. Formula (19) gives the inductance of a

turn of the round wire. The B correction is obtained by summing
over the coil an equation corresponding to equation (8), the values
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of the mutual inductances for two turns of the current sheet being

obtained from differences of self-inductances, as in equation (10),

using equation (24), while the values for pairs of turns of the round

wire are given by equation (20) for polygonal filaments.

The results may be summarized as follows

:

A =2^[.„g,i +(|- r) +f^ +|^]
-2^an^ = 2^an[log^-(|-r)+ 2-ff-|g] (25)

-2NanB = 2Nan nloge n-^(n-l)-^-^(n-l)^\

and adding these, the inductance of the polygonal solenoid is

Z = 2iv4(>og
,f
+ s)

+ (.-l)(log«2- r)4' +^
n(n2 -l)tg2~]

+-6 -y

which is, exactly, the formula (21) obtained by the summation method
for this case.

Niwa (7) calculated the correction for cross section as equal to

twice the total length of wire in the coil, times the sum of the two
constants tabulated by Rosa for circular solenoids, and applied it to

his current sheet formulas for square and rectangular solenoids. This

O Q2
. . •

procedure is justified, if we neglect terms in — and —2
> since it will be

found that, using the values of Table 1, the quantity — (?> — rj+ g_

5
is always equal to — j> whatever the number of sides of the polygon.

Thus, comparing with equation (16) the principal terms of the cor-

rection are — 2Nan(A + B), the constants A and B being the same

as for a circular solenoid.

To treat the polygonal spiral by the same method requires a current

sheet formula for a polygonal disk or ring, and no formula for this

case has been published. It may readily be derived by the method
of geometric mean distance and arithmetical mean distances by sub-

3
stituting in formula (22) for coplanar polygons, log ng—^ior log d,

„ ng for d (15), and j? n
2
g
2 for d2

. This result was checked by inte-

grating equation (22) twice over the current sheet. This yields a

formula which differs from that obtained by the simpler method only

• • 7b O
in the coefficient of —f-» the simpler method giving f instead of T.
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The value by integration, which is the more accurate result, may be

written in the general form

X, =2^[l„& ^ +(|^)+2+^4^] (26)

in which a is the side of the mean polygonal filament. The coeffi-

cients have already been given in Tables 1 and 2.

The derivation of the Rosa corrections for cross section follows the

course already illustrated in Section II, although the process of sum-

mation is more involved, on account of the varying sizes of the turns

of the spiral.

The resulting correction terms are

-2^a^ = 2iVan[log^+2-(|-r)-l
/

f-fg] (27)

-2NanB = 2Nan[nloge n~(n-l)-^-~(n-l)^]

and adding these to the current sheet value in equation (26), the

final formula for the polygonal spiral is exactly the same as formula

(23), which was derived by the summation method. Here also as in

the previous case the principal terms of the correction have the same
value, and may be calculated from the same table of constants as

for circular solenoids.

It has been proved that the Rosa method and the summation
method agree, if terms of the same degree are retained in both, not

only in the case of circular solenoids but also with polygonal solenoids

and spirals. It may be shown by the same methods that this result

is likewise true for circular flat spirals. As already intimated, these

results were to have been expected, and that they are found to be

true gives a check on the various inductance formulas employed. It

also shows that Esau's criticism is without ground.

V. RECALCULATION OF THE TABLE OF THE B CORRECTION
OF ROSA

The quantity B tabulated by Rosa for wire of round cross section

was defined by the relation (6)

J5=|[(n-l)loge |-
1 + (n-2)loge|+. . + (n-p)loge^+

(28)

5 ratio of the g<

two straight fines (cross sections of a pair of the turns of the current

in which —- represents the ratio of the geometric mean distance of
V9
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sheet) whose centers are separated by a distance pg, to the distance

between them. This quantity may be calculated by formula (130)

of Bureau of Standards Scientific Paper No. 169, and for more distant

turns by the very convergent series formula (131) of the same paper.

Thus the direct calculation of B by formula (28) offers no difficulty,

except that the calculation for large values of n becomes very tedious.

Furthermore, in the calculation of a table for different values of n,

the fact that the calculation for a given value of n rests upon the

calculation for smaller values of n, although seemingly an advantage,

works to the end that any error made with a smaller value of n is

carried through into the calculation for the larger values of n. Thus,

it is difficult to obtain values of B for the larger values of n which

shall be free from error.

From equations (8) and (12) (the first term), it has already been

noted that the correction B may be written in the form shown in

equation (14). This equation, which does not seem to have been

previously noticed, gives a means for checking the values found by
the formula (28). For this purpose the table of values of A\, given

by Strasser and, corrected for small errors, in Table 5, Bureau of

Standards Scientific Paper No. 169, should be useful. Beyond n = 30,

the range of this table, the quantity A\, as may be seen from equation

(6), labors under the same disadvantage for purposes of calculation

as does equation (28).

This difficulty may be very completely avoided by using for Ai a

development in an asymptotic series, as was done by Rolf (16) and

by Koga (5). Since, however, the expressions used by these two

authors differ slightly, it was necessary to investigate the cause for

the discrepancy. The two expressions are as follows:

^i A 3Vt o 1
i

0-3312 1 ,
7 ,-p m- =n(bg.n-2;+log.2tr-^ loge n - ^^ +^^ (Rolf)

^i A 3Vi o 1
^

0.33084 1 ,
1

,Tr .-=»(kg.n-2
>
)
+log.2x-^log.n 120^ + 270^ (Koga)

Koga explains that his expression was derived by applying the Euler

(17) summation formula to the Stirling asymptotic formula for log ml,

making use, of course, of the defining equation for Au formula (6).

The Stirling formula is (17)

ioge m!=(m+i)l ge m-m+|loge2x+i-3^+—^ (29)

This may be summed directly by formula (6) for integral values of m
from 1 to (n— 1), inclusive, the series which enter being made to

depend upon known series, or it may be summed by applying the

53811°—29 12
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Euler summation formula to each term. The result is an asymptotic

series in which the term in - is given by an asymptotic series, while
77/

the coefficients of the terms in higher powers of — begin to increase

after that of -r The numerical coefficient of — was found to be about
nb n

— 0.33086, but, by making use of the exact formula for Au it is found

that, for all values of n greater than 3, the value —0.330842 is indi-

cated as correct. Adopting this value the resulting expansion is

^ /i 3X
,

, n 1, 0-330842 1 ,
1 Q

"

'

which differ from Koga's expression only in the last term. This dif-

ference is of no consequence for all except the smallest values of n.

(Evidence will be given later of the correctness of the last term of

equation (30).)

Substituting equation (30) in equation (14) there results

5=0.337877-ilog^-M^-j^+^L (31)

The first term (log27r— k) shows what is the limiting value of B,

as n increases indefinitely, a value which has hitherto been lacking.

Formula (31) has been checked for values of n up to 30, by calculating

Ai directly from equation (6), and also by making use of Strasser's

values. For all values of n greater than 3, it is found that equation

(31) gives a 6-figure accuracy or better. The error is evidently

smaller, the greater the value of n; that is, the formula is most accu-

rate in just those cases where the exact formula is most difficult to

calculate.

By these means Table 8, Bureau of Standards Scientific Paper No.

169, has been recalculated. The values of B were found to be correct

up to 7i = 15, but beyond that point the values of Table 8 are too

large by amounts which vary from a few units up to 12 units in the

fourth place. The revised table is given as Table 3 in the Appendix.

VI. LIMITATIONS OF THE SUMMATION METHOD AND THE
ROSA METHOD

In the preceding sections it has been proved that the summation
method and the Rosa method lead to exactly the same expressions

for the inductance of solenoids and spirals, when terms of the same
order are retained in both. The proof has included second degree

terms only, but there is no reason to doubt that the agreement would
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be found for higher degree terms in the series expansions. The agree-

ment is, in fact, only a check on the basic inductance formulas which

have been employed in the two methods. This agreement of the

two methods does not signify, however, that the Rosa method and

summation method are of equal accuracy in all cases.

Since in order to be able to carry out the summations with any

degree of simplicity, it is necessary in the summation method to use

series expansions for the basic formulas which are to be summed, it

follows that the summation method gives series formulas which con-

verge well only for short coils or narrow spirals. Thus the tables of

Strasser, Esau, and Koga cover a range up to only 30 turns of wire.

This limitation is not inherent in the Rosa method. It is true that

in the comparison of the Rosa method with the summation method

the current sheet formulas used were series expansions, subject to

the same limitations as the summation formulas, but these were used

merely for the purpose of proving the identity of the final results by
both methods. Current sheet formulas are, however, available for

circular solenoidal current sheets, and for circular disks which fit all

cases and give an accuracy greater than is necessary in practice, and

to the suitable current sheet formula in any given case the Rosa

correction may be applied. It remains only to show that the Rosa

correction may be calculated with an accuracy sufficient to cause no

appreciable error in the final result.

Since the correction to the current sheet value of the inductance

to take into account the cross section of the actual winding is usually

no greater than about 1 per cent of the whole inductance, the correc-

tion does not need to be calculated with great accuracy in order to

give a suitable accuracy in the total inductance. As originally de-

veloped by Rosa, only the principal or geometric mean distance terms

were included, and it will be shown that these terms, which we may
conveniently designate as the "simple Rosa corrections," are, in

general, sufficient.

Consider, for example, two turns of a circular solenoid of round

wire and the corresponding two turns of the current sheet, which has

the same radius and pitch of winding. The mutual inductance of

the two turns of wire may be calculated by formula (3) in which the

7)^a^
terms in *-f-> which become zero for circles of very great radius a,

(Ju

may be regarded as corrections for the curvature of the turns. Like-

wise for the turns of the current sheet, curvature terms enter, as is

shown by equation (11). In both cases the curvature terms are not

negligible, but in the difference of the two mutual inductances, which

is the quantity which enters into the Rosa correction, the curvature

terms must nearly cancel, unless the dimensions of the cross sections
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are large in comparison with the radius of the turns. It has already

been shown that these differences of curvature terms are, for a short

coil, of very small effect on the Rosa correction terms. (See p. 170.)

For a long coil the total effect of the curvature terms is not so

easy to evaluate, since they are expressed by a series which converges

only for relatively short coils. It is evident also that, for the more
distant turns of wire, the curvature terms are relatively more im-

portant compared with the principal terms. However, the mutual
inductances of the distant turns, and still more so their differences,

are very small, so that the curvature effect for such turns should

contribute, absolutely, very little to the total correction.

The following detailed examination of a practical problem will make
some of these points clearer, in that it will give a more quantitative

measure of the importance of the terms neglected. The coil con-

sidered has 400 turns, wound on a form of 15 cm radius with a

winding pitch of 0.1 cm, so that the coil has an axial length of 40 cm.

The contribution to the Rosa B correction of all the turns which are

separated by a distance of pg is — 4ira

tributions to the correction for pairs of turns of all distances up to

p = 10 are as follows

:

2(n-p)loge
^

\ r;
pg_

The con-

p Correction p Correction p Correction

1 -47ra(90.741) 4 -47ra(4.178) 7 -47ra(1.342)
2 (17.496) 5 (2.655) 8 (1.024)
3 (7.522) 6 (1.834) 9 (0.806)

giving a total of — 47ra(127.598). The total sum of the principal

terms may be obtained from Table 3 for n = 400. It is — 4-7ra[400X

0.33455]= — 4xa (133.820); that is, the contributions of all the pairs

of turns separated by more than nine times the pitch is only about

5 per cent of the whole B correction. It may be shown that turns

for which p is greater than 20 contribute only 2.2 per cent, those at

distances greater than 50 g only 0.6 of 1 per cent, while those for

which the separation is greater than 250 g account for only 1 part

in 6,500 of the whole.

For separations as great as 3 g the contribution of all the pairs of

turns with a separation pg may be calculated from Rosa's (19) for-

mula (49), Bureau of Standards Scientific Paper No. 169, which reads:

am A-'-n, J~l 1
2

(-, 3pW, 8a 11\ 45 pY

A 8a 97\
,

I
,

1 1 L
,

1 p
2
g
2

\ ,11, "1

O0g^~6o) +
- •)

+
60pj

1+l6^) + l68?+ - J
(32)

In this formula the series in powers of -^ is the expansion of the
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geometric mean distance ratio; the other terms give, therefore, the

curvature terms. For cases where formula (32) converges, the sum-

mation of these terms can be performed, and their effect evaluated,

as was done for a winding of 30 turns on the same form, page 170.

For the long coil here considered, formula (32) is not sufficiently con-

vergent in the case of turns which are separated by distances much
greater than the radius of the coil. In such cases the Rosa-Wein-

stein (19) formula (50) of Bureau of Standards Scientific Paper No.

169 may be used in place of formula (32) to obtain the contributions

of chosen pairs of wires. Thus, for the extreme turns, for which

^ = 399, the true value of AMP is — 47ra[2.3 X 10
-7

], while the principal

terms of formula (32) give a value which is numerically more than

twice as great. The 150 different pairs of turns separated by a dis-

tance of 25 cm contribute AMP = — 47ra[0.000331], while the g, m, d

terms are about 20 per cent greater. Unfortunately, since the Rosa-

Weinstein formula involves elliptical integrals, it is impracticable to

obtain its summation over the coil. It is, however, evident that, for

the more distant turns of the coil, the curvature effect is of opposite

sign to what it is for the nearer turns, so that, proportionately, the

curvature effect should be smaller rather than greater than for a

short coil on the same form, and it has already been shown that in

the latter case its effect on the whole inductance is very small.

The summation method of Strasser assumes that the current flows

in circular turns whose planes are perpendicular to the axis of the

solenoid. Thus the effect of the axial component of the current,

which is present when the current flows in the actual helical winding,

is neglected. The effect of the axial component has also been neg-

lected in obtaining the correction for cross section by the Rosa method,

but if a current sheet formula for a true continuous helix without

insulation be available, the neglect of helicity in getting the correction

for cross section is of second order in its effect on the total inductance.

In a recent paper Snow (1) has given a very accurate formula for the

inductance of a helix of wire, which enables the correction to be

calculated which must be applied to the formula for a cylindrical

current sheet to obtain the true inductance of the helix. He gives

also the formula for the inductance of a true continuous helical cur-

rent sheet. Thus, it is now possible to evaluate the error from neg-

lecting the helicity of the winding, and also to calculate what is the

error of the simple Rosa method when applied to the calculation of

the inductance of a helical winding of wire of round or rectangular

cross section.
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VII. CALCULATION OF THE INDUCTANCE OF A HELIX OF
ROUND WIRE BY ROSA'S METHOD COMPARED WITH
THE CALCULATION BY SNOW'S FORMULA
The formula for the inductance of a helix of round wire is given

as equation (114), page 466, in Snow's article. 3 In the nomenclature
of the present paper this reads

L= L +^[-(0.89473-l„g„|)+ll„g.^+Affl

+*i-o$nl/£-,Y?JYl (33)

In this L is the inductance of a cylindrical current sheet (helicity neg-

lected) whose length is ng and whose mean radius is a, lc =
V4a2 + n2

g
2

is the modulus of the elliptic integral of second land E, and A 2 Qc)

is a complicated function of 1c, to be obtained from the curve of page
475. It is the principal term in the correction for the effect of the
axial component of the current.

If we notice that 0.89473 = log t-j, and substitute for log27r-|

its value in terms of B from equation (31), we find, making use of
equation (7), that Snow's formula may be written for uniform current
distribution

L=L +^na[-(A + B)-±loge
^-™^+^l

L 6n &e a n 2n

^±n\lc J\9 J 120n3 ^504n5
J

Here the Snow formula for the difference between the inductance
of a helix of round wire and cylindrical current sheet is expressed in
terms of the simple Rosa correction constants A and B (curvature
terms omitted). Thus the error of the Rosa correction may be cal-
culated for any desired case.

For the example solved by Snow on page 476, w= 400, # = 0.1,
a =15, a = 0.05. The value of A (see principal term of formula (7))
is -0.13629, and from Table 3, for n = 400, 5 = 0.33455. Thus the
simple Rosa correction is 47raa[0. 13629 -0.33455] = - 14949 num
(millimicrohenrys), whereas Snow's equation (114) and formula (34)
both give - 14883. Since the value of L is 26,568,401, this difference
of 66 m/xh amounts to about 2.5 parts in 1,000,000 of the whole

' The first term of the second line of this equation should read -™ log, — , instead of~ log, — • The
correct reading is employed in the example of p. 476.

* The difference of 4 parts in 1,000,000 found by Snow in the solution of the same problem is explained
by the use of the value 0.3351 for B, as given in Table 8, B. S. Sci. Paper No. 169. This table has been
found to be in error at this and other points as explained in Section V.
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inductance, the Rosa method giving too small a value. 4 This dif-

ference is mainly due to the neglect of the axial component of the

current. The formula for a continuous helical current sheet is given

in Snow's formula (129). In the nomenclature of the present paper

it reads

£,=x„+^[^-e^+A [<^)-«1] (35)

K and E being the complete elliptical integrals of first and second

kind to the modulus, Tc, defined for the preceding equation. The

quantity in the brackets of the last term of equation (35) is tabulated

in Table I, Bureau of Standards Scientific Paper No. 169, or may

also be obtained as —
-

;—-, using the values of/ given in Table 1,

Scientific Paper No. 498.

Subtracting equation (35) from equation (34) there results

T . r , * , ™ 1 i ng
.
0.01322

Li Li. 4xna[-U + JB)-^loge ^+
<

n

" Y^-^yx^v-kK]- i—+^-'\
(36)

+
4tiV& )\g ) 6nl\ Tc J I 120w3 + 504n5

J

which gives the correction for cross section which has to be applied

to the formula for a continuous helical current sheet of tape with

negligible insulation to obtain the inductance of a helix of round wire

of the same radius, pitch, and number of turns. The error of the

simple Rosa correction is given by the terms in equation (36) exclu-

sive of — 4:irna(A + B) . For the previous example these extra terms

are, in order, 4vna[- 0.000409 + 0.000033 + 0.000213-0.000024] =
— 14.1 nudi; that is, the error of the simple Rosa correction when
applied to the true helical current sheet (the logical current sheet

formula), is only about one-half of 1 part in 1,000,000 of the total

inductance of the coil. If this error be attributed mainly to the

neglect of the curvature terms in the Rosa correction (and the alge-

braic sign is what would be expected), its value shows that the curva-

ture terms are proportionately smaller for the long coil than for the

shorter wound on the same form. For example, for a coil of only

30 turns wound with the same pitch on the same form, the correction

to the Rosa correction in equation (36) is —0.55 nuxh in a total of

540,845; that is, about 1 part in 1,000,000. In this case, where the

convergence of the formula for the summation of the curvature terms

is satisfactory, their calculated value by equations (16) and (18) is

-0.79 num.

Before testing the use of the Rosa method for a helix of rectangular

wire, it is convenient to generalize the method for a solenoid wound
with wire of any cross section.
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VIII. GENERALIZATION OF THE ROSA METHOD FOR A
SOLENOID WOUND WITH WIRE OF ANY CROSS SECTION

If we put

Rw = the geometric mean distance of the cross section of the wire
from itself,

R t = the geometric mean distance of a turn of the current sheet
(straight line),

r-„,p = the geometric mean distance of the cross sections of a pair
of wires separated by a distance pg,

r tp = the geometric mean distance of the sections of the corre-
sponding turns of the current sheet,

Ls = inductance of the equivalent current sheet,

then the general expressions for the Rosa corrections are

-4:TrnaA=-4irna (log* Rw -loge R t )

-4imaB=4irna\^(n-l)loge^+(n-2)loge^+L»r J &e
r„i'

v ° *"»*j£T- ••
(37)

+ (n-p) log, ps+ +\oge ^=4]
' ">P 'to(.n—1)JJ

and

L =Ls -4ima{A + B)

If the cross section of the wire is not circular, it is convenient to
write the second of these equations in the form

-Wl?=w[|s {n-p) log, g-||j (n-p) log, *»] (38)

The first series of terms gives the B correction for circular wire and
is tabulated in Table 3. The second series depends upon the dif-
ferences of the geometric mean distances of the actual cross sections
of the wire and those of circular turns wound with the same pitch
and number of turns. In general, formulas for the geometric mean
distance are not known, except in the important case of a rectangular
cross section. The comparison of the Rosa correction with Snow's
formula for wire of rectangular cross section is therefore of special
interest. The author has in preparation tables for aiding in numerical
computations for this case.
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IX. COMPARISON OF THE ROSA METHOD WITH SNOW'S
FORMULA FOR THE INDUCTANCE OF A HELIX OF WIRE
OF RECTANGULAR CROSS SECTION

Snow's formula (126) for the inductance of a helix of wire of rec-

tangular cross section of axial dimension /S and radial thickness a is

as follows for uniform current density over the cross section:

L-L + 2,a{A 2 (lc) +
1{l+^n 2ra

loge
g
2 S~°° 9

+1

2n[~- log/- 4.41212 +i (tan2 6 loge sin + cota loge cos 0)

(7|-0)tan0+0cot0J

fP\
2m (cos

2m+4 e+ (- l)m sin2m+4 (39)

8 " \g) -cos (2m + 4)0) ,„ _ ^1
"sin2 0cos2 0^'

1
2m(2m+l)(2m + 2)(2m + 3)(2m + 4) V 2m ;

J

(3
2

g
2

25

3

/p\2m/cos2m+id+ (- l)
msin2m+4

16 " W V -cos(2m + 4)0)
(f

. _ . J

"sin2 cos2 0~
2 2ro(2ro+l)(2m + 2)(2ro+ 3)(2ro + 4)

^ 2m~1 >\

00 1

In this equation 0= tan"1 -» £„=S p and the /s are functions

of the ratios -and-» denned in Snow's formulas (123), (124), and
9 9

.

(125). For the rest the equation has been written m terms of quan-

tities already defined.

Making use of the definition of the geometric mean distance of a

rectangle in terms of 0, Snow's equation (118), and the known ex-

3

pression for the geometric mean distance of a straight line R t = logg-^'

and the defining equation for A in equation (37), the second and

third lines of equation (39) may be written

4™[-^ + (§-log.2*) +f] (40)
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Comparing the denning equations for the j functions with the for-

mula for the geometric mean distance of two equal parallel rectangles

(12) it is seen that the fourth line of equation (39) is

4,Trna\-2nloge
r

-f-'~-n~\ . (41)

while the next to last lineof"equation (39) is ]

47ra[2loge ^] (42)

so that together they give the first term of the last series of terms

in equation (38).

The geometric mean distance of two equal parallel rectangles may
be expanded in a series which holds for separations, pg, which are

greater than the dimensions of the rectangle. The series is

l0ge^ =~^W"^W~168V^/ 360W

+
2\^g)

+ ' '

'J~360\^)
+ *

/Expanding the summation in the fifth fine of Snow's equation and
comparing the result with equation (43), it is seen that the Snow

B-l rv
series is identical with the terms S n log« — in equation (38),

except that the series S2m are taken to infinity, whereas in the sum-
mation of the geometric mean distances it ends with (n— 1). The
difference, that is, the sum between (n—1) and infinity may, how-

ever, readily be expressed in a series involving powers of — The

series in the last line of equation (39) is identical with the terms
TO-l r„S V l°ge "J£?

' except that the second degree terms in a and /3 are

lacking and that here again the summations S27n_i are carried to

infinity instead of (n—1), and it will be necessary to expand the

difference in a series in powers of —
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The remaining terms inSp loge ss in the B (rectangle) correc-
2

. . V9
.

tion of equation (38) may be identified with the last term in the first

line of equation (39) Cthat in (a2— /3
2
)), by writing it to involve

B-l ^

log ng and substituting for log n its value in terms of the series S ~r.

2 ft

T
which arises when the series of equation (43) is used for log — '

The remaining term in log in the first line of equation (39) may

be expressed in terms of the Rosa B correction for circles, as was

done in Section VII.

The results of collecting all the transformed terms is that Snow's

equation (39) may be written in the form

T '

,
. r ,, |D, 1 , ng 0.02453 1 , 1

L =L + 4Trna\_-(A + B)--^loge
-

i20^
+
60iJ?

+
2^
2+
3^(l

-1
)(

1+=^r)w (44)

3n3 \ 2nV\60 g* 24 g
4 60 g*

)

10n5 Vl68 g
6 36 / 36 g

6 168 y
6/ '

' 'J

where A and 5 are defined in equations (37) and (38).

. a 6
For square wire, the second and sixth degree terms in — and — drop

1 / 1 \fl4

out, and the fourth degree terms become „ fin 3 ( 1 — ?r~2 ) ~i' For the

special case a = o and (3 = g, equation (44) goes over into Snow's

formula for a continuous helical current sheet, as it should. It is of

interest to note that in that case the terms in powers of — all cancel,r n '

thus giving a check on the coefficients in the series expansions, and

especially furnishing evidence that the term in —gin formula (31) is
IV

correct.

Making use of the formula (44) the difference may be evaluated

between the accurate formula of Snow for square wire and the solu-

tion by Rosa's method in the case of the example treated by Snow
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on page 477 of his article. In this the coil is supposed to be wound
with square wire, instead of round, the side of the section being

taken as a= jS = 0.05 cm. The radius, number of turns, and pitch of

the winding are taken the same as in the, preceding problem for

round wire. The distribution of the current over the cross section

being assumed to be uniform, the value of ux in equation (44) is zero.

3
For the calculation of the A correction, we have log R t

= log g
— -^ and

Tf

Rw = 0.44705a. Thus from equation (37), -^l = log ^= -0.001773.

The B correction for the circle is 0.33455 as before. For the value of

r ... 2
log— the exact formula gives 0.0005109, which multiplied by - (n— 1)

g n
amounts to 0.001019. For the more distant wires, the formula (43)

may be used, and only a few terms have to be included. These bring

up the total of the value of B for the rectangles to 0.001104. Thus
the Rosa terms in equation (44) amount to

-0.001773-0.334554-0.001104= -0.337431

which, multiplied by Anna, gives for the Rosa correction —25442 num.
The correction terms in equation (44) are found to be

~- 0.001125
2n

-L log-

n
I-~Mooim

°-02463 = -0.000061
n

m-m= 0.000284

sum= 0.000939

which, multiplied by A-n-na, show that the error of the Rosa correc-

tion is 70.8 num. This amounts to about 2.7 parts in 1,000,000 of

the whole inductance. Thus, the true correction for cross section to

be applied to the inductance of the cylindrical current sheet, in order

to find the inductance of the helical coil of square wire, is —25442 + 71

= —25371 mjuh. This value, found by equation (44), should agree

with the value found directly from Snow's equation (126). The value

calculated by Snow is —25345. The source of the discrepancy lies

in an error in the value of the term multiplied by -^ in the last equa-

tion of the calculation on page 477. The true value is 1.56288 instead
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of 1.56268, as given by Snow. Making this change, Snow's equation

gives -25372.

The error of the Rosa method quoted in Snow's paper for this

problem is 6 parts in 1,000,000. This is affected by both the error

in the value of B used for the circle (already discussed in Section V)

and by the numerical error in Snow's calculation just noted.

If the Rosa corrections were applied to the formula of Snow for a

continuous helical current sheet we use the result from equation (35),

that the inductance Ls of the helical current sheet is related to L
,

that of the cylindrical current sheet, by the relation LS
=L + 79. 5

nudi, and the calculated inductance of the coil is

L = L + 79.5 - 25442 =L - 25362 num.

which is in error by only 0.4 of 1 part in 1,000,000. This is in line

with the calculation on page 181, which showed that the error of the

Rosa correction as ordinarily applied to the cylindrical sheet formula

is principally due to neglect of the helicity. The residual error of

the Rosa method is practically the same for both round and square

cross section, as would be expected.

X. CONCLUSION

In the preceding sections it has been shown that the simple Rosa
method of correction for the effect of cross section gives results for

circular solenoids of round or rectangular wire which are amply accu-

rate for all practical cases. Indeed, for the examples given, the Rosa
method gives results of high precision, when applied to the logical

current sheet formula—that in which the axial component of mag-
netic field is taken into account. The numerical proof of this degree

of accuracy in the Rosa method is made possible by the existence of

the accurate formulas of Snow.
Unfortunately, formulas corresponding to those of Snow for other

eases, circular flat spirals, polygonal solenoids, and polygonal spirals,

are not available, and it would seem to be a work of great difficulty

to derive them. Lacking them, the Rosa method applied to the

available current sheet formulas offers the simplest and most accurate

general method of calculation. It has been shown that for short

windings the summation method and the Rosa method are in agree-

ment, but the Rosa method applies to any case where the current

sheet formula is available. It remains to note the use of the method
in the cases already cited.

It is easy to show that for a circular flat spiral the curvature terms

g
2

in the Rosa correction are of second degree in ^ and may, therefore,

be neglected as of less importance than the effect of the radial com-
ponent of the current. The current sheet formula for a disk-shaped

or annular current sheet of negligible axial thickness is known, as
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well as series expansions holding for the case where the axial width

of the current sheet is small compared with the mean radius (18).

In all of these the radial component of the current is neglected. Thus
the inductance of a flat circular spiral wound with wire of round or

rectangular cross section may best be found by applying the simple

Rosa correction, calculated by the methods and formulas already

fully treated, to the inductance of a current sheet having the same
mean radius as the spiral coil and a radial width equal to the product

of the pitch by the number of turns.

The case of a short polygonal solenoid has already been fully

treated and the inductance formula given as equation (25). In this

it is to be noted that the principal terms in the correction equations

here are the Rosa constants; that is, for round wire the simple Rosa
constants are the same for polygonal solenoids as for circular. In

both cases they are multiplied by twice the length of wire in the

winding. No formula is available for long polygonal solenoids, ex-

cept in the case of the square solenoids (14). It would be possible,

though a great deal of work, to derive the formulas for the other

cases, but it is sufficient in practical cases to make use of the formula

for the equivalent circular cylindrical current sheet as was described

(13) in Bureau of Standards Scientific Paper No. 468, and to apply

to this the simple Rosa correction.

The calculation »of the inductance of a polygonal spiral is covered

by formulas (26) and (27). These apply most accurately to spirals

where the radial width is small compared with the side of the polygon,

but this will cover many practical cases. No general formula is known
for a disk of polygonal shape. A good approximation to it can be

obtained by calculating the inductance of a circular disk current

sheet whose mean element incloses the same area as the mean element

of the polygonal disk. It is to be noticed that in equation (27) the

principal Rosa constants are the same as those which hold for circular

and polygonal solenoids of round wire.
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XII. APPENDIX

Table 3.

—

Values of the Rosa constant B, calculated by formula (31)

n B n B n B

1 31 0. 30874 100 0.32689
2 . 11371 32 .30949 110 . 32775
3 .16626 33 . 31019 120 .32847
4 .19728 34 .31086 130 .32909
5 .21800 35 . 31149 140 • .32963

6 .23293 36 . 31210 150 . 33010
7 .24426 37 .31267 160 .33052
8 .25318 38 .31322 170 .33090
9 .26042 39 . 31374 180 .33123

10 .26641 40 .31424 190 . 33153

11 . 27146 41 . 31471 200 .33181
12 .27579 42 . 31517 220 .33229
13 .27954 43 . 31561 240 .33269
14 .28282 44 . 31602 260 .33304
15 .28573 45 . 31643 280 . 33334

16 .28832 46 . 31681 300 . 33360
17 .29064 47 .31718 350 . 33414
18 .29273 48 .31754 400 . 33455
19 .29464 49 . 31789 450 . 33488
20 .29637 50 .31822 500 .33514

21 .29796 55 . 31972 550 . 33536
22 .29942 60 .32099 600 .33555
23 . 30077 65 .32208 650 .33571
24 .30202 70 .32304 700 . 33584
25 . 30318 75 . 32387 750 .33596

26 .30427 80 .32461 800 .33607
27 .30528 85 .32527 850 .33616
28 .30623 90 .32587 900 .33625
29 . 30712 95 : 32640 950 . 33633
30 . 30795 100 . 32689 1000

CO

.33640

.33788

Values not found in the table may be calculated by the formula

^0.337877-gMog.n-

Washington, January 25, 1929,

0.330842

n i
+
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